Carbon disulfide
- Formula: CS2
- Molecular weight: 76.141
- IUPAC Standard InChIKey: QGJOPFRUJISHPQ-UHFFFAOYSA-N
- CAS Registry Number: 75-15-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Carbon bisulfide; Carbon sulfide (CS2); Dithiocarbonic anhydride; CS2; Carbon sulfide; Carbon-disulphide-; Carbon bisulphide; Carbon sulphide; Kohlendisulfid; Koolstofdisulfide; NCI-C04591; Rcra waste number P022; Schwefelkohlenstoff; Solfuro di carbonio; Sulphocarbonic anhydride; UN 1131; Weeviltox; Wegla dwusiarczek; Alcohol of sulfur; Carbon bisulfuret; Methyl disulfide; Sulfocarbonic anhydride
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 116.94 | kJ/mol | Review | Chase, 1998 | Data last reviewed in December, 1976 |
ΔfH°gas | 117.1 ± 0.79 | kJ/mol | Ccr | Good, Lacina, et al., 1961 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -1112. | kJ/mol | Ccb | Guerin, Marthe, et al., 1949 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 237.98 | J/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1976 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1000. | 1000. to 6000. |
---|---|---|
A | 35.85391 | 61.25292 |
B | 52.49121 | 1.378826 |
C | -40.83743 | -0.140520 |
D | 12.00155 | 0.009284 |
E | -0.224831 | -3.244044 |
F | 103.5030 | 90.07106 |
G | 266.1597 | 299.4091 |
H | 116.9432 | 116.9432 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in December, 1976 | Data last reviewed in December, 1976 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Cl- + CS2 = (Cl- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.8 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
ΔrH° | 49.0 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 58.2 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
ΔrS° | 84. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(Cl-)t-C4H9OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 19. ± 9.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
ΔrG° | 24. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
By formula: CS2- + CS2 = (CS2- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 91.6 ± 6.3 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
ΔrH° | 18. ± 4.6 | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
ΔrH° | 17.2 ± 2.5 | kJ/mol | LPES | Bowen and Eaton, 1988 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 54. ± 10. | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: (CS2- • CS2) + CS2 = (CS2- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.2 ± 2.9 | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
ΔrH° | 27. ± 5.9 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0. ± 14. | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: S2+ + CS2 = (S2+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 129. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrH° | 120. | kJ/mol | PI | Ono, Linn, et al., 1981 | gas phase; M |
ΔrH° | 91.6 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; equilibrium uncertain; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrS° | 71.5 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; equilibrium uncertain; M |
By formula: (F- • 2CS2) + CS2 = (F- • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | N/A | Hiraoka, Fujimaki, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: F- + CS2 = (F- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. ± 6.3 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
ΔrH° | 131. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 111. ± 6.3 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
ΔrG° | 101. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B |
By formula: CS2+ + CS2 = (CS2+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 104. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrH° | 91.6 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
ΔrH° | 73.2 | kJ/mol | PI | Ono, Linn, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrS° | 91.6 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (CS2+ • 2CS2) + CS2 = (CS2+ • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
ΔrH° | 16. | kJ/mol | PI | Ono, Linn, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | N/A | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
By formula: (Cl- • 3CS2) + CS2 = (Cl- • 4CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; Estimated entropy; single temperature measurement; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -0.4 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: CHS2+ + CS2 = (CHS2+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1993, 2 | gas phase; M |
ΔrH° | 46.4 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 60.7 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993, 2 | gas phase; M |
ΔrS° | 110. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (Cl- • 2CS2) + CS2 = (Cl- • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.1 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.1 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (Cl- • CS2) + CS2 = (Cl- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.2 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 66.1 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (F- • CS2) + CS2 = (F- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.0 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.0 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.8 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (I- • CS2) + CS2 = (I- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.5 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.8 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (Br- • CS2) + CS2 = (Br- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.5 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.4 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.0 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: I- + CS2 = (I- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.0 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.9 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: Br- + CS2 = (Br- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.7 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 54.4 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (S2+ • 2CS2) + CS2 = (S2+ • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | N/A | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
By formula: (S2- • CS2) + CS2 = (S2- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
By formula: (CS2+ • CS2) + CS2 = (CS2+ • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrH° | 18. | kJ/mol | PI | Ono, Linn, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
By formula: CH3+ + CS2 = (CH3+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 252. | kJ/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M |
By formula: (CS2- • 3CS2) + CS2 = (CS2- • 4CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. ± 28. | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
By formula: (CS2- • 4CS2) + CS2 = (CS2- • 5CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 28. | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
By formula: (CS2- • 2CS2) + CS2 = (CS2- • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -97.91 | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
By formula: (S2+ • CS2) + CS2 = (S2+ • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
By formula: (CHS2+ • CS2) + CS2 = (CHS2+ • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1993, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.8 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993, 2 | gas phase; M |
By formula: S2- + CS2 = (S2- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.9 | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
By formula: C6H6+ + CS2 = (C6H6+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: (CS2+ • 3CS2) + CS2 = (CS2+ • 4CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11. | kJ/mol | PI | Ono, Linn, et al., 1980 | gas phase; M |
By formula: (Fe+ • CS2) + CS2 = (Fe+ • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 188. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: CS+ + CS2 = (CS+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 151. | kJ/mol | PI | Ono, Linn, et al., 1981 | gas phase; M |
By formula: S+ + CS2 = (S+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 166. | kJ/mol | PI | Gress, Linn, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44. ± 1. | kJ/mol | Cm | Gattow and Krebes, 1963 | liquid phase; ALS |
By formula: Fe+ + CS2 = (Fe+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 166. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: V+ + CS2 = (V+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 114. ± 13. | kJ/mol | CIDT | Schroeder, Kretzschmar, et al., 2003 | RCD |
By formula: Mo+ + CS2 = (Mo+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67. ± 13. | kJ/mol | CIDT | Schroeder, Kretzschmar, et al., 2003 | RCD |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to CS2+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.073 ± 0.005 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 681.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 657.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.5525 ± 0.0013 | N/A | Cavanagh, Gibson, et al., 2012 | poor Franck-Condon overlap makes previous LPES studies too bound; B |
0.580 ± 0.050 | LPES | Misaizu, Tsunoyama, et al., 2004 | Vertical Detachment Energy: 1.27±0.10 eV; B |
0.51 ± 0.10 | IMRE | Chowdhury, Heinis, et al., 1986 | ΔGea(423 K) = -12.7 kcal/mol; ΔSea (estimated) = +2.0 eu.; B |
<0.799982 | LPES | Scheidt and Weinkauf, 1997 | B |
0.000694 | N/A | Compton, Dunning, et al., 1996 | Quadrupole-bound state; B |
0.60 ± 0.10 | ECD | Chen and Wentworth, 1983 | B |
0.50 ± 0.20 | Endo | Hughes, Lifschitz, et al., 1973 | B |
1.460 ± 0.020 | LPES | Tsukuda, Hirose, et al., 1997 | EA given is Vertical Detachment Energy. Poor Franck-Condon overlap; B |
0.89 ± 0.20 | LPES | Oakes and Ellison, 1986 | The discrepancy with equilibrium has not been resolved. Poor Franck-Condon overlap.; B |
1.00 ± 0.20 | NBIE | Compton, Reinhardt, et al., 1975 | B |
0.94 ± 0.32 | IMRB | Kraus, Muller-Duysing, et al., 1961 | Between NH2-, C-; B |
Ionization energy determinations
Appearance energy determinations
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + CS2 = (Br- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.7 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 54.4 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (Br- • CS2) + CS2 = (Br- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.5 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.4 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.0 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: CHS2+ + CS2 = (CHS2+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1993, 2 | gas phase; M |
ΔrH° | 46.4 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 60.7 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993, 2 | gas phase; M |
ΔrS° | 110. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (CHS2+ • CS2) + CS2 = (CHS2+ • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1993, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.8 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993, 2 | gas phase; M |
By formula: CH3+ + CS2 = (CH3+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 252. | kJ/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M |
By formula: CS+ + CS2 = (CS+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 151. | kJ/mol | PI | Ono, Linn, et al., 1981 | gas phase; M |
By formula: CS2+ + CS2 = (CS2+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 104. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrH° | 91.6 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
ΔrH° | 73.2 | kJ/mol | PI | Ono, Linn, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrS° | 91.6 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (CS2+ • CS2) + CS2 = (CS2+ • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrH° | 18. | kJ/mol | PI | Ono, Linn, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
By formula: (CS2+ • 2CS2) + CS2 = (CS2+ • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
ΔrH° | 16. | kJ/mol | PI | Ono, Linn, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | N/A | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
By formula: (CS2+ • 3CS2) + CS2 = (CS2+ • 4CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11. | kJ/mol | PI | Ono, Linn, et al., 1980 | gas phase; M |
By formula: CS2- + CS2 = (CS2- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 91.6 ± 6.3 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
ΔrH° | 18. ± 4.6 | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
ΔrH° | 17.2 ± 2.5 | kJ/mol | LPES | Bowen and Eaton, 1988 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 54. ± 10. | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: (CS2- • CS2) + CS2 = (CS2- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.2 ± 2.9 | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
ΔrH° | 27. ± 5.9 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0. ± 14. | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: (CS2- • 2CS2) + CS2 = (CS2- • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -97.91 | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
By formula: (CS2- • 3CS2) + CS2 = (CS2- • 4CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. ± 28. | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
By formula: (CS2- • 4CS2) + CS2 = (CS2- • 5CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 28. | kJ/mol | N/A | Tsukuda, Hirose, et al., 1997 | gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B |
By formula: C6H6+ + CS2 = (C6H6+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: Cl- + CS2 = (Cl- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.8 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
ΔrH° | 49.0 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 58.2 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
ΔrS° | 84. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(Cl-)t-C4H9OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 19. ± 9.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
ΔrG° | 24. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
By formula: (Cl- • CS2) + CS2 = (Cl- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.2 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 66.1 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (Cl- • 2CS2) + CS2 = (Cl- • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.1 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.1 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (Cl- • 3CS2) + CS2 = (Cl- • 4CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; Estimated entropy; single temperature measurement; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -0.4 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: F- + CS2 = (F- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. ± 6.3 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
ΔrH° | 131. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 111. ± 6.3 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
ΔrG° | 101. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B |
By formula: (F- • CS2) + CS2 = (F- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.0 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.0 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.8 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (F- • 2CS2) + CS2 = (F- • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | N/A | Hiraoka, Fujimaki, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: Fe+ + CS2 = (Fe+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 166. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Fe+ • CS2) + CS2 = (Fe+ • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 188. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: I- + CS2 = (I- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.0 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.9 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: (I- • CS2) + CS2 = (I- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.5 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.8 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1993 | gas phase; B |
By formula: Mo+ + CS2 = (Mo+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67. ± 13. | kJ/mol | CIDT | Schroeder, Kretzschmar, et al., 2003 | RCD |
By formula: S+ + CS2 = (S+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 166. | kJ/mol | PI | Gress, Linn, et al., 1980 | gas phase; M |
By formula: S2+ + CS2 = (S2+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 129. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrH° | 120. | kJ/mol | PI | Ono, Linn, et al., 1981 | gas phase; M |
ΔrH° | 91.6 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; equilibrium uncertain; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
ΔrS° | 71.5 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; equilibrium uncertain; M |
By formula: (S2+ • CS2) + CS2 = (S2+ • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
By formula: (S2+ • 2CS2) + CS2 = (S2+ • 3CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | N/A | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
By formula: S2- + CS2 = (S2- • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.9 | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; M |
By formula: (S2- • CS2) + CS2 = (S2- • 2CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka, Fujimaki, et al., 1994, 2 | gas phase; Entropy change calculated or estimated; M |
By formula: V+ + CS2 = (V+ • CS2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 114. ± 13. | kJ/mol | CIDT | Schroeder, Kretzschmar, et al., 2003 | RCD |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (100 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); DOW KBr FOREPRISM-GRATING; DIGITIZED BY COBLENTZ SOCIETY (BATCH I) FROM HARD COPY; 2 cm-1 resolution
- LIQUID (NEAT); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS)
4, 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1990. |
NIST MS number | 118705 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | DB-5 | 100. | 564.4 | Miller and Bruno, 2003 | 30. m/0.25 mm/0.1 μm |
Capillary | DB-5 | 120. | 576.0 | Miller and Bruno, 2003 | 30. m/0.25 mm/0.1 μm |
Capillary | DB-5 | 60. | 558.0 | Miller and Bruno, 2003 | 30. m/0.25 mm/0.1 μm |
Capillary | DB-5 | 80. | 557.3 | Miller and Bruno, 2003 | 30. m/0.25 mm/0.1 μm |
Packed | SE-30 | 42. | 539. | Rudenko, Mal'tsev, et al., 1985 | Column length: 3. m |
Kovats' RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CBP-1 | 512. | Shimadzu, 2003 | 25. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C |
Kovats' RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CBP-20 | 733. | Shimadzu, 2003 | 25. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5 | 544. | Insausti, Goñi, et al., 2005 | 50. m/0.32 mm/1.05 μm, He, 35. C @ 15. min, 8. K/min, 220. C @ 5. min |
Capillary | CP Sil 8 CB | 538. | Elmore, Mottram, et al., 2000 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 568. | Beaulieu and Grimm, 2001 | 30. m/0.25 mm/0.25 μm, He; Program: 50C (1min) => 5C/min => 100C => 10C/min => 250C (9min) |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 745. | Malliaa, Fernandez-Garcia, et al., 2005 | 60. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min |
Van Den Dool and Kratz RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Supelcowax-10 | 701. | Bianchi, Cantoni, et al., 2007 | 30. m/0.25 mm/0.25 μm; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 220C(1min) |
Capillary | Supelcowax-10 | 701. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | CP-Wax 52CB | 751. | Condurso, Verzera, et al., 2006 | 60. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C |
Capillary | Carbowax 20M | 780. | Whitfield, Shea, et al., 1981 | Column length: 150. m; Column diameter: 0.75 mm; Program: not specified |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Polydimethyl siloxane with 5 % Ph groups | 100. | 564. | Safa and Hadjmohannadi, 2005 | 30. m/0.25 mm/0.10 μm, Nitrogen |
Capillary | Polydimethyl siloxane with 5 % Ph groups | 60. | 558. | Safa and Hadjmohannadi, 2005 | 30. m/0.25 mm/0.10 μm, Nitrogen |
Capillary | Polydimethyl siloxane with 5 % Ph groups | 80. | 557. | Safa and Hadjmohannadi, 2005 | 30. m/0.25 mm/0.10 μm, Nitrogen |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxane: CP-Sil 5 CB | 517. | Bramston-Cook, 2013 | 60. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min |
Capillary | HP-5 MS | 536. | Kotowska, Zalikowski, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min |
Capillary | OV-101 | 530. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
Capillary | PONA | 537. | Yang, Wang, et al., 2003 | 50. m/0.20 mm/0.50 μm, 2. K/min; Tstart: 30. C; Tend: 150. C |
Capillary | PONA | 537. | Yang, Yang, et al., 2003 | 50. m/0.20 mm/0.50 μm, Helium, 2. K/min; Tstart: 30. C; Tend: 170. C |
Capillary | SPB-5 | 533. | Pérès, Begnaud, et al., 2002 | 60. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 200. C @ 5. min |
Capillary | HP-5 | 536. | García, Martín, et al., 2000 | 60. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 240. C |
Capillary | DB-1 | 517. | Habu, Flath, et al., 1985 | 3. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C |
Capillary | OV-101 | 512. | del Rosario, de Lumen, et al., 1984 | He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5 MS | 540. | Kotowska, Zalikowski, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | VF-5 | 569. | Shivashankar, Roy, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: 50 0C (2 min) 3 0C/min -> 200 0C (3 min) 10 0C/min -> 220 0C (8 min) |
Capillary | VF-5 | 568. | Shivashankar, Roy, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | HP-5 | 544. | Pugliese, Sirtori, et al., 2009 | 50. m/0.32 mm/1.05 μm, Helium; Program: not specified |
Capillary | HP-1 | 515. | Barra, Baldovini, et al., 2007 | 50. m/0.2 mm/0.33 μm, He; Program: 40C(2min) => 2C/min => 200C => 15C/min => 250C (30min) |
Capillary | DB-5 MS | 517. | Liu, Xu, et al., 2007 | 60. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 6 0C/min -> 100 0C 4 0C/min -> 180 0C 8 0C/min -> 250 0C (12 min) |
Capillary | HP-5 | 534. | Garcia-Estaban, Ansorena, et al., 2004 | 50. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C(5min) |
Capillary | DB-5 | 534. | Garcia-Estaban, Ansorena, et al., 2004, 2 | 50. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C (5min) |
Capillary | BPX-5 | 549. | Machiels, Istasse, et al., 2004 | 60. m/0.32 mm/1. μm, He; Program: 40C (4min) => 2C/min => 90C => 4C/min => 130C => 8C/min => 250 C (10min) |
Capillary | RTX-5 MS | 549. | Machiels and Istasse, 2003 | 60. m/0.25 mm/0.5 μm, He; Program: 35C (3min) => 10C/min => 50C => 4C/min => 200C => 50C/min => 250C (10min) |
Capillary | PONA | 537. | Yang, Wang, et al., 2003 | 50. m/0.20 mm/0.50 μm; Program: not specified |
Capillary | Methyl phenyl siloxane (not specified) | 536. | Poligne, Collignan, et al., 2002 | Program: not specified |
Capillary | DB-5 MS | 561. | Luo and Agnew, 2001 | 30. m/0.25 mm/1.0 μm, Helium; Program: not specified |
Capillary | Polydimethyl siloxanes | 530. | Zenkevich, 2001 | Program: not specified |
Capillary | SPB-1 | 527. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | SPB-1 | 518. | Nedjma and Maujean, 1995 | 30. m/0.32 mm/4. μm, H2; Program: 35(1)-10 -> 55-25 ->250 |
Capillary | Methyl Silicone | 524. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | DB-1 | 513. | Ciccioli, Cecinato, et al., 1994 | 60. m/0.32 mm/0.25 μm; Program: not specified |
Capillary | DB-1 | 514. | Ciccioli, Brancaleoni, et al., 1993 | 60. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min |
Capillary | SPB-1 | 527. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 524. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | CP Sil 8 CB | 539. | Weller and Wolf, 1989 | 40. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C |
Capillary | OV-1 | 524. | Ramsey and Flanagan, 1982 | Program: not specified |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 710. | Ganeko, Shoda, et al., 2008 | 4. K/min; Column length: 60. m; Column diameter: 0.35 mm; Tstart: 40. C; Tend: 200. C |
Capillary | TC-Wax | 735. | Ishikawa, Ito, et al., 2004 | 60. m/0.25 mm/0.5 μm, He, 40. C @ 8. min, 3. K/min; Tend: 230. C |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polyethylene Glycol | 748. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | Carbowax 20M | 745. | Ramsey and Flanagan, 1982 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Good, Lacina, et al., 1961
Good, W.D.; Lacina, J.L.; McCullough, J.P.,
Methanethiol and carbon disulfide: Heats of combustion and formation by rotating-bomb calorimetry,
J. Phys. Chem., 1961, 65, 2229-2231. [all data]
Guerin, Marthe, et al., 1949
Guerin, M.H.; Marthe, M.; Bastick, J.; Adam-Gironne, J.,
Sur la chaleur de combustion du sulfure de carbon,
Compt. Rend., 1949, 228, 87-89. [all data]
Hiraoka, Fujimaki, et al., 1993
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S.,
Bond Strengths of the Gas-Phase Cluster Ions X-(CS2)n (X = F, Cl, Br and I),
Chem. Phys. Lett., 1993, 208, 5-6, 491, https://doi.org/10.1016/0009-2614(93)87178-6
. [all data]
Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B.,
Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria,
J. Am. Chem. Soc., 1985, 107, 766. [all data]
Hiraoka, Fujimaki, et al., 1994
Hiraoka, K.; Fujimaki, S.; Aruga, K.,
Frontier-controlled Structures of the Gas Phas Clusters A+/-(CS2)n, A+/- = S2+, CS2+, S2-, and CS2-,
J. Phys. Chem. (1994), 1994, 98, 7, 1802-1809, https://doi.org/10.1021/j100058a014
. [all data]
Tsukuda, Hirose, et al., 1997
Tsukuda, T.; Hirose, T.; Nagata, T.,
Negative-ion photoelectron spectroscopy of (CS2)(n)(-): coexistence of electronic isomers,
Chem. Phys. Lett., 1997, 279, 3-4, 179-184, https://doi.org/10.1016/S0009-2614(97)01021-X
. [all data]
Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G.,
Photodetachment Spectroscopy of Negative Cluster Ions,
in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]
Hiraoka, Fujimaki, et al., 1994, 2
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S.,
Frontier-Controlled Structures of the Gas-Phase A+-(CS2)n Clusters ,A+- = S2+, CS2+, S2-, and CS2-,
J. Phys. Chem., 1994, 98, 7, 1802, https://doi.org/10.1021/j100058a014
. [all data]
Ono, Linn, et al., 1981
Ono, Y.; Linn, S.H.; Prest, H.F.; Gress, M.E.; Ng, C.Y.,
A Study of the High Rydberg State and Ion - Molecule Reactions of Carbon Disulfide Using the Molecular Beam Photoionization Method,
J. Chem. Phys., 1981, 74, 2, 1125, https://doi.org/10.1063/1.441219
. [all data]
Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H.,
Proton Affinity and Ion - Molecule Clustering in CO2 and CS2. Applications in Martian Ionospheric Chemistry,
J. Chem. Phys., 1977, 66, 10, 4527, https://doi.org/10.1063/1.433706
. [all data]
Ono, Linn, et al., 1980
Ono, Y.; Linn, S.H.; Prest, H.F.; Gress, M.E.; Ng, C.Y.,
Molecular beam photoionization study of carbon disulfide, carbon disulfide dimer and clusters,
J. Chem. Phys., 1980, 73, 2523. [all data]
Hiraoka, Fujimaki, et al., 1993, 2
Hiraoka, K.; Fujimaki, S.; Aruga, K.,
Proton-Held Dimer and Trimer of Carbon Disulfide,
Chem. Phys. Lett., 1993, 202, 1-2, 167, https://doi.org/10.1016/0009-2614(93)85367-W
. [all data]
McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P.,
Methyl Cation Affinities,
J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002
. [all data]
Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L.,
Photoionization mass spectrometry of trans-azomethane,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Gress, Linn, et al., 1980
Gress, M.E.; Linn, S.H.; Ono, Y.; Prest, H.F.; Ng, C.Y.,
A Study of the Chemiionization Process CS2*(n) + CS2 ---> CS3+ + CS + e- Using the Molecular Beam Photoionization Method,
J. Chem. Phys., 1980, 72, 7, 4242, https://doi.org/10.1063/1.439656
. [all data]
Gattow and Krebes, 1963
Gattow, V.G.; Krebes, B.,
Das kohlenstoffsulfid-di-(hydrogensulfid) SC(SH)2 und das system H2S-CS2. 2. Thermochemie des SC(SH)2,
Z. Anorg. Allg. Chem., 1963, 322, 113. [all data]
Schroeder, Kretzschmar, et al., 2003
Schroeder, D.; Kretzschmar, I.; Schwarz; Armentrout, P.B.,
Structure, Thermochemistry, and Reactivityof MSn+ Cations (M=V,Mo; n=1-3) in the Gas Phase,
Int. J. Mass Spectrom., 2003, 228, 2-3, 439, https://doi.org/10.1016/S1387-3806(03)00137-4
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Cavanagh, Gibson, et al., 2012
Cavanagh, S.J.; Gibson, S.T.; Lewis, B.R.,
High-resolution photoelectron spectroscopy of linear - bent polyatomic photodetachment transitions: The electron affinity of CS2,
J. Chem. Phys., 2012, 137, 14, 144304, https://doi.org/10.1063/1.4757726
. [all data]
Misaizu, Tsunoyama, et al., 2004
Misaizu, F.; Tsunoyama, H.; Yasumura, Y.; Ohshimo, K.; Ohno, K.,
Photoelectron spectroscopy and density functional theory calculation of Na-n(CS2)(-) cluster negative ions for n=1 and 2,
Chem. Phys. Lett., 2004, 389, 4-6, 241-246, https://doi.org/10.1016/j.cplett.2004.03.098
. [all data]
Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P.,
Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-,
J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037
. [all data]
Scheidt and Weinkauf, 1997
Scheidt, J.; Weinkauf, R.,
Photodetachment photoelectron spectroscopy of Perylene and CS2: Two Extreme Cases.,
Chem. Phys. Lett., 1997, 274, 1-3, 18, https://doi.org/10.1016/S0009-2614(97)00648-9
. [all data]
Compton, Dunning, et al., 1996
Compton, R.N.; Dunning, F.B.; Nordlander, P.,
On the binding of Electrons to CS2: Possible Role of Quadrupole-Bound States,
Chem. Phys. Lett., 1996, 253, 1-2, 8, https://doi.org/10.1016/0009-2614(96)00243-6
. [all data]
Chen and Wentworth, 1983
Chen, E.C.M.; Wentworth, W.E.,
Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state,
J. Phys. Chem., 1983, 87, 45. [all data]
Hughes, Lifschitz, et al., 1973
Hughes, B.M.; Lifschitz, C.; Tiernan, T.O.,
Electron affinities from endothermic negative-ion charge-transfer reactions. III. NO, NO2, S2, CS2, Cl2, Br2, I2, and C2H,
J. Chem. Phys., 1973, 59, 3162. [all data]
Oakes and Ellison, 1986
Oakes, J.M.; Ellison, G.B.,
Photoelectron spectroscopy of radical anions,
Tetrahedron, 1986, 42, 6263. [all data]
Compton, Reinhardt, et al., 1975
Compton, R.N.; Reinhardt, P.W.; Cooper, C.D.,
Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities,
J. Chem. Phys., 1975, 63, 3821. [all data]
Kraus, Muller-Duysing, et al., 1961
Kraus, K.; Muller-Duysing, W.; Neuert, H.,
Uber Stosse Langsamer Negativer Ionen mit Ladungsubertragung,
Z. Naturfor., 1961, 16A, 1385. [all data]
Fischer, Lochschmidt, et al., 1993
Fischer, I.; Lochschmidt, A.; Strobel, A.; Niedner-Schatteburg, G.; Muller-Dethlefs, K.; Bondybey, V.E.,
The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,
Chem. Phys. Lett., 1993, 202, 542. [all data]
Wang, Reutt, et al., 1988
Wang, L.; Reutt, J.E.; Lee, Y.T.; Shirley, D.A.,
High resolution UV photoelectron spectroscopy of CO2, COS, and CS2 using supersonic molecular beams,
J. Electron Spectrosc. Relat. Phenom., 1988, 47, 167. [all data]
Reineck, Wannberg, et al., 1984
Reineck, I.; Wannberg, B.; Veenhuizen, H.; Nohre, C.; Maripuu, R.; Norell, K.-E.; Mattsson, L.; Karlsson, L.; Siegbahn, K.,
Inelastic scattering and satellite fine structure in the high-resolution UV photoelectron spectrum of CS2,
J. Electron Spectrosc. Relat. Phenom., 1984, 34, 235. [all data]
Carnovale, Hitchcock, et al., 1982
Carnovale, F.; Hitchcock, A.P.; Cook, J.P.D.; Brion, C.E.,
Absolute dipole oscillator strengths for molecular and dissociative photoionization of Cos(10 - 50eV) and CS2(10 - 40eV),
Chem. Phys., 1982, 66, 249. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Potts and Fattahallah, 1980
Potts, A.W.; Fattahallah, G.H.,
High-resolution ultraviolet photoelectron spectroscopy of CO2, COS and CS2,
J. Phys. B:, 1980, 13, 2545. [all data]
Miletic, Eres, et al., 1980
Miletic, M.; Eres, D.; Veljkovic, M.; Zmbov, K.F.,
Mass spectrometric study of the ionization and fragmentation of carbon disulphide by monoenergetic electron impact,
Int. J. Mass Spectrom. Ion Phys., 1980, 35, 231. [all data]
Hubin-Franskin, Marmet, et al., 1980
Hubin-Franskin, M.-J.; Marmet, P.; Huard, D.,
Excitation and ionization of OCS and CS2 by electron impact,
Int. J. Mass Spectrom. Ion Phys., 1980, 33, 311. [all data]
Hubin-Franskin, Delwiche, et al., 1980
Hubin-Franskin, M.-J.; Delwiche, J.; Natalis, P.; Caprace, G.; Roy, D.,
On the photoelectron spectrum of CS2,
J. Electron Spectrosc. Relat. Phenom., 1980, 18, 295. [all data]
Trott, Blais, et al., 1979
Trott, W.M.; Blais, N.C.; Walters, E.A.,
Photoionization of carbon disulfide monomers and dimers in a supersonic molecular beam,
J. Chem. Phys., 1979, 71, 1692. [all data]
Coppens, Reynaert, et al., 1979
Coppens, P.; Reynaert, J.C.; Drowart, J.,
Mass spectrometric study of the photoionization of carbon disulphide in the wavelength interval 125-60nm,
J. Chem. Soc. Faraday Trans. 2, 1979, 75, 292. [all data]
Frey, Gotchev, et al., 1978
Frey, R.; Gotchev, B.; Peatman, W.B.; Pollak, H.; Schlag, E.W.,
Photoionization resonance study of the X(2π), A(2π), B(2Σ+) and C(2Σ+) states of CS2+ and COS+,
Int. J. Mass Spectrom. Ion Phys., 1978, 26, 137. [all data]
Drowart, Smets, et al., 1978
Drowart, J.; Smets, J.; Reynaert, J.C.; Coppens, P.,
Mass spectrometric study of the photoionization of inorganic gases vapours,
Adv. Mass Spectrom., 1978, 7, 647. [all data]
Hildenbrand, 1975
Hildenbrand, D.L.,
Vertical ionization potential of the CF2 radical,
Chem. Phys. Lett., 1975, 32, 30. [all data]
Natalis, 1973
Natalis, P.,
Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques,
Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]
Frost, Lee, et al., 1973
Frost, D.C.; Lee, S.T.; McDowell, C.A.,
Photoelectron spectra of OCSe, SCSe, and CSe2,
J. Chem. Phys., 1973, 59, 5484. [all data]
Kroto and Suffolk, 1972
Kroto, H.W.; Suffolk, R.J.,
The photoelectron spectrum of an unstable species in the pyrolysis products of dimethyldisulphide,
Chem. Phys. Lett., 1972, 15, 545. [all data]
Hildenbrand, 1972
Hildenbrand, D.L.,
Thermochemistry of the molecules CS and CS+,
Chem. Phys. Lett., 1972, 15, 379. [all data]
Brundle and Turner, 1969
Brundle, C.R.; Turner, D.W.,
Studies on the photoionisation of the linear triatomic molecules: N2O, COS, CS2 and CO2 using high-resolution photoelectron spectroscopy,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 195. [all data]
Momigny and Delwiche, 1968
Momigny, J.; Delwiche, J.,
Photoionisation et impact electronique dans le disulfure de carbone,
J. Chim. Phys., 1968, 65, 1213. [all data]
Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J.,
Photoelectron spectra and ionic structure of carbon dioxide, carbon disulphide and sulphur dioxide,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 111. [all data]
Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A.,
Mass spectrometric study of the photoionization of small polyatomic molecules,
Advan. Mass Spectrom., 1967, 4, 767. [all data]
Tanaka, Jursa, et al., 1960
Tanaka, Y.; Jursa, A.S.; LeBlanc, F.J.,
Higher ionization potentials of linear triatomic molecules. II. CS2, COS, and N2O,
J. Chem. Phys., 1960, 32, 1205. [all data]
Price and Simpson, 1938
Price, W.C.; Simpson, D.M.,
The absorption spectra of sulphur dioxide and carbon disulphide in the vacuum ultra-violet,
Proc. Roy. Soc. (London), 1938, A165, 272. [all data]
Schweig and Thiel, 1974
Schweig, A.; Thiel, W.,
Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds,
Mol. Phys., 1974, 27, 265. [all data]
Potts and Williams, 1974
Potts, A.W.; Williams, T.A.,
The observation of "forbidden" transitions in He II photoelectron spectra,
J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]
Ferreira and Fronteira_e_Silva, 1970
Ferreira, M.A.A.; Fronteira_e_Silva, M.E.,
Ionizacao e dissociacao do di-sulfureto decarbono por impacto electonico,
Rev. Port. Quim., 1970, 12, 70. [all data]
Cuthbert, Farren, et al., 1968
Cuthbert, J.; Farren, J.; PrahalladaRao, B.S.; Preece, E.R.,
Sequential mass spectrometry. III. Ions and fragments from carbon dioxide anddisulphide,
J. Phys. B:, 1968, 1, 62. [all data]
Hubin-Franskin, Huard, et al., 1978
Hubin-Franskin, M.J.; Huard, D.; Marmet, P.,
On the heat of formation of CS from CS2 and OCS,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 263. [all data]
Hubin-Franskin, Locht, et al., 1976
Hubin-Franskin, M.-J.; Locht, R.; Katihabwa, J.,
Dissociative ionization of carbon disulphide in the gas phase. Heat of formation of the CS radical,
Chem. Phys. Lett., 1976, 37, 488. [all data]
Momigny, Mathieu, et al., 1973
Momigny, J.; Mathieu, G.; Wankenne, H.; Ferreira, M.A.A.,
Collision and non-collision induced predissociation in the appearance of S+ and CS+ ions from CS2 under electron impact,
Chem. Phys. Lett., 1973, 21, 606. [all data]
Miller and Bruno, 2003
Miller, K.E.; Bruno, T.J.,
Isothermal Kováts retention indices of sulfur compounds on a poly(5% diphenyl-95% dimethylsiloxane) stationary phase,
J. Chromatogr. A, 2003, 1007, 1-2, 117-125, https://doi.org/10.1016/S0021-9673(03)00958-0
. [all data]
Rudenko, Mal'tsev, et al., 1985
Rudenko, G.I.; Mal'tsev, V.V.; Studenichnik, V.N.; Ustinov, E.P.,
Gas chromatographic analysis of volatile substances evolved into atmosphere from polymer materials,
Zh. Anal. Khim., 1985, 40, 6, 1119-1127. [all data]
Shimadzu, 2003
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Insausti, Goñi, et al., 2005
Insausti, K.; Goñi, V.; Petri, E.; Gorraiz, C.; Beriain, M.J.,
Effect of weight at slaughter on the volatile compounds of cooked beef from Spanish cattle breeds,
Meat Sci., 2005, 70, 1, 83-90, https://doi.org/10.1016/j.meatsci.2004.12.003
. [all data]
Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Hierro, E.,
Two-fibre solid-phase microextraction combined with gas chromatography-mass spectrometry for the analysis of volatile aroma compounds in cooked pork,
J. Chromatogr. A, 2000, 905, 1-2, 233-240, https://doi.org/10.1016/S0021-9673(00)00990-0
. [all data]
Beaulieu and Grimm, 2001
Beaulieu, J.C.; Grimm, C.C.,
Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction,
J. Agric. Food Chem., 2001, 49, 3, 1345-1352, https://doi.org/10.1021/jf0005768
. [all data]
Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O.,
Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses,
Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007
. [all data]
Bianchi, Cantoni, et al., 2007
Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A.,
Characterization of the aromatic profile for the authentication and differentiation of typical Italian dry-sausages,
Talanta, 2007, 72, 4, 1552-1563, https://doi.org/10.1016/j.talanta.2007.02.019
. [all data]
Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M.,
Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness,
J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393
. [all data]
Condurso, Verzera, et al., 2006
Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Trozzi, A.; Ragusa, S.,
The leaf volatile constituents of Isatis tinctoria by solid-phase microextraction and gas chromatography/mass spectrometry,
Planta Medica, 2006, 72, 10, 924-928, https://doi.org/10.1055/s-2006-946679
. [all data]
Whitfield, Shea, et al., 1981
Whitfield, F.B.; Shea, S.R.; Gillen, K.J.; Shaw, K.J.,
Volatile components from the roots of Acacia pulchella R.Br. and their effect on Phytophthora cinnamomi rands,
Aust. J. Bot., 1981, 29, 2, 195-208, https://doi.org/10.1071/BT9810195
. [all data]
Safa and Hadjmohannadi, 2005
Safa, F.; Hadjmohannadi, M.R.,
Use of topological indices of organic sulfur compounds in quantitative structure-retention relationship study,
QSAR Comb. Sci., 2005, 24, 9, 1026-1032, https://doi.org/10.1002/qsar.200530008
. [all data]
Bramston-Cook, 2013
Bramston-Cook, R.,
Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]
Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A.,
HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge,
Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8
. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Yang, Wang, et al., 2003
Yang, Y.-T.; Wang, Z.; Han. J.-H.; Tian, H.-P.; Yang, H.-Y.,
Determination of sulfur compounds in gasoline fraction of microreactor products by gas chromatography - Atomic emission detector,
Petrochemical Technology (Shiyou Huagong), 2003, 32, 11, 995-998. [all data]
Yang, Yang, et al., 2003
Yang, Y.T.; Yang, H.Y.; Zong, B.N.; Lu, W.Z.,
determination and distribution of sulfur compounds in gasoline by gas chromatography-atomic emission detector,
Chinise J. Anal. Chem. (Fenxi Huaxue), 2003, 31, 10, 1153-1158. [all data]
Pérès, Begnaud, et al., 2002
Pérès, C.; Begnaud, F.; Berdagué, J.-L.,
Fast characterization of Camembert cheeses by static headspace-mass spectrometry,
Sens. Actuators, 2002, 87, 3, 491-497, https://doi.org/10.1016/S0925-4005(02)00298-8
. [all data]
García, Martín, et al., 2000
García, C.; Martín, A.; Timón, M.L.; Córdoba, J.J.,
Microbial populations and volatile compounds in the 'bone taint' spoilage of dry cured ham,
Lett. Appl. Microbiol., 2000, 30, 1, 61-66, https://doi.org/10.1046/j.1472-765x.2000.00663.x
. [all data]
Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F.,
Volatile components of Rooibos tea (Aspalathus linearis),
J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024
. [all data]
del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R.,
Comparison of headspace volatiles from winged beans and soybeans,
J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015
. [all data]
Shivashankar, Roy, et al., 2012
Shivashankar, S.; Roy, T.K.; Moorthy, P.N.R.,
Headspace solid phase micro extraction and GC/MS analysis of the volatile components in seed and cake of Azadirachta indica A. juss,
Chem. Bull. of Politechnika Univ. Timisoara, Romania, 2012, 57(71), 1, 1-6. [all data]
Pugliese, Sirtori, et al., 2009
Pugliese, C.; Sirtori, F.; Ruiz, J.; Martin, D.; Parenti, S.; Franci, O.,
Effect of pasture on chestnut or acorn on fatty acid composition and aromatic profile of fat of China Senece dry-cured ham,
Gracas y Aceites, 2009, 60, 3, 271-276, https://doi.org/10.3989/gya.130208
. [all data]
Barra, Baldovini, et al., 2007
Barra, A.; Baldovini, N.; Loiseau, A.-M.; Albino, L.; Lesecq, C.; Cuvelier, L.L.,
Chemical analysis of French beans (Phaseolus vulgaris L.) by headspace solid phase microextraction (HS-SPME) and simultaneous distillation/extraction (SDE),
Food Chem., 2007, 101, 3, 1279-1284, https://doi.org/10.1016/j.foodchem.2005.12.027
. [all data]
Liu, Xu, et al., 2007
Liu, Y.; Xu, X.-L.; Zhou, G.-H.,
Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques,
Int. J. Food Sci. Technol., 2007, 42, 5, 543-550, https://doi.org/10.1111/j.1365-2621.2006.01264.x
. [all data]
Garcia-Estaban, Ansorena, et al., 2004
Garcia-Estaban, M.; Ansorena, D.; Astiasaran, I.; Martin, D.; Ruiz, J.,
Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham,
J. Sci. Food Agric., 2004, 84, 11, 1364-1370, https://doi.org/10.1002/jsfa.1826
. [all data]
Garcia-Estaban, Ansorena, et al., 2004, 2
Garcia-Estaban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J.,
Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME),
Talanta, 2004, 64, 2, 458-466, https://doi.org/10.1016/j.talanta.2004.03.007
. [all data]
Machiels, Istasse, et al., 2004
Machiels, D.; Istasse, L.; van Ruth, S.M.,
Gas chromatography-olfactometry analysis of beef meat originating from differently fed Belgian Blue, Limousin and Aberdeen Angus bulls,
Food Chem., 2004, 86, 3, 377-383, https://doi.org/10.1016/j.foodchem.2003.09.011
. [all data]
Machiels and Istasse, 2003
Machiels, D.; Istasse, L.,
Evaluation of two commercial solid-phase microextraction fibres for the analysis of target aroma compounds in cooked beef meat,
Talanta, 2003, 61, 4, 529-537, https://doi.org/10.1016/S0039-9140(03)00319-9
. [all data]
Poligne, Collignan, et al., 2002
Poligne, I.; Collignan, A.; Trystram, G.,
Effects of salting, drying, cooking, and smoking operations on volatile compound formation and collor patterns in pork,
Food Eng. Physical Properties, 2002, 67, 8, 2976-2986. [all data]
Luo and Agnew, 2001
Luo, J.; Agnew, M.P.,
Gas characteristics before and after biofiltration treating odorous emissions from animal rendering processes,
Environ. Technol., 2001, 22, 9, 1091-1103, https://doi.org/10.1080/09593332208618220
. [all data]
Zenkevich, 2001
Zenkevich, I.G.,
Encyclopedia of Chromatography. Derivatization of Amines, Amino Acids, Amides and Imides for GC Analysis, Marcel Dekker, Inc, New York - Basel, 2001, 224. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Nedjma and Maujean, 1995
Nedjma, M.; Maujean, A.,
Improved chromatographic analysis of volatile sulfur compounds by the static headspace technique on water-alcohol solutions and brandies with chemiluminescence detection,
J. Chromatogr. A, 1995, 704, 2, 495-502, https://doi.org/10.1016/0021-9673(95)00218-C
. [all data]
Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B.,
Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases,
J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]
Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R.,
Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas,
Eur Commission EUR, 1994, 549-568. [all data]
Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M.,
Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry,
J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F
. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Weller and Wolf, 1989
Weller, J.-P.; Wolf, M.,
Massenspektroskopie und Headspace-GC,
Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Ganeko, Shoda, et al., 2008
Ganeko, N.; Shoda, M.; Hirohara, I.; Bhadra, A.; Ishida, T.; Matsuda, H.; Takamura, H.; Matoba, T.,
Analysis of volatile flavor compounds of sardine (Sardinops melanostica) by solid phase microextraction,
J. Food Sci., 2008, 73, 1, s83-s88, https://doi.org/10.1111/j.1750-3841.2007.00608.x
. [all data]
Ishikawa, Ito, et al., 2004
Ishikawa, M.; Ito, O.; Ishizaki, S.; Kurobayashi, Y.; Fujita, A.,
Solid-phase aroma concentrate extraction (SPACE ): a new headspace technique for more sensitive analysis of volatiles,
Flavour Fragr. J., 2004, 19, 3, 183-187, https://doi.org/10.1002/ffj.1322
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.