1-Butanol
- Formula: C4H10O
- Molecular weight: 74.1216
- IUPAC Standard InChIKey: LRHPLDYGYMQRHN-UHFFFAOYSA-N
- CAS Registry Number: 71-36-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Butyl alcohol; n-Butan-1-ol; n-Butanol; n-Butyl alcohol; Butyl hydroxide; CCS 203; Hemostyp; Methylolpropane; Propylcarbinol; n-C4H9OH; Butanol; Butan-1-ol; 1-Hydroxybutane; Alcool butylique; Butanolo; Butylowy alkohol; Butyric alcohol; Propylmethanol; Butanolen; 1-Butyl alcohol; Rcra waste number U031; Butanol-1; NSC 62782
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -66. ± 1. | kcal/mol | AVG | N/A | Average of 13 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 86.515 | cal/mol*K | N/A | Chao J., 1986 | Other values of S(298.15 K) based on low-temperature thermal measurements are (in J/mol*K): 363.17 [65COU/HAL], 362.33 [ Chermin H.A.G., 1961], and 361.9 [ Buckley E., 1967].; GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.17 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended S(T) and Cp(T) values agree with those calculated by [ Chermin H.A.G., 1961] within 1.5 J/mol*K. S(T) values calculated by [ Dyatkina M.E., 1954] are different from values given here by 12-30 J/mol*K. Please also see Chao J., 1986.; GT |
13.94 | 100. | ||
16.75 | 150. | ||
19.43 | 200. | ||
24.063 | 273.15 | ||
25.820 ± 0.060 | 298.15 | ||
25.951 | 300. | ||
33.021 | 400. | ||
39.297 | 500. | ||
44.546 | 600. | ||
48.956 | 700. | ||
52.715 | 800. | ||
55.963 | 900. | ||
58.779 | 1000. | ||
61.228 | 1100. | ||
63.360 | 1200. | ||
65.215 | 1300. | ||
66.833 | 1400. | ||
68.246 | 1500. | ||
71.06 | 1750. | ||
73.09 | 2000. | ||
74.62 | 2250. | ||
75.74 | 2500. | ||
76.60 | 2750. | ||
77.25 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
33.68 ± 0.19 | 395.25 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.79 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%.; GT |
32.954 | 398.15 | ||
34.18 ± 0.19 | 404.15 | ||
34.46 ± 0.19 | 409.15 | ||
33.953 | 413.15 | ||
35.03 ± 0.19 | 419.55 | ||
35.67 ± 0.19 | 431.05 | ||
35.234 | 433.15 | ||
36.23 ± 0.19 | 441.15 | ||
36.487 | 453.15 | ||
37.26 ± 0.19 | 459.55 | ||
38.85 ± 0.19 | 488.25 | ||
40.62 ± 0.19 | 520.05 | ||
42.06 ± 0.19 | 545.95 | ||
43.31 ± 0.19 | 568.45 | ||
45.25 ± 0.19 | 603.35 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 375.3 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 375.4 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 375.0 ± 2.9 | kcal/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 368.7 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 368.8 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 368.4 ± 2.8 | kcal/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: C4H11O+ + C4H10O = (C4H11O+ • C4H10O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.9 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.3 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C3H9Si+ + C4H10O = (C3H9Si+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.2 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.1 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
29.7 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.5 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.4 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.5 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.5 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10.6 | 495. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: F- + C4H10O = (F- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.2 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.9 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 24.5 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: Cl- + C4H10O = (Cl- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.6 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.2 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)CH3OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.7 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.1 ± 1.2 | kcal/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.7 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: C4H8O + H2 = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -19.57 ± 0.18 | kcal/mol | Cm | Wiberg, Crocker, et al., 1991 | liquid phase; ALS |
ΔrH° | -16.85 ± 0.30 | kcal/mol | Chyd | Buckley and Cox, 1967 | gas phase; ALS |
By formula: C6H5S- + C4H10O = (C6H5S- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.6 | kcal/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.0 | cal/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
By formula: C7H5NO + C4H10O = C11H15NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -20.1 ± 1.1 | kcal/mol | Cm | Pannone and Macosko, 1987 | liquid phase; ALS |
ΔrH° | -25.1 ± 0.3 | kcal/mol | Cm | Lovering and Laidler, 1962 | solid phase; ALS |
+ = C4H9D10FO-
By formula: F- + C4H10O = C4H9D10FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 24.1 ± 2.0 | kcal/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: Mg+ + C4H10O = (Mg+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65. ± 5. | kcal/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
By formula: C4H10O + ClHO3S = C4H10O4S + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14. ± 0.2 | kcal/mol | Cm | Markitanova, Barsukov, et al., 1981 | liquid phase; solvent: Dichloromethane; Sulfation; ALS |
By formula: C4H10O + C3H4O2 = C7H12O2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.9 | kcal/mol | Eqk | Selyakova, Vytnov, et al., 1976 | liquid phase; Heat of esterification 60-180 C; ALS |
By formula: C6H12O2 + H2O = C2H4O2 + C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.80 ± 0.05 | kcal/mol | Cm | Wadso, 1958 | liquid phase; Heat of hydrolysis; ALS |
By formula: C4H2O3 + C4H10O = C8H12O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -9.3 | kcal/mol | Kin | Merca, Poraicu, et al., 1978 | solid phase; solvent: n-Butanol; DTA; ALS |
By formula: C4H8 + C4H10O = C8H18O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -8.32 ± 0.65 | kcal/mol | Eqk | Sharonov, Mishentseva, et al., 1991 | liquid phase; ALS |
By formula: C2H2O + C4H10O = C6H12O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -35.11 | kcal/mol | Cm | Rice and Greenberg, 1934 | liquid phase; ALS |
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.5 ± 1.9 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.99 ± 0.05 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 188.6 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 181.4 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.10 ± 0.05 | EI | Holmes and Lossing, 1991 | LL |
9.99 ± 0.05 | PIPECO | Shao, Baer, et al., 1988 | LL |
10.64 ± 0.07 | EI | Bowen and Maccoll, 1984 | LBLHLM |
10.09 ± 0.02 | PE | Cocksey, Eland, et al., 1971 | LLK |
10.37 | PE | Baker, Betteridge, et al., 1971 | LLK |
10.37 | PE | Baker, Betteridge, et al., 1971 | LLK |
10.04 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
10.43 | PE | Benoit and Harrison, 1977 | Vertical value; LLK |
10.44 ± 0.03 | PE | Peel and Willett, 1975 | Vertical value; LLK |
10.37 | PE | Katsumata, Iwai, et al., 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3O+ | 11.36 ± 0.06 | n-C3H7 | EI | Selim and Helal, 1981 | LLK |
CH3O+ | 11.46 | ? | EI | Lambdin, Tuffly, et al., 1959 | RDSH |
C2H2O+ | 11.23 | ? | EI | Lambdin, Tuffly, et al., 1959 | RDSH |
C4H8+ | 10.18 ± 0.05 | H2O | PIPECO | Shao, Baer, et al., 1988 | LL |
C4H8+ | 10.20 ± 0.10 | H2O | EI | Bowen and Maccoll, 1984 | LBLHLM |
De-protonation reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 375.3 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 375.4 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 375.0 ± 2.9 | kcal/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 368.7 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 368.8 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 368.4 ± 2.8 | kcal/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.5 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10.6 | 495. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: C3H9Si+ + C4H10O = (C3H9Si+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.2 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.1 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
29.7 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.5 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.4 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.5 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C4H11O+ + C4H10O = (C4H11O+ • C4H10O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.9 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.3 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C6H5S- + C4H10O = (C6H5S- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.6 | kcal/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.0 | cal/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
By formula: Cl- + C4H10O = (Cl- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.6 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.2 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)CH3OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.7 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
+ = C4H9D10FO-
By formula: F- + C4H10O = C4H9D10FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 24.1 ± 2.0 | kcal/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: F- + C4H10O = (F- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.2 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.9 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 24.5 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.5 ± 1.9 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Mg+ + C4H10O = (Mg+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65. ± 5. | kcal/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.1 ± 1.2 | kcal/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.7 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- LIQUID (NEAT); PERKIN-ELMER 521 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (0.5% IN CCl4 FOR 3800-1330, 0.5% IN CS2 FOR 1330-400 CM-1); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1300, 10% IN CS2 FOR 1300-650, 10% IN CCl4 FOR 650-240 CM-1) VERSUS SOLVENT; PERKIN-ELMER 521 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1994 |
NIST MS number | 133176 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | HP-1 | 0. | 674.4 | Wang, Liu, et al., 2005 | 30. m/0.25 mm/0.25 μm |
Capillary | HP-1 | 10. | 674.6 | Wang, Liu, et al., 2005 | 30. m/0.25 mm/0.25 μm |
Capillary | HP-1 | 20. | 668.2 | Wang, Liu, et al., 2005 | 30. m/0.25 mm/0.25 μm |
Capillary | HP-1 | 30. | 665.5 | Wang, Liu, et al., 2005 | 30. m/0.25 mm/0.25 μm |
Capillary | HP-1 | 40. | 658.4 | Wang, Liu, et al., 2005 | 30. m/0.25 mm/0.25 μm |
Capillary | HP-1 | 50. | 653.1 | Wang, Liu, et al., 2005 | 30. m/0.25 mm/0.25 μm |
Capillary | HP-1 | 60. | 648.2 | Wang, Liu, et al., 2005 | 30. m/0.25 mm/0.25 μm |
Packed | PMS-1000 | 90. | 642. | Arutyunov, Kudryashov, et al., 2004 | N2, Chromaton N-AW-DMCS; Column length: 2. m |
Packed | OV-1 | 130. | 645. | Gurevich and Roshchina, 2003 | He or N2, Gas-Chrom Q |
Capillary | HP-101 | 60. | 653.30 | Garay, 2000 | 50. m/0.2 mm/0.2 μm, H2 |
Capillary | HP-101 | 60. | 653.30 | Garay, 2000 | 50. m/0.2 mm/0.2 μm, H2 |
Capillary | SE-30 | 100. | 650.0 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 110. | 648.9 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 120. | 647.7 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 130. | 647.6 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 48. | 661.9 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 58. | 659.2 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 66. | 657.3 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 100. | 650.0 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 110. | 648.9 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 120. | 647.7 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 130. | 647.6 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 48. | 661.9 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 58. | 659.2 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 66. | 657.3 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He |
Packed | Porapack Q | 200. | 636. | Gawdzik and Matynia, 1994 | H2; Column length: 1. m |
Packed | SE-30 | 120. | 646. | Kowalski, 1992 | He, Gas Chrom Q (100-120 mesh); Column length: 0.25 m |
Capillary | OV-1 | 60. | 646.8 | Guan, Kiraly, et al., 1989 | 25. m/0.31 mm/0.52 μm, He |
Capillary | OV-1 | 75. | 643.9 | Guan, Kiraly, et al., 1989 | 25. m/0.31 mm/0.52 μm, He |
Capillary | SE-54 | 60. | 661.9 | Guan, Kiraly, et al., 1989 | 25. m/0.31 mm/0.52 μm, He |
Capillary | SE-54 | 75. | 659.6 | Guan, Kiraly, et al., 1989 | 25. m/0.31 mm/0.52 μm, He |
Packed | OV-101 | 120. | 663. | Fernández-Sánchez, Fernández-Torres, et al., 1987 | N2, Chromosorb W AW DMCS (80-100 mesh); Column length: 2. m |
Packed | SE-30 | 170. | 675. | Voelkel, 1987 | He, Chromaton N Super (75-100 mesh); Column length: 1. m |
Packed | OV-1 | 120. | 663. | Betts, 1986 | N2; Column length: 1.5 m |
Packed | SE-30 | 120. | 645. | Betts, 1986 | N2; Column length: 1. m |
Packed | SP-2100 | 120. | 651. | Betts, 1986 | N2; Column length: 1. m |
Capillary | SE-30 | 100. | 649. | Haken and Korhonen, 1985 | Column length: 25. m; Column diameter: 0.33 mm |
Capillary | SE-30 | 120. | 649. | Haken and Korhonen, 1985 | Column length: 25. m; Column diameter: 0.33 mm |
Capillary | SE-30 | 80. | 660. | Haken and Korhonen, 1985 | Column length: 25. m; Column diameter: 0.33 mm |
Packed | SE-30 | 120. | 647. | Stolyarov and Kartsova, 1984 | N2; Column length: 200. m |
Packed | SE-30 | 150. | 650. | Tiess, 1984 | Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m |
Packed | OV-1 | 120. | 645. | Valko, Papp, et al., 1984 | Gas Chrom Q; Column length: 2. m |
Packed | SE-30 | 100. | 637. | Winskowski, 1983 | Gaschrom Q; Column length: 2. m |
Capillary | OV-1 | 60. | 645. | Nijs and Jacobs, 1981 | He; Column length: 150. m; Column diameter: 0.50 mm |
Packed | Squalane | 100. | 649.9 | Gröbler and Bálizs, 1979 | Column length: 1. m |
Packed | SE-30 | 150. | 636. | Haken, Nguyen, et al., 1979 | Celatom AW silanized; Column length: 3.7 m |
Packed | Apiezon L | 120. | 620. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | Apiezon L | 160. | 619. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | Apiezon L | 70. | 618. | Bogoslovsky, Anvaer, et al., 1978 | |
Packed | Squalane | 100. | 642. | Evans and Newton, 1976 | N2, Chromosorb G; Column length: 2. m |
Packed | Squalane | 100. | 644. | Evans and Newton, 1976 | N2, Chromosorb G; Column length: 2. m |
Packed | Squalane | 100. | 645. | Evans and Newton, 1976 | N2, Chromosorb G; Column length: 2. m |
Capillary | Squalane | 60. | 630. | Ryba, 1976 | Column length: 50. m; Column diameter: 0.25 mm |
Packed | SE-30 | 100. | 650. | Pías and Gascó, 1975 | Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m |
Packed | SE-30 | 120. | 643. | Pías and Gascó, 1975 | Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m |
Packed | SE-30 | 140. | 643. | Pías and Gascó, 1975 | Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m |
Packed | SE-30 | 150. | 644. | Ashes and Haken, 1974 | Celaton (62-72 mesh); Column length: 3.7 m |
Packed | Apiezon M | 130. | 627. | Golovnya and Garbuzov, 1974 | N2, Chromosorb W; Column length: 2.1 m |
Capillary | Apiezon L | 120. | 673. | Agrawal, Tesarík, et al., 1972 | N2; Column length: 100. m; Column diameter: 0.3 mm |
Packed | Apiezon L | 100. | 637. | Wagaman and Smith, 1971 | CH4; Column length: 3. m |
Packed | Squalane | 50. | 625. | Mira and Sanchez, 1970 | Chromosorb G |
Packed | SE-30 | 100. | 655. | Zarazir, Chovin, et al., 1970 | Chromosorb W; Column length: 2. m |
Kovats' RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CBP-1 | 651. | Shimadzu, 2003 | 25. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C |
Capillary | DB-1 | 654. | Takeoka, Perrino, et al., 1996 | 60. m/0.25 mm/0.25 μm, 30. C @ 4. min, 2. K/min; Tend: 220. C |
Capillary | DB-1 | 657. | Takeoka, Perrino, et al., 1996 | 60. m/0.25 mm/0.25 μm, 30. C @ 4. min, 2. K/min; Tend: 220. C |
Capillary | DB-1 | 654. | Takeoka, Flath, et al., 1990 | 60. m/0.32 mm/0.25 μm, He, 30. C @ 4. min, 2. K/min; Tend: 210. C |
Capillary | DB-1 | 654. | Takeoka, Flath, et al., 1990 | 60. m/0.32 mm/0.25 μm, He, 30. C @ 4. min, 2. K/min; Tend: 210. C |
Capillary | SE-54 | 671. | Rembold, Wallner, et al., 1989 | 30. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C |
Capillary | OV-101 | 647. | Morales and Duque, 1987 | He, 2. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tstart: 60. C; Tend: 200. C |
Capillary | OV-101 | 649. | Ohnishi and Shibamoto, 1984 | 2. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C |
Capillary | OV-101 | 649. | Ohnishi and Shibamoto, 1984 | 2. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C |
Packed | Apiezon L | 676. | Rasmussen, 1983 | Chromosorb W HMDS HP (00-120 mesh), 4. K/min; Column length: 1.2 m; Tstart: 50. C; Tend: 200. C |
Capillary | SE-30 | 663. | Greenberg, 1981 | He, 40. C @ 3. min, 3. K/min; Column length: 50. m; Column diameter: 0.5 mm; Tend: 170. C |
Capillary | SE-30 | 664. | Greenberg, 1981 | He, 40. C @ 3. min, 3. K/min; Column length: 50. m; Column diameter: 0.5 mm; Tend: 170. C |
Capillary | SE-30 | 652. | Greenberg, 1981, 2 | He, 70. C @ 2. min, 5. K/min, 170. C @ 5. min; Column length: 50. m; Column diameter: 0.5 mm |
Capillary | SE-30 | 655. | Greenberg, 1981, 2 | He, 70. C @ 2. min, 5. K/min, 170. C @ 5. min; Column length: 50. m; Column diameter: 0.5 mm |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | BP-1 | 646. | SGE, 2005 | Program: not specified |
Capillary | BP-5 | 665. | SGE, 2005 | Program: not specified |
Capillary | BPX-5 | 667. | SGE, 2005 | Program: not specified |
Capillary | Petrocol DH-100 | 650.05 | Haagen-Smit Laboratory, 1997 | He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min) |
Capillary | SPB-1 | 658.7 | Castello, Timossi, et al., 1988 | N2; Column length: 60. m; Column diameter: 0.75 mm; Program: not specified |
Packed | Apiezon L | 680. | Rasmussen, 1983 | Chromosorb W HMDS HP (00-120 mesh); Column length: 1.2 m; Program: not specified |
Capillary | SE-30 | 686. | Brander, Kepner, et al., 1980 | Column length: 80. m; Column diameter: 0.29 mm; Program: not specified |
Capillary | SE-30 | 688. | Brander, Kepner, et al., 1980 | Column length: 80. m; Column diameter: 0.29 mm; Program: not specified |
Packed | SE-30 | 690. | Moffat, Stead, et al., 1974 | Chromosrb G; Column length: 2. m; Program: not specified |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Carbowax 20M | 70. | 1120. | Annino and Villalobos, 1999 | 31.3 m/0.53 mm/0.54 μm |
Capillary | Supelcowax-10 | 60. | 1147.5 | Castello, Vezzani, et al., 1994 | 30. m/0.32 mm/0.25 μm, He |
Capillary | Supelcowax-10 | 60. | 1146. | Castello, Vezzani, et al., 1991 | N2; Column length: 60. m; Column diameter: 0.75 mm |
Packed | Carbowax 20M | 120. | 1178. | Fernández-Sánchez, Fernández-Torres, et al., 1987 | N2, Chromosorb W AW DMCS; Column length: 2. m |
Packed | Carbowax 20M | 80. | 1126. | Kersten and Poole, 1987 | N2, Chromosorb W-AW; Column length: 3.5 m |
Packed | PEG-20M | 120. | 1104. | Betts, 1986 | Column length: 1. m |
Capillary | OV-351 | 100. | 1148. | Haken and Korhonen, 1985 | N2; Column length: 25. m; Column diameter: 0.32 mm |
Capillary | OV-351 | 120. | 1124. | Haken and Korhonen, 1985 | N2; Column length: 25. m; Column diameter: 0.32 mm |
Capillary | OV-351 | 140. | 1153. | Haken and Korhonen, 1985 | N2; Column length: 25. m; Column diameter: 0.32 mm |
Capillary | OV-351 | 80. | 1131. | Haken and Korhonen, 1985 | N2; Column length: 25. m; Column diameter: 0.32 mm |
Capillary | Carbowax 20M | 100. | 1133.33 | Podmaniczky, Szepesy, et al., 1985 | |
Capillary | Carbowax 20M | 110. | 1130.99 | Podmaniczky, Szepesy, et al., 1985 | |
Capillary | Carbowax 20M | 120. | 1129.04 | Podmaniczky, Szepesy, et al., 1985 | |
Capillary | Carbowax 20M | 90. | 1135.08 | Podmaniczky, Szepesy, et al., 1985 | |
Packed | PEG-20M | 120. | 1135. | Stolyarov and Kartsova, 1984 | N2, Chromaton N AW HMDS; Column length: 2. m |
Packed | Carbowax 20M | 75. | 1178. | Goebel, 1982 | N2, Kieselgur (60-100 mesh); Column length: 2. m |
Packed | PEG-2000 | 120. | 1120. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 150. | 1118. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 152. | 1152. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 179. | 1137. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 180. | 1115. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 200. | 1136. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | Carbowax 20M | 100. | 1138. | Zarazir, Chovin, et al., 1970 | Chromosorb W; Column length: 2. m |
Packed | Polyethylene Glycol 4000 | 100. | 1152. | Bonastre and Grenier, 1968 | Chromosorb P; Column length: 6. m |
Packed | Polyethylene Glycol 4000 | 120. | 1143. | Bonastre and Grenier, 1968 | Chromosorb P; Column length: 6. m |
Packed | Polyethylene Glycol 4000 | 140. | 1135. | Bonastre and Grenier, 1968 | Chromosorb P; Column length: 6. m |
Packed | Polyethylene Glycol 4000 | 80. | 1160. | Bonastre and Grenier, 1968 | Chromosorb P; Column length: 6. m |
Kovats' RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CBP-20 | 1148. | Shimadzu, 2003 | 25. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C |
Capillary | PE-Wax | 1113. | Venkateshwarlu, Chandravadana, et al., 1999 | N2, 60. C @ 4. min, 5. K/min, 200. C @ 5. min; Column length: 30. m; Column diameter: 0.25 mm |
Capillary | DB-Wax | 1150. | Tatsuka, Suekane, et al., 1990 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C |
Capillary | DB-Wax | 1150. | Tatsuka, Suekane, et al., 1990 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C |
Capillary | BP-20 | 1164. | Wyllie and Leach, 1990 | 70. C @ 2. min, 4. K/min; Column length: 25. m; Column diameter: 0.32 mm; Tend: 200. C |
Capillary | DB-Wax | 1175. | Umano, Shoji, et al., 1986 | N2, 60. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | DB-Wax | 1160. | Umano, Shoji, et al., 1986 | N2, 60. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C |
Packed | PEG-20M | 1113. | Galt and MacLeod, 1984 | N2, Celite, 70. C @ 9. min, 10. K/min; Column length: 5.5 m; Tend: 175. C |
Capillary | Carbowax 20M | 1128. | Tressl, Friese, et al., 1978 | He, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 70. C; Tend: 190. C |
Kovats' RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | BP-20 | 1153. | SGE, 2005 | Program: not specified |
Capillary | Carbowax 20M | 1157. | Garruti, Franco, et al., 2001 | H2; Column length: 30. m; Column diameter: 0.25 mm; Program: 50 0C (8 min) 4 K/min -> 110 0C 16 K/min -> 200 0C |
Capillary | PEG-20M | 1125. | Slizhov and Gavrilenko, 2001 | He; Column length: 10. m; Column diameter: 0.2 mm; Program: not specified |
Capillary | Supelcowax-10 | 1145.9 | Castello, Timossi, et al., 1988 | N2; Column length: 60. m; Column diameter: 0.75 mm; Program: not specified |
Capillary | Carbowax 20M | 1145. | Brander, Kepner, et al., 1980 | Program: not specified |
Capillary | Carbowax 20M | 1150. | Brander, Kepner, et al., 1980 | Program: not specified |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SPB-5 | 662. | Engel and Ratel, 2007 | 60. m/0.32 mm/1. μm, 40. C @ 2. min, 3. K/min, 230. C @ 10. min |
Capillary | DB-5 | 661. | Methven L., Tsoukka M., et al., 2007 | 60. m/0.32 mm/1. μm, 40. C @ 2. min, 4. K/min, 260. C @ 10. min |
Capillary | DB-5 | 660. | Bylaite and Meyer, 2006 | 30. m/0.25 mm/1. μm, 50. C @ 1. min, 10. K/min, 290. C @ 10. min |
Capillary | Mega 5MS | 662. | Condurso, Verzera, et al., 2006 | 60. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 60. C; Tend: 240. C |
Capillary | CP-Sil 8CB-MS | 659. | Elmore, Cooper, et al., 2005 | 0. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 280. C @ 5. min |
Capillary | HP-5MS | 668. | Pino, Mesa, et al., 2005 | 30. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min |
Capillary | CP-Sil 8CB-MS | 653. | Hierro, de la Hoz, et al., 2004 | 60. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min |
Capillary | SPB-5 | 668. | Pino, Marbot, et al., 2004 | 30. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min |
Capillary | SPB-5 | 651. | Rodríguez-Burruezo, Kollmannsberger, et al., 2004 | 30. m/0.53 mm/1.5 μm, He, 5. K/min; Tstart: 100. C; Tend: 250. C |
Capillary | HP-5 | 669. | Siegmund, Derler, et al., 2004 | 30. m/0.25 mm/1. μm, -30. C @ 1. min, 10. K/min; Tend: 250. C |
Capillary | Petrocol DH | 660.1 | Censullo, Jones, et al., 2003 | 50. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min |
Capillary | Petrocol DH | 661.5 | Censullo, Jones, et al., 2003 | 50. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min |
Capillary | CP Sil 5 CB | 621. | Pino, Almora, et al., 2003 | 60. m/0.32 mm/0.25 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min |
Capillary | SPB-5 | 668. | Pino, Marbot, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min |
Capillary | DB-5 | 654.5 | Xu, van Stee, et al., 2003 | 30. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C |
Capillary | CP Sil 5 CB | 619. | Pino, Marbot, et al., 2002 | 30. m/0.25 mm/0.25 μm, H2, 60. C @ 10. min, 2. K/min, 280. C @ 40. min |
Capillary | CP Sil 5 CB | 619. | Pino, Marbot, et al., 2002, 2 | 50. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min |
Capillary | CP-Sil 8CB-MS | 653. | Bruna, Hierro, et al., 2001 | 60. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min; Tend: 280. C |
Capillary | SE-30 | 660. | Golovnya, Samusenko, et al., 2001 | 25. m/0.32 mm/1. μm, He, 2. K/min; Tstart: 60. C |
Capillary | SE-30 | 659. | Golovnya, Samusenko, et al., 2001 | 25. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C |
Capillary | SE-30 | 659. | Golovnya, Samusenko, et al., 2001 | 25. m/0.32 mm/1. μm, He, 6. K/min; Tstart: 60. C |
Capillary | SE-30 | 658. | Golovnya, Samusenko, et al., 2001 | 25. m/0.32 mm/1. μm, He, 8. K/min; Tstart: 60. C |
Capillary | SPB-1 | 653. | Larráyoz, Addis, et al., 2001 | 30. m/0.32 mm/4. μm, He, 45. C @ 13. min, 5. K/min, 240. C @ 5. min |
Capillary | CP Sil 5 CB | 619. | Pino and Marbot, 2001 | 50. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min |
Capillary | CP Sil 5 CB | 619. | Pino, Marbot, et al., 2001 | 50. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min |
Capillary | SE-30 | 647.1 | Golovnya, Kuz'menko, et al., 2000 | 25. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C |
Capillary | SE-30 | 647.1 | Golovnya, Kuz'menko, et al., 2000, 2 | 25. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C |
Capillary | DB-1 | 645. | Bartelt, 1997 | 30. m/0.32 mm/5. μm, He, 35. C @ 1. min, 10. K/min; Tend: 270. C |
Capillary | DB-1 | 649.6 | Helmig, Pollock, et al., 1996 | 30. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C |
Capillary | DB-5 | 673.2 | Helmig, Pollock, et al., 1996 | 60. m/0.33 mm/0.25 μm, 6. K/min; Tstart: -50. C; Tend: 180. C |
Capillary | Methyl Silicone | 653. | Píry, Príbela, et al., 1995 | 25. m/0.2 mm/0.3 μm, He, 2. K/min; Tstart: 40. C; Tend: 200. C |
Capillary | DB-1 | 659. | Peng, 1992 | 15. m/0.53 mm/1. μm, 40. C @ 4. min, 8. K/min; Tend: 250. C |
Capillary | SE-30 | 646. | Korhonen, 1984 | N2, 6. K/min; Column length: 25. m; Column diameter: 0.30 mm; Tstart: 50. C |
Capillary | CP Sil 5 CB | 640. | Hendriks and Bruins, 1983 | 4. K/min; Column length: 25. m; Column diameter: 0.22 mm; Tstart: 70. C; Tend: 205. C |
Capillary | OV-1 | 666. | Schreyen, Dirinck, et al., 1976 | 1. K/min; Column length: 183. m; Column diameter: 0.762 mm; Tstart: 0. C; Tend: 230. C |
Capillary | OV-1 | 664. | Schreyen, Dirinck, et al., 1976, 2 | N2, 1. K/min; Column length: 183. m; Tstart: 0. C; Tend: 230. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 669. | Mayr, van Ruth, et al., 2003 | 60. m/0.32 mm/1. μm, He; Program: 40 C(4min) => 2C/min => 90C => 4C/min => 130C => 8C/min => 250C |
Capillary | DB-1 | 647. | Peng, 2000 | 15. m/0.53 mm/1. μm, He; Program: 40C(3min) => 8C/min => 200(1min) => 5C/min => 300C(25min) |
Capillary | Methyl Silicone | 659. | Peng, Yang, et al., 1991 | Program: not specified |
Packed | SE-30 | 659. | Peng, Ding, et al., 1988 | Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min) |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax Etr | 1125. | Aubert and Chanforan, 2007 | 30. m/0.25 mm/0.25 μm, 40. C @ 3. min, 5. K/min, 250. C @ 15. min |
Capillary | HP-Innowax | 1146. | Hashizume M., Gordon M.H., et al., 2007 | 60. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 250. C @ 10. min |
Capillary | DB-Wax | 1154. | Pozo-Bayon M.A., Ruiz-Rodriguez A., et al., 2007 | 30. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 4. K/min, 250. C @ 15. min |
Capillary | ZB-Wax | 1147. | Wu, Zorn, et al., 2007 | 30. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 5. K/min, 250. C @ 5. min |
Capillary | DB-Wax | 1116. | Gurbuz O., Rouseff J.M., et al., 2006 | 30. m/0.32 mm/0.5 μm, He, 7. K/min, 265. C @ 5. min; Tstart: 40. C |
Capillary | DB-Wax | 1134. | Osorio, Alarcon, et al., 2006 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min |
Capillary | CP-Wax 52CB | 1137. | Alasalvar, Taylor, et al., 2005 | 60. m/0.25 mm/0.25 μm, 35. C @ 4. min, 3. K/min; Tend: 203. C |
Capillary | Stabilwax | 1132. | Cros, Lignot, et al., 2005 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | Supelcowax-10 | 1154. | Elmore, Nisyrios, et al., 2005 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C |
Capillary | Stabilwax | 1161. | Fang and Qian, 2005 | 30. m/0.32 mm/1. μm, N2, 40. C @ 2. min, 4. K/min, 230. C @ 10. min |
Capillary | DB-Wax | 1164. | Malliaa, Fernandez-Garcia, et al., 2005 | 60. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min |
Capillary | DB-Wax | 1165. | Malliaa, Fernandez-Garcia, et al., 2005 | 60. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min |
Capillary | Supelcowax-10 | 1116. | Riu-Aumatell, Lopez-Tamames, et al., 2005 | 30. m/0.25 mm/0.25 μm, He, 60. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | ZB-Wax | 1140. | Wu, Zorn, et al., 2005 | 30. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 5. K/min, 250. C @ 5. min |
Capillary | ZB-Wax | 1147. | Ledauphin, Saint-Clair, et al., 2004 | 30. m/0.25 mm/0.15 μm, He, 35. C @ 10. min, 1.8 K/min, 220. C @ 10. min |
Capillary | DB-Wax | 1166. | Nielsen, Larsen, et al., 2004 | 30. m/0.25 mm/0.25 μm, He, 45. C @ 10. min, 6. K/min, 240. C @ 30. min |
Capillary | DB-Wax | 1125. | Brat, Rega, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 3. K/min, 250. C @ 20. min; Tstart: 40. C |
Capillary | Carbowax | 1159.7 | Censullo, Jones, et al., 2003 | 60. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min |
Capillary | Stabilwax | 1132. | Cros, Vandanjon, et al., 2003 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | AT-Wax | 1126. | Pino, Almora, et al., 2003 | 60. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min |
Capillary | Supelcowax-10 | 1144. | Chung, Yung, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min |
Capillary | AT-Wax | 1126. | Pino, Marbot, et al., 2002, 2 | 60. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min |
Capillary | Supelcowax-10 | 1144. | Chung, Yung, et al., 2001 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min |
Capillary | CP-Wax 52CB | 1172. | Liu, Yang, et al., 2001 | H2, 2. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 50. C; Tend: 200. C |
Capillary | AT-Wax | 1128. | Pino and Marbot, 2001 | 60. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min |
Capillary | AT-Wax | 1126. | Pino, Marbot, et al., 2001 | 60. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min |
Capillary | Supelcowax-10 | 1144. | Chung, 2000 | 60. m/0.25 mm/0.25 μm, He, 2. K/min, 195. C @ 90. min; Tstart: 35. C |
Capillary | HP-Wax | 1172. | Peng, 2000 | 15. m/0.53 mm/1. μm, He, 40. C @ 3. min, 5. K/min, 220. C @ 30. min |
Capillary | CP-Wax 52CB | 1130. | Chevance and Farmer, 1999 | 60. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm |
Capillary | Supelcowax-10 | 1144. | Chung, 1999 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min |
Capillary | DB-Wax | 1145. | Cha, Kim, et al., 1998 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 3. K/min, 200. C @ 60. min |
Capillary | FFAP | 1179. | Ott, Fay, et al., 1997 | 30. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min |
Capillary | Carbowax 20M | 1126. | Mondello, Dugo, et al., 1995 | 60. m/0.32 mm/0.425 μm, He, 45. C @ 3. min, 3. K/min, 300. C @ 20. min |
Capillary | Carbowax 20M | 1110. | Píry, Príbela, et al., 1995 | 50. m/0.2 mm/0.2 μm, He, 30. C @ 2. min, 4. K/min, 170. C @ 20. min |
Capillary | DB-Wax | 1136. | Shimoda, Shigematsu, et al., 1995 | 60. m/0.25 mm/0.25 μm, 2. K/min; Tstart: 50. C; Tend: 230. C |
Capillary | DB-Wax | 1150. | Iwaoka, Hagi, et al., 1994 | He, 40. C @ 5. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | DB-Wax | 1149. | Sumitani, Suekane, et al., 1994 | He, 40. C @ 5. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | Carbowax 20M | 1141. | Peng, 1992 | 8. K/min, 200. C @ 60. min; Column length: 3.05 m; Tstart: 40. C |
Capillary | Carbowax 20M | 1115. | Suárez and Duque, 1992 | 25. m/0.31 mm/0.3 μm, 2. K/min; Tstart: 50. C; Tend: 200. C |
Capillary | DB-Wax | 1141. | Umano, Hagi, et al., 1992 | He, 40. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | DB-Wax | 1136. | Humpf and Schreier, 1991 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 220. C @ 20. min |
Capillary | DB-Wax | 1136. | Krammer, Winterhalter, et al., 1991 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C |
Packed | Carbowax 20M | 1141. | Peng, Yang, et al., 1991 | Supelcoport, 40. C @ 4. min, 8. K/min; Column length: 3.05 m; Tend: 200. C |
Capillary | Carbowax 20M | 1113. | Suárez and Duque, 1991 | 2. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tstart: 50. C; Tend: 200. C |
Capillary | Carbowax 20M | 1115. | Suárez and Duque, 1991 | 2. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tstart: 50. C; Tend: 200. C |
Capillary | DB-Wax | 1136. | Frohlich and Schreier, 1990 | 30. m/0.32 mm/0.25 μm, He, 40. C @ 3. min, 5. K/min; Tend: 220. C |
Capillary | Supelcowax-10 | 1163. | Matiella and Hsieh, 1990 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min |
Capillary | DB-Wax | 1136. | Fröhlich, Duque, et al., 1989 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 250. C |
Capillary | DB-Wax | 1140. | Fröhlich, Duque, et al., 1989 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 250. C |
Capillary | Carbowax 20M | 1124. | Schwab, Mahr, et al., 1989 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 3. min, 4. K/min; Tend: 240. C |
Capillary | Supelcowax-10 | 1148. | Vejaphan, Hsieh, et al., 1988 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min |
Capillary | Supelcowax-10 | 1156. | Vejaphan, Hsieh, et al., 1988 | 60. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min |
Capillary | Carbowax 20M | 1131. | Chen, Kuo, et al., 1986 | He, 50. C @ 5. min, 2. K/min, 200. C @ 40. min; Column length: 50. m; Column diameter: 0.32 mm |
Capillary | OV-351 | 1119. | Korhonen, 1984 | N2, 6. K/min; Column length: 25. m; Column diameter: 0.32 mm; Tstart: 50. C |
Packed | Carbowax 20M | 1126. | van den Dool and Kratz, 1963 | Celite 545, 4.6 K/min; Tstart: 75. C; Tend: 228. C |
Van Den Dool and Kratz RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Supelcowax-10 | 1152. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | Supelcowax-10 | 1153. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | Supelcowax-10 | 1155. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | CP-Wax 52CB | 1136. | Romeo, Ziino, et al., 2007 | 60. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C |
Capillary | CP-Wax 52CB | 1149. | Condurso, Verzera, et al., 2006 | 60. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C |
Capillary | DB-Wax | 1119. | Selli, Canbas, et al., 2006 | 30. m/0.32 mm/0.5 μm, H2; Program: 60C(3min) => 2C/min => 220C => 3C/min => 245C (20min) |
Capillary | DB-Wax | 1119. | Selli, Canbas, et al., 2006, 2 | 30. m/0.32 mm/0.5 μm, H2; Program: 60C(3min) => 2C/min => 220C => 3C/min => 245C(20min) |
Capillary | SOLGel-Wax | 1118. | Aubert, Baumann, et al., 2005 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(5min) => 3C/min => 150C => 5C/min => 250C (10min) |
Capillary | DB-Wax | 1136. | Ferrari, Lablanquie, et al., 2004 | 60. m/0.25 mm/0.25 μm, He; Program: 35C(0.7min) => 20C/min => 70C => 4C/min => 240C |
Capillary | DB-Wax | 1119. | Selli, Cabaroglu, et al., 2004 | 30. m/0.32 mm/0.5 μm, H2; Program: 60C(3min) => 2C/min => 220C => 3C/min => 245C (20min) |
Capillary | CP-Wax 52CB | 1152. | Verzera, Ziino, et al., 2004 | 60. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C |
Capillary | Carbowax 20M | 1155. | Boido, Lloret, et al., 2003 | 25. m/0.32 mm/0.25 μm, H2; Program: 40C (8min) => 3C/min => 180C => 20C/min => 230C |
Capillary | Supelcowax-10 | 1149. | da Porto, Pizzale, et al., 2003 | 30. m/0.32 mm/0.3 μm; Program: 60C(8min) => 8C/min => 170C => 13C/min => 240C(20min) |
Capillary | Supelcowax-10 | 1149. | da Porto, Pizzale, et al., 2003 | 30. m/0.32 mm/0.3 μm; Program: 60C(8min) => 8C/min => 170C => 13C/min => 240C(20min) |
Capillary | FFAP | 1142. | Fuhrmann and Grosch, 2002 | 25. m/0.32 mm/0.3 μm, He; Program: 35C(2min) => 5C/min => 170C => 20C/min => 240C (10min) |
Capillary | DB-Wax | 1120. | Nurgel, Erten, et al., 2002 | 30. m/0.32 mm/0.5 μm, H2; Program: 60C (3min) => 2C/min => 220C => 3C/min => 245C (20min) |
Capillary | DB-Wax | 1132. | Cantergiani, Brevard, et al., 2001 | 30. m/0.25 mm/0.25 μm; Program: 20C(30s) => fast => 60C => 4C/min => 220C (20min) |
Capillary | DB-Wax | 1173. | Radovic, Careri, et al., 2001 | 30. m/0.25 mm/0.25 μm; Program: 30C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | DB-Wax | 1151. | Ziegleder, 2001 | He; Column length: 60. m; Column diameter: 0.25 mm; Program: 45C(4min) => 30C/min => 60C (5min) => 3C/min => 220C (40min) |
Capillary | DB-Wax | 1119. | Boulanger and Crouzet, 2000 | 30. m/0.25 mm/0.25 μm, H2; Program: 60 0C (3 min) 2 K/min -> 220 0C 5 K/min -> 250 0C (15 min) |
Capillary | DB-Wax | 1119. | Boulanger and Crouzet, 2000, 2 | 30. m/0.25 mm/0.25 μm, H2; Program: 60C(3min) => 2C/min => 220C => 5C/min => 250C (15min) |
Capillary | FFAP | 1136. | Yasuhara, 1987 | 50. m/0.25 mm/0.25 μm, He; Program: 20C (5min) => 2C/min => 70C => 4C/min => 210C |
Capillary | Carbowax 20M | 1142. | Whitfield, Shea, et al., 1981 | Column length: 150. m; Column diameter: 0.75 mm; Program: not specified |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Polydimethyl siloxane | 105. | 641. | Tello, Lebron-Aguilar, et al., 2009 | |
Capillary | Polydimethyl siloxane | 75. | 645. | Tello, Lebron-Aguilar, et al., 2009 | |
Capillary | Polydimethyl siloxane | 90. | 643. | Tello, Lebron-Aguilar, et al., 2009 | |
Packed | Polydimethyl siloxane | 120. | 640. | Tello, Lebron-Aguilar, et al., 2009 | |
Packed | Polydimethyl siloxane | 120. | 640. | Tello, Lebron-Aguilar, et al., 2009 | |
Packed | Polydimethyl siloxane | 120. | 642. | Tello, Lebron-Aguilar, et al., 2009 | |
Capillary | Methyl Silicone | 120. | 641. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 120. | 641. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 120. | 649. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 100. | 641. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 120. | 639. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 140. | 638. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 80. | 643. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Packed | SE-30 | 100. | 650. | Zhou and Wu, 2007 | Column length: 1. m |
Capillary | DB-1 | 60. | 648. | Shimadzu, 2003, 2 | 60. m/0.32 mm/1. μm, He |
Capillary | DB-5 | 120. | 664. | Verevkin, Krasnykh, et al., 2003 | 60. m/0.32 mm/0.25 μm, Nitrogen |
Packed | SE-30 | 70. | 692. | Yabumoto, Jennings, et al., 1977 | |
Packed | DC-400 | 150. | 650. | Anderson, 1968 | Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxane: CP-Sil 5 CB | 654. | Bramston-Cook, 2013 | 60. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min |
Capillary | Optima-5 MS | 655. | Goeminne, Vandendriessche, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium, 35. C @ 3. min, 10. K/min, 250. C @ 5. min |
Capillary | HP-5 MS | 650. | Pino, Marquez, et al., 2010 | 30. m/0.32 mm/0.25 μm, Helium, 50. C @ 2. min, 4. K/min, 240. C @ 10. min |
Capillary | HP-5 MS | 656. | Raffo, Kelderer, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium, 40. C @ 2. min, 4. K/min, 250. C @ 5. min |
Capillary | HP-5 | 670. | Mildner-Szkudlarz and Jelen, 2008 | 10. m/0.10 mm/0.40 μm, Helium, 40. C @ 1. min, 20. K/min, 280. C @ 1. min |
Capillary | SPB-5 | 664. | Vasta, Ratel, et al., 2007 | 60. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 230. C @ 5. min |
Capillary | SPB-5 | 664. | Vasta, Ratel, et al., 2007 | 60. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 230. C @ 5. min |
Capillary | SPB-5 | 664. | Vasta, Ratel, et al., 2007 | 60. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 230. C @ 5. min |
Capillary | HP-5 | 646. | Isidorov, Purzynska, et al., 2006 | 30. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 3. K/min; Tend: 200. C |
Capillary | SPB-5 | 668. | Pino, Marbot, et al., 2005 | 30. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min |
Capillary | DB-5 | 688. | Dhanda, Pegg, et al., 2003 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 2. min, 5. K/min, 280. C @ 4. min |
Capillary | MDN-5 | 670. | Mildner-Szkudlarz, Jelen, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 20. K/min, 280. C @ 1. min |
Capillary | HP-5 | 665. | Isidorov and Jdanova, 2002 | 3. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tstart: 50. C; Tend: 200. C |
Capillary | SPB-5 | 668. | Pino, Marbot, et al., 2002, 3 | 30. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 4. K/min, 250. C @ 20. min |
Capillary | RSL-200 | 643. | Ngassoum, Jirovetz, et al., 2001 | 30. m/0.32 mm/0.25 μm, H2, 40. C @ 5. min, 6. K/min, 280. C @ 5. min |
Capillary | BP-1 | 643. | Health Safety Executive, 2000 | 50. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C |
Capillary | OV-101 | 635. | Tamura, Boonbumrung, et al., 2000 | Nitrogen, 40. C @ 10. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | Methyl Silicone | 642.48 | Baraldi, Rapparini, et al., 1999 | 60. m/0.25 mm/0.25 μm, 40. C @ 10. min, 5. K/min; Tend: 220. C |
Capillary | HP-5 | 663. | Jung, Wichmann, et al., 1999 | 25. m/0.20 mm/0.33 μm, 50. C @ 3. min, 5. K/min; Tend: 180. C |
Capillary | Ultra-2 | 652. | King, Matthews, et al., 1995 | 50. m/0.32 mm/0.52 μm, He, 40. C @ 3. min, 4. K/min, 250. C @ 30. min |
Capillary | DB-1 | 638. | Buttery, Stern, et al., 1994 | He, 30. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.32 mm |
Capillary | OV-101 | 655. | Egolf and Jurs, 1993 | 2. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Ultra-2 | 681. | King, Hamilton, et al., 1993 | 50. m/0.32 mm/0.52 μm, He, 40. C @ 3. min, 4. K/min, 250. C @ 30. min |
Capillary | DB-5 | 653. | Shimoda, Shibamoto, et al., 1993 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 3. K/min; Tend: 200. C |
Capillary | DB-1 | 633. | Shiota, 1993 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 5. min, 3. K/min; Tend: 240. C |
Capillary | DB-1 | 634. | Shiota, 1993 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 5. min, 3. K/min; Tend: 240. C |
Capillary | DB-1 | 633. | Shiota, 1993 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 5. K/min; Tend: 240. C |
Capillary | DB-1 | 634. | Shiota, 1993 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 5. K/min; Tend: 240. C |
Capillary | DB-1 | 661. | Ciccioli, Cecinato, et al., 1992 | 60. m/0.32 mm/1.2 μm, He, 30. C @ 10. min, 3. K/min; Tend: 240. C |
Capillary | OV-101 | 656. | Misharina, Golovnya, et al., 1991 | 50. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 50. C; Tend: 250. C |
Capillary | OV-101 | 655. | Anker, Jurs, et al., 1990 | 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C |
Capillary | HP-5 | 647. | Spadone, Takeoka, et al., 1990 | H2, 16. K/min; Column length: 50. m; Column diameter: 0.3 mm; Tstart: 80. C; Tend: 250. C |
Capillary | HP-5 | 655. | Spadone, Takeoka, et al., 1990 | H2, 16. K/min; Column length: 50. m; Column diameter: 0.3 mm; Tstart: 80. C; Tend: 250. C |
Capillary | DB-1 | 637. | Binder, Flath, et al., 1989 | 4. K/min, 250. C @ 5. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C |
Capillary | OV-101 | 640. | Sugisawa, Yamamoto, et al., 1989 | N2, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 80. C; Tend: 200. C |
Capillary | DB5-30W | 640. | Schwab and Schreier, 1988 | 30. m/0.25 mm/0.25 μm, He, 5. K/min; Tstart: 60. C; Tend: 300. C |
Capillary | DB-1 | 657. | Habu, Flath, et al., 1985 | 3. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C |
Capillary | OV-101 | 661. | del Rosario, de Lumen, et al., 1984 | He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C |
Capillary | SP 2100 | 654. | Labropoulos, Palmer, et al., 1982 | Helium, 10. K/min; Column length: 40. m; Column diameter: 0.20 mm; Tstart: 40. C; Tend: 200. C |
Packed | Apiezon L | 670. | Dahlmann, Köser, et al., 1979 | Chromosorb G-AW-DMCS, 10. K/min; Column length: 2. m; Tstart: 25. C |
Capillary | OV-1 | 657. | Schreyen, Dirinck, et al., 1979 | N2, 1. K/min; Column length: 183. m; Column diameter: 0.762 mm; Tstart: 0. C; Tend: 230. C |
Capillary | SF-96 | 684. | Donetzhuber, Johansson, et al., 1976 | Nitrogen, 3. K/min, 130. C @ 40. min; Column length: 111. m; Column diameter: 0.76 mm; Initial hold: 8. min |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5 MS | 653. | Pino, Marquez, et al., 2010 | 30. m/0.32 mm/0.25 μm, Helium; Program: not specified |
Capillary | HP-5 | 666. | Rotsatschakul, Visesanguan, et al., 2009 | 60. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (2 min) 2 0Cmin -> 60 0C 10 0C/min -> 100 0C 20 0C/min -> 140 0C 10 0C/min -> 200 0C (10 min) |
Capillary | HP-5 | 653. | Zhao, Li, et al., 2008 | 30. m/0.25 mm/0.25 μm; Program: not specified |
Capillary | HP-1 | 639. | Barra, Baldovini, et al., 2007 | 50. m/0.2 mm/0.33 μm, He; Program: 40C(2min) => 2C/min => 200C => 15C/min => 250C (30min) |
Capillary | DB-5 MS | 663. | Cajka, Hajslova, et al., 2007 | 30. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (0.75 min) 10 0C/min -> 200 0C 30 0C/min -> 245 0C (1.25 min) |
Capillary | Methyl Silicone | 650. | Chen and Feng, 2007 | Program: not specified |
Capillary | Methyl Silicone | 646. | Feng and Mu, 2007 | Program: not specified |
Capillary | VB-5 | 655. | Karlshøj, Nielsen, et al., 2007 | 60. m/0.25 mm/1. μm, He; Program: 35C(1min) => 4C/min => 175C => 10C/min => 260C |
Capillary | DB-5 MS | 658. | Liu, Xu, et al., 2007 | 60. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 6 0C/min -> 100 0C 4 0C/min -> 180 0C 8 0C/min -> 250 0C (12 min) |
Capillary | Methyl Silicone | 650. | Kou, Zhang, et al., 2006 | Program: not specified |
Capillary | Methyl Silicone | 653. | Blunden, Aneja, et al., 2005 | 60. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min) |
Capillary | HP-5 | 653. | Himanen, Vuorinen, et al., 2005 | 50. m/0.2 mm/0.5 μm, He; Program: 40C(1min) => 5C/min => 210C => 20C/min => 250C(8min) |
Capillary | Polydimethyl siloxane with 5 % Ph groups | 668. | Pino, Marbot, et al., 2005, 2 | Program: not specified |
Capillary | HP-5 | 657. | Thierry, Maillard, et al., 2005 | 60. m/0.32 mm/1. μm; Program: not specified |
Capillary | Methyl Silicone | 650. | Fu and Wang, 2004 | Program: not specified |
Capillary | SE-30 | 655. | Vinogradov, 2004 | Program: not specified |
Capillary | SPB-5 | 654. | Begnaud, Pérès, et al., 2003 | 60. m/0.32 mm/1. μm; Program: not specified |
Capillary | HP-5 | 653. | Jordán, Margaría, et al., 2003 | 30. m/0.25 mm/0.25 μm; Program: 40C(6min) => 2.5C/min => 150C => 90C/min => 250C |
Capillary | Polydimethyl siloxane | 646. | Junkes, Castanho, et al., 2003 | Program: not specified |
Capillary | HP-5 | 653. | Jordán, Goodner, et al., 2002 | 30. m/0.25 mm/0.25 μm; Program: not specified |
Capillary | HP-5 | 653. | Jordán, Margaría, et al., 2002 | 30. m/0.25 mm/0.25 μm; Program: 40C (6min) => 2.5C/min => 150C => 90C/min => 250C |
Capillary | Methyl Silicone | 680. | N/A | Program: not specified |
Capillary | BPX-5 | 635. | van Ruth, Grossmann, et al., 2001 | 60. m/0.32 mm/1. μm, He; Program: -30C(1min) => 100C/min => 40C(4min) => 2C/min => 90C => 4C/min => 130C => 8C/min => 250C |
Capillary | Polydimethyl siloxane | 632. | Spanier, Shahidi, et al., 2001 | Program: not specified |
Capillary | Methyl Silicone | 646. | Estrada and Gutierrez, 1999 | Program: not specified |
Capillary | SPB-1 | 650. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | Methyl Silicone | 652. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | DB-1 | 656. | Ciccioli, Cecinato, et al., 1994 | 60. m/0.32 mm/0.25 μm; Program: not specified |
Capillary | DB-1 | 656. | Ciccioli, Brancaleoni, et al., 1993 | 60. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min |
Capillary | SPB-1 | 650. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 651. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | DB-1 | 638. | Binder, Flath, et al., 1989 | Column length: 60. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | CP Sil 8 CB | 659. | Weller and Wolf, 1989 | 40. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C |
Capillary | OV-101 | 655. | Morales and Duque, 1987 | He; Column length: 25. m; Column diameter: 0.31 mm; Program: not specified |
Capillary | OV-101 | 655. | Shibamoto, 1987 | Program: not specified |
Capillary | OV-1 | 661. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 646. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | OV-1 | 651. | Ramsey and Flanagan, 1982 | Program: not specified |
Normal alkane RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Carbowax 20M | 100. | 1142. | Sun, Siepmann, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium |
Capillary | Carbowax 20M | 120. | 1139. | Sun, Siepmann, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium |
Capillary | Carbowax 20M | 140. | 1136. | Sun, Siepmann, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium |
Capillary | Carbowax 20M | 60. | 1147. | Sun, Siepmann, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium |
Capillary | Carbowax 20M | 80. | 1145. | Sun, Siepmann, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium |
Capillary | DB-Wax | 60. | 1180. | Shimadzu, 2003, 2 | 50. m/0.32 mm/1. μm, He |
Capillary | PEG-20M | 100. to 150. | 1094. | Wang and Wu, 1990 | N2; Column length: 58. m; Column diameter: 0.35 mm |
Packed | Carbowax 20M | 100. | 1122. | Yabumoto, Jennings, et al., 1977 |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-FFAP | 1161. | Wanakhachornkrai and Lertsiri, 9999 | 25. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C |
Capillary | HP-FFAP | 1162. | Wanakhachornkrai and Lertsiri, 9999 | 25. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C |
Capillary | HP-FFAP | 1164. | Wanakhachornkrai and Lertsiri, 9999 | 25. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C |
Capillary | CP-Wax CB | 1148. | Alves, da Penha, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium, 2. K/min, 150. C @ 5. min; Tstart: 50. C |
Capillary | HP-Innowax | 1163. | Feng, Zhuang, et al., 2011 | 60. m/0.25 mm/0.25 μm, Helium, 60. C @ 1. min, 3. K/min, 220. C @ 5. min |
Capillary | AT-Wax | 1104. | Kiss, Csoka, et al., 2011 | 60. m/0.25 mm/0.25 μm, Helium, 4. K/min; Tstart: 60. C; Tend: 280. C |
Capillary | VF-Wax MS | 1173. | Duarte, Dias, et al., 2010 | 60. m/0.25 mm/0.25 μm, Helium, 60. C @ 5. min, 3. K/min, 220. C @ 25. min |
Capillary | DB-Wax | 1152. | Zhao, Xu, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium, 40. C @ 2. min, 3. K/min, 230. C @ 5. min |
Capillary | HP-Innowax | 1147. | Soria, Sanz, et al., 2008 | 50. m/0.20 mm/0.20 μm, Helium, 45. C @ 2. min, 4. K/min, 190. C @ 50. min |
Capillary | Stabilwax | 1132. | Cros, Vandanjon, et al., 2007 | 60. m/0.25 mm/0.25 μm, Helium, 40. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | RTX-Wax | 1147. | Prososki, Etzel, et al., 2007 | 30. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 10. K/min, 220. C @ 10. min |
Capillary | DB-Wax | 1137. | Xu, Fan, et al., 2007 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 230. C @ 5. min |
Capillary | DB-Wax | 1113. | Berlinet, Brat, et al., 2006 | 30. m/0.25 mm/0.25 μm, Helium, 3. K/min, 250. C @ 20. min; Tstart: 40. C |
Capillary | DB-Wax | 1137. | Fan and Qian, 2006 | 30. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 230. C @ 15. min |
Capillary | DB-Wax | 1137. | Fan and Qian, 2006 | 30. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 230. C @ 15. min |
Capillary | DB-Wax | 1143. | Fan and Qian, 2006, 2 | 30. m/0.32 mm/0.25 μm, N2, 40. C @ 2. min, 6. K/min, 230. C @ 15. min |
Capillary | DB-Wax Etr | 1165. | Perestrelo, Fernandes, et al., 2006 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 2. K/min, 220. C @ 10. min |
Capillary | ZB-Wax | 1159. | Wierda R.L., Fletcher G., et al., 2006 | 60. m/0.32 mm/0.5 μm, He, 40. C @ 2. min, 3. K/min, 250. C @ 10. min |
Capillary | DB-Wax | 1156. | Fan and Qian, 2005 | 30. m/0.32 mm/0.25 μm, N2, 40. C @ 2. min, 4. K/min, 230. C @ 5. min |
Capillary | DB-Wax | 1167. | Qian and Wang, 2005 | 60. m/0.32 mm/0.50 μm, Nitrogen, 35. C @ 4. min, 2. K/min, 235. C @ 30. min |
Capillary | DB-Wax | 1113. | Rizzolo, Cambiaghi, et al., 2005 | 60. m/0.53 mm/1. μm, 50. C @ 10. min, 3. K/min; Tend: 180. C |
Capillary | ZB-Wax | 1132. | N/A | 30. m/0.32 mm/0.25 μm, Helium, 40. C @ 2. min, 5. K/min, 250. C @ 5. min |
Capillary | ZB-Wax | 1133. | N/A | 30. m/0.32 mm/0.25 μm, Helium, 40. C @ 2. min, 5. K/min, 250. C @ 5. min |
Capillary | ZB-Wax | 1136. | N/A | 30. m/0.32 mm/0.25 μm, Helium, 40. C @ 2. min, 5. K/min, 250. C @ 5. min |
Capillary | ZB-Wax | 1139. | N/A | 30. m/0.32 mm/0.25 μm, Helium, 40. C @ 2. min, 5. K/min, 250. C @ 5. min |
Capillary | ZB-Wax | 1147. | N/A | 30. m/0.32 mm/0.25 μm, Helium, 40. C @ 2. min, 5. K/min, 250. C @ 5. min |
Capillary | ZB-Wax | 1133. | Wu, Krings, et al., 2005 | 30. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 5. K/min, 250. C @ 10. min |
Capillary | DB-Wax | 1147. | Chida, Sone, et al., 2004 | 60. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min |
Capillary | DB-Wax | 1138. | López, Ezpeleta, et al., 2004 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 220. C |
Capillary | PEG-20M | 1138. | Narain, Almeida, et al., 2004 | 50. m/0.20 mm/0.20 μm, 40. C @ 5. min, 3. K/min, 180. C @ 30. min |
Capillary | DB-Wax | 1180. | Alves and Franco, 2003 | 30. m/0.25 mm/0.5 μm, H2, 50. C @ 10. min, 3. K/min, 200. C @ 10. min |
Capillary | Stabilwax | 1132. | Cros, Vandanjon, et al., 2003, 2 | 60. m/0.25 mm/0.25 μm, Helium, 40. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | DB-Wax | 1145. | Dregus and Engel, 2003 | 60. m/0.32 mm/0.25 μm, H2, 40. C @ 5. min, 4. K/min, 230. C @ 25. min |
Capillary | DB-Wax | 1138. | Lee and Noble, 2003 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 185. C @ 20. min |
Capillary | TC-Wax | 1135. | Miyazawa, Yamafuji, et al., 2003 | 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 80. C; Tend: 240. C |
Capillary | HP-FFAP | 1164. | Wanakhachornkrai and Lertsiri, 2003 | 25. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C |
Capillary | HP-FFAP | 1161. | Wanakhachornkrai and Lertsiri, 2003 | 25. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C |
Capillary | HP-FFAP | 1162. | Wanakhachornkrai and Lertsiri, 2003 | 25. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C |
Capillary | TC-Wax | 1146. | Fukami, Ishiyama, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 50. C; Tend: 230. C |
Capillary | DB-Wax | 1148. | Hayata, Sakamoto, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 220. C @ 10. min |
Capillary | DB-Wax | 1140. | Ito, Sugimoto, et al., 2002 | 60. C @ 4. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 180. C |
Capillary | DB-Wax | 1136. | Osorio, Duque, et al., 2002 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min |
Capillary | DB-Wax | 1138. | Osorio, Duque, et al., 2002 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min |
Capillary | HP-FFAP | 1103. | Qian and Reineccius, 2002 | 25. m/0.32 mm/0.52 μm, 60. C @ 1. min, 5. K/min, 240. C @ 5. min |
Capillary | TC-Wax | 1129. | Suhardi, Suzuki, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 230. C @ 10. min |
Capillary | DB-Wax | 1138. | Umano, Hagi, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C |
Capillary | DB-Wax | 1148. | Duque, Bonilla, et al., 2001 | 30. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C |
Capillary | TC-Wax | 1135. | Miyazawa, Kurose, et al., 2001 | He, 4. K/min, 250. C @ 47. min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 80. C |
Capillary | DB-Wax | 1111. | Weckerle, Bastl-Borrmann, et al., 2001 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 220. C |
Capillary | DB-Wax | 1176. | Franco and Shibamoto, 2000 | He, 50. C @ 8. min, 3. K/min; Column length: 30. m; Column diameter: 0.2 mm; Tend: 180. C |
Capillary | Supelcowax-10 | 1163. | Girard and Durance, 2000 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C |
Capillary | DB-Wax | 1115. | Lee and Shibamoto, 2000 | 30. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C |
Capillary | DB-Wax | 1113. | Parada, Duque, et al., 2000 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min |
Capillary | DB-Wax | 1115. | Parada, Duque, et al., 2000 | 30. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min |
Capillary | DB-Wax | 1147. | Tamura, Boonbumrung, et al., 2000 | Nitrogen, 40. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | DB-Wax | 1143. | Umano, Hagi, et al., 2000 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C |
Capillary | CP-Wax 52CB | 1113. | Hwan and Chou, 1999 | 50. m/0.32 mm/0.22 μm, H2, 60. C @ 4. min, 2. K/min, 190. C @ 21. min |
Capillary | DB-Wax | 1151. | Iwatsuki, Mizota, et al., 1999 | 4. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C |
Capillary | DB-Wax | 1140. | Iwatsuki, Mizota, et al., 1999 | 4. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C |
Capillary | DB-Wax | 1143. | Umano, Nakahara, et al., 1999 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C |
Capillary | DB-Wax | 1138. | Buttery and Ling, 1998 | 30. C @ 4. min, 2. K/min, 170. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm |
Capillary | DB-Wax | 1142. | Horiuchi, Umano, et al., 1998 | 60. m/0.25 mm/1. μm, He, 3. K/min, 200. C @ 40. min; Tstart: 50. C |
Capillary | DB-Wax | 1140. | Pollak and Berger, 1996 | 30. m/0.32 mm/0.5 μm, He, 40. C @ 1. min, 3. K/min, 210. C @ 25. min |
Capillary | TC-Wax | 1132. | Shuichi, Masazumi, et al., 1996 | 80. C @ 5. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 240. C |
Capillary | DB-Wax | 1156. | Young, Gilbert, et al., 1996 | 30. m/0.32 mm/0.50 μm, Hydrogen, 30. C @ 6. min, 3. K/min; Tend: 190. C |
Capillary | Supelcowax-10 | 1140. | Girard and Lau, 1995 | 90. m/0.25 mm/0.25 μm, He, 35. C @ 20. min, 2. K/min, 220. C @ 30. min |
Capillary | Carbowax 20M | 1113. | Egolf and Jurs, 1993 | 2. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C |
Capillary | Carbowax 20M | 1118. | Kawakami, Kobayashi, et al., 1993 | He, 60. C @ 4. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 180. C |
Capillary | Carbowax 20M | 1118. | Kawakami and Kobayashi, 1991 | He, 60. C @ 4. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 180. C |
Capillary | PEG-20M | 1121. | Kubota, Nakamoto, et al., 1991 | N2, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C |
Capillary | Carbowax 20M | 1113. | Anker, Jurs, et al., 1990 | 2. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C |
Capillary | DB-Wax | 1145. | Wyllie, Brophy, et al., 1990 | 70. C @ 2. min, 4. K/min; Column length: 30. m; Column diameter: 0.32 mm; Tend: 200. C |
Capillary | DB-Wax | 1137. | Binder, Flath, et al., 1989 | 50. C @ 0.1 min, 4. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm |
Capillary | Carbowax 20M | 1113. | Mihara, Tateba, et al., 1988 | N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Carbowax 20M | 1113. | Mihara, Tateba, et al., 1988 | N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Carbowax 20M | 1113. | Mihara, Tateba, et al., 1987 | N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Carbowax 20M | 1113. | Mihara, Tateba, et al., 1987 | N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | BP-20 | 1113. | MacLeod and Snyder, 1985 | 70. C @ 5. min, 3. K/min; Column length: 25. m; Column diameter: 0.2 mm; Tend: 180. C |
Capillary | Carbowax 20M | 1123. | Engel and Tressl, 1983 | 2. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 70. C; Tend: 180. C |
Capillary | Carbowax 20M | 1139. | Labropoulos, Palmer, et al., 1982 | Helium, 10. K/min; Column length: 31. m; Column diameter: 0.50 mm; Tstart: 40. C; Tend: 200. C |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1145. | Gyawali and Kim, 2012 | 60. m/0.20 mm/0.25 μm, Helium; Program: 40 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 220 0C (20 min) 5 0C/min -> 230 0C |
Capillary | DB-Wax | 1148. | Welke, Manfroi, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-Wax | 1149. | Welke, Manfroi, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-Wax | 1159. | Welke, Manfroi, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | HP-Innowax | 1158. | Feng, Zhuang, et al., 2011 | 60. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | SOLGel-Wax | 1153. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min) |
Capillary | SOLGel-Wax | 1153. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min) |
Capillary | SOLGel-Wax | 1152. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | CP-Wax 52 CB | 1163. | Povolo, Cabassi, et al., 2011 | Program: not specified |
Capillary | DB-Wax | 1159. | Sampaio, Garruti, et al., 2011 | 30. m/0.25 mm/0.25 μm, Hydrogen; Program: 35 0C (9 min) 5 0C/min -> 80 0C 1 0C/min -> 100 0C 16 0C/min -> 210 0C (20 min) |
Capillary | Stabilwax | 1142. | Chinnici, Guerrero, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium; Program: 35 0C 3 0C/min -> 100 0C 5 0C/min -> 240 0C (10 min) |
Capillary | FFAP | 1119. | Ortiz, Echeverra, et al., 2009 | 50. m/0.20 mm/0.33 μm, Helium; Program: 70 0C (1 min) 3 0C/min -> 142 0C 5 0C/min -> 225 0C (10 min) |
Capillary | DB-Wax | 1135. | Rowan, Hunt, et al., 2009 | 20. m/0.18 mm/0.18 μm, Helium; Program: 35 0C (1 min) 2.9 0C/min -> 100 0C 8 0C/min -> 200 0C (5 min) |
Capillary | DB-Wax | 1135. | Rowan, Hunt, et al., 2009, 2 | 20. m/0.18 mm/0.18 μm, Helium; Program: 35 0C (1 min) 2/9 0C/min -> 100 0C 8 0C/min -> 200 0C (5 min) |
Capillary | Supelcowax-10 | 1166. | Soria, Martinez-Castro, et al., 2009 | 50. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min) |
Capillary | DB-Wax | 1158. | Valappil, Fan, et al., 2009 | 30. m/0.32 mm/0.50 μm, Helium; Program: 40 0C 7 0C/min -> 110 0C 15 0C/min -> 250 0C (3 min) |
Capillary | DB-Wax | 1147. | Zhao, Xu, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | CP-Wax 52 CB | 1124. | Kaack and Christensen, 2008 | 50. m/0.25 mm/0.29 μm, Helium; Program: 33 0C (1 min) 2 0C/min -> 130 0C 10 0C/min -> 220 0C |
Capillary | DB-Wax | 1165. | Li, Tao, et al., 2008 | 30. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (3 min) 4 0C/min -> 160 0C 7 0C/min -> 220 0C (8 min) |
Capillary | Supelcowax 10 | 1166. | Soria, Martinez-Castro, et al., 2008 | 50. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min) |
Capillary | Supelcowax 10 | 1166. | Soria, Martinez-Castro, et al., 2008 | 50. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min) |
Capillary | DB-Wax | 1152. | Tao, Wenlai, et al., 2008 | 30. m/0.32 mm/0.25 μm, Helium; Program: 50 0C 20 0C/min -> 80 0C 3 0C/min -> 230 0C |
Capillary | DB-Wax | 1165. | Yongsheng, Hua, et al., 2008 | 30. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (4 min) 3 0C/min -> 50 0C 5 0C/min -> 120 0C 7 0C/min -> 175 0C 10 0C/min -> 230 0C (8 min) |
Capillary | Supelcowax-10 | 1152. | Berard, Bianchi, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min) |
Capillary | Supelcowax-10 | 1153. | Berard, Bianchi, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min) |
Capillary | Supelcowax-10 | 1159. | Bosch-Fuste, Riu-Aumatell, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 40C(10min) => 2C/min => 200C(1min) => 2C/min => 250C (10min) |
Capillary | FFAP | 1144. | Lara, Echeverría, et al., 2007 | 50. m/0.2 mm/0.33 μm, He; Program: 70C(1min) => 3C/min => 142C => 5C/min => 225C (10min) |
Capillary | DB-Wax | 1165. | Li, Tao, et al., 2007 | 30. m/0.32 mm/0.25 μm, He; Program: 40C(3min) => 4C/min => 160C => 7C/min => 230C (8min) |
Capillary | FFAP | 1144. | Lopez, Villatoro, et al., 2007 | 50. m/0.2 mm/0.33 μm, He; Program: 70C(1min) => 3C/min => 142C => 5C/min => 225C(10min) |
Capillary | DB-Wax Etr | 1116. | Loskos, Hernandez-Orte, et al., 2007 | 60. m/0.25 mm/0.5 μm, He; Program: 40C(3min) => 10C/min => 90C => 2C/min => 230C (37min) |
Capillary | DB-Wax | 1143. | Tian, Zhang, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 50 0C (2 min) 6 0C/min -> 150 0C 8 0C/min -> 230 0C (15 min) |
Capillary | HP-Innowax | 1145. | Weldegergis B.T., Tredoux A.G.J., et al., 2007 | 30. m/0.25 mm/0.5 μm, He; Program: 30C(2min) => 4C/min => 130C => 8C/min => 250C(5min) |
Capillary | DB-Wax | 1134. | Krings, Zelena, et al., 2006 | 30. m/0.32 mm/0.25 μm, He; Program: 45C(5min) => 5C/min => 150C => 10C/min => 240C (10min) |
Capillary | FFAP | 1144. | Lara, Graell, et al., 2006 | 50. m/0.2 mm/0.33 μm, He; Program: 70C(1min) => 3C/min => 142C => 5C/min => 225C(10min) |
Capillary | HP-Innowax | 1135. | Quijano and Pino, 2006 | 60. m/0.25 mm/0.25 μm, Nitrogen; Program: 50 0C (4 min) -> 40 0C 4 0C/min -> 220 0C |
Capillary | CP-Wax 52CB | 1110. | Jales, Maia, et al., 2005 | Hydrogen; Program: not specified |
Capillary | DB-Wax | 1149. | Mattheis, Fan, et al., 2005 | 60. m/0.25 mm/0.25 μm, He; Program: 35C(5min) => 2C/min => 50C => 5C/min => 200C (5min) |
Capillary | FFAP | 1144. | Echeverría, Correa, et al., 2004 | 50. m/0.2 mm/0.33 μm, He; Program: 70C(1min) => 3C/min => 142C => 5C/min => 225C(10min) |
Capillary | DB-Wax | 1144. | Kim. J.H., Ahn, et al., 2004 | 60. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 200 0C |
Capillary | DB-Wax | 1181. | le Pape, Grua-Priol, et al., 2004 | 30. m/0.32 mm/0.5 μm, He; Program: 40C => 1C/min => 57C => 15C/min => 230C (5min) |
Capillary | Carbowax 20M | 1141. | Vinogradov, 2004 | Program: not specified |
Capillary | HP-FFAP | 1144. | Echeverria, Fuentes, et al., 2003 | 50. m/0.2 mm/0.33 μm, He; Program: 70C(1min) => 3C/min => 142C => 5C/min => 225C (10min) |
Capillary | PEG-20M | 1157. | Garruti, Franco, et al., 2003 | 30. m/0.25 mm/0.25 μm; Program: 50C(8min) => 4C/min => 110C => 16C/min => 200C |
Capillary | DB-Wax | 1136. | Selli, Cabaroglu, et al., 2003 | 30. m/0.32 mm/0.5 μm, He; Program: 60C(2min) => 2C/min => 220C => 3C/min => 245C(20min) |
Capillary | HP Innowax FSP | 1155. | Tasdemir, Demirci, et al., 2003 | 60. m/0.25 mm/0.25 μm, He; Program: 60C(10min) => 4C/min => 220C (10min) => 1C/min => 240C |
Capillary | HP Innowax FSP | 1155. | Tasdemir, Demirci, et al., 2003 | 60. m/0.25 mm/0.25 μm, He; Program: 60C(10min) => 4C/min => 220C (10min) => 1C/min => 240C |
Capillary | DB-Wax | 1139. | Mayorga, Knapp, et al., 2001 | 30. m/0.25 mm/0.25 μm; Program: 50C(4min) => 4C/min => 130C => 1C/min => 190C => 4C/min => 220C(20min) |
Capillary | DB-Wax | 1148. | Mayorga, Knapp, et al., 2001 | 30. m/0.25 mm/0.25 μm; Program: 50C(4min) => 4C/min => 130C => 1C/min => 190C => 4C/min => 220C(20min) |
Capillary | DB-Wax | 1113. | Miranda, Nogueira, et al., 2001 | 30. m/0.25 mm/0.25 μm, He; Program: 25 0C (0.5 min) 50 K/min -> 50 0C 3.5 K/min -> 150 0C 7.5 K/min -> 240 0C |
Capillary | FFAP | 1148. | Lopez, Lavilla, et al., 2000 | 50. m/0.2 mm/0.33 μm, N2; Program: 70C(1min) => 3C/min => 142C(2min) => 25C/min => 230C(5min) |
Capillary | Cross-linked FFAP | 1148. | Lavilla, Puy, et al., 1999 | 50. m/0.2 mm/0.33 μm, N2; Program: 70C(1min) => 3C/min => 142C (2min) => 25C/min => 230C(5min) |
Capillary | FFAP | 1148. | López, Lavilla, et al., 1998 | 50. m/0.2 mm/0.33 μm, N2; Program: 70C (1min) => 3C/min => 142C (2min) => 25C/min => 230C (5min) |
Capillary | PEG | 1163. | Vas, Gal, et al., 1998 | 40. m/0.182 mm/0.30 μm, Hydrogen; Program: 35 0C (5 min) 5 0C/min -> 100 0C 3 0C/min -> 200 0C (1 min) 20 0C/min -> 240 0C (2 min) |
Capillary | PEG | 1163. | Vas, Gal, et al., 1998 | 40. m/0.182 mm/0.30 μm, Hydrogen; Program: 35 0C (5 min) 5 0C/min -> 100 0C 3 0C/min -> 200 0C (1 min) 20 0C/min -> 240 0C (2 min) |
Capillary | DB-Wax | 1151. | Ziegleder, 1998 | He; Column length: 60. m; Column diameter: 0.25 mm; Program: 45C(4min) => 30C/min => 60C (5min) => 3C/min => 220C(40min) |
Capillary | Supelcowax-10 | 1113. | Chang, Seitz, et al., 1995 | 30. m/0.32 mm/0.25 μm, He; Program: 50C(2min) => 7C/min => 140C => 17.5C/min => 230C |
Capillary | Polyethylene Glycol | 1141. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | CP-Wax 52CB | 1125. | Luning, de Rijk, et al., 1994 | 50. m/0.32 mm/1.5 μm; Program: 40C => 2C/min => 150C => 10C/min => 250C |
Capillary | DB-Wax | 1148. | Mattheis, Buchanan, et al., 1992 | 60. m/0.25 mm/0.25 μm, He; Program: 35C (5min) => 2C/min => 50C => 5C/min => 200C(5min) |
Capillary | DB-Wax | 1148. | Mattheis, Buchanan, et al., 1992 | 60. m/0.25 mm/0.25 μm, He; Program: 35C (5min) => 2C/min => 50C => 5C/min => 200C(5min) |
Capillary | DB-Wax | 1135. | Peng, Yang, et al., 1991, 2 | Program: not specified |
Capillary | DB-Wax | 1141. | Peng, Yang, et al., 1991, 2 | Program: not specified |
Capillary | DB-Wax | 1139. | Binder, Flath, et al., 1989 | Column length: 60. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | Carbowax 20M | 1113. | Shibamoto, 1987 | Program: not specified |
Capillary | Carbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc. | 1178. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | Carbowax 20M | 1128. | Ramsey and Flanagan, 1982 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Chermin H.A.G., 1961
Chermin H.A.G.,
Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol,
Petrol. Refiner, 1961, 40 (4), 127-130. [all data]
Buckley E., 1967
Buckley E.,
Chemical equilibria. Part 2. Dehydrogenation of propanol and butanol,
Trans. Faraday Soc., 1967, 63, 895-901. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Dyatkina M.E., 1954
Dyatkina M.E.,
Thermodynamic functions of normal alcohols (propanol, butanol, ethylene glycol),
Zh. Fiz. Khim., 1954, 28, 377. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Buckley and Cox, 1967
Buckley, E.; Cox, J.D.,
Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol,
Trans. Faraday Soc., 1967, 63, 895-901. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Pannone and Macosko, 1987
Pannone, M.C.; Macosko, C.W.,
Kinetics of isocyanate amine reactions,
J. Appl. Polym. Sci., 1987, 34, 2409-2432. [all data]
Lovering and Laidler, 1962
Lovering, E.G.; Laidler, K.J.,
Thermochemical studies of some alcohol-isocyanate reactions,
Can. J. Chem., 1962, 40, 26-30. [all data]
Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B.,
Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions,
Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M
. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Markitanova, Barsukov, et al., 1981
Markitanova, L.I.; Barsukov, I.I.; Passet, B.V.,
Determination of heat of sulfation by calorimetric titration,
J. Gen. Chem. USSR, 1981, 51, 1286-1289. [all data]
Selyakova, Vytnov, et al., 1976
Selyakova, V.A.; Vytnov, G.F.; Sineokov, A.P.,
Study of the esterification of acrylic acid by butyl alcohol,
Russ. J. Phys. Chem. (Engl. Transl.), 1976, 50, 1692-1694. [all data]
Wadso, 1958
Wadso, I.,
The heats of hydrolysis of some alkyl acetates,
Acta Chem. Scand., 1958, 12, 630-633. [all data]
Merca, Poraicu, et al., 1978
Merca, E.; Poraicu, M.; Tribunescu, P.,
Kinetics of maleic monoester formation with n-butanol,
Bull. Stiint. Teh. Inst. Politeh. "Traian Vuia" Timisoara, Ser. Chim., 1978, 23, 160-163. [all data]
Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I.,
Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase,
J. Chem. Thermodyn., 1991, 23, 141-145. [all data]
Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J.,
Ketene. III. Heat of formation and heat of reaction with alcohols,
J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Shao, Baer, et al., 1988
Shao, J.D.; Baer, T.; Lewis, D.K.,
Dissociation dynamics of energy-selected ion-dipole complexes. 2. Butyl alcohol ions,
J. Phys. Chem., 1988, 92, 5123. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E.,
Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins,
Anal. Chem., 1971, 43, 375. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Peel and Willett, 1975
Peel, J.B.; Willett, G.D.,
Photoelectron spectroscopic studies of the higher alcohols,
Aust. J. Chem., 1975, 28, 2357. [all data]
Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K.,
Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols,
Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]
Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I.,
Heat of formation of CH2=OH+ fragment ion,
Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]
Lambdin, Tuffly, et al., 1959
Lambdin, W.J.; Tuffly, B.L.; Yarborough, V.A.,
Appearance potentials as obtained with an analytical mass spectrometer,
Appl. Spectry., 1959, 13, 71. [all data]
Wang, Liu, et al., 2005
Wang, Y.; Liu, J.; Li, N.; Shi, G.; Jiang, G.; Ma, W.,
Preliminary study of the retention behavior for different compounds using cryogenic chromatography at different initial temperatures,
Microchem. J., 2005, 81, 2, 184-190, https://doi.org/10.1016/j.microc.2005.02.003
. [all data]
Arutyunov, Kudryashov, et al., 2004
Arutyunov, Y.I.; Kudryashov, S.Y.; Onuchak, L.A.,
Analysis of Mixtures Containing Unknown Components by Gas Chromatography: Determination of Molecular Mass,
J. Anal. Chem. USSR (Engl. Transl.), 2004, 59, 4, 358-365. [all data]
Gurevich and Roshchina, 2003
Gurevich, K.B.; Roshchina, T.M.,
G as chromatography study of silica modified with polyfluoroalkyl groups,
J. Chromatogr. A, 2003, 1008, 97-103. [all data]
Garay, 2000
Garay, F.,
Application of a flow-tunable, serially coupled gas chromatographic capillary column system for the analysis of complex mixtures,
Chromatographia Sup., 2000, 51, 1, s108-s120, https://doi.org/10.1007/BF02492792
. [all data]
Golovnya, Kuz'menko, et al., 2000
Golovnya, R.V.; Kuz'menko, T.e.; Samusenko, A.L.,
Method for prediction of the ability of analyte for self-association in pure liquid, Proceedings 23rd ISCC; CD-ROM, 2000, retrieved from http://www.richrom.com/assets/CD23PDF/a09.pdf. [all data]
Golovnya, Kuz'menko, et al., 2000, 2
Golovnya, R.V.; Kuz'menko, T.E.; Samusenko, A.L.,
Gas-chromatographic method of evaluation of n-alkanol ability for self-association in pure liquid,
Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 317-320, https://doi.org/10.1007/BF02494680
. [all data]
Gawdzik and Matynia, 1994
Gawdzik, B.; Matynia, T.,
Characterization of methacrylic ester of p,p'-dihydroxydiphenylpropane diglicydyl ether - divinylbenzene porous copolymers for GC,
Chromatographia, 1994, 38, 9/10, 643-648, https://doi.org/10.1007/BF02277169
. [all data]
Kowalski, 1992
Kowalski, W.J.,
Free radical crosslinking of the gas chromatographic stationary phase containing europium chelates,
Chromatographia, 1992, 34, 5-8, 266-268, https://doi.org/10.1007/BF02268356
. [all data]
Guan, Kiraly, et al., 1989
Guan, Y.; Kiraly, J.; Rijks, J.A.,
Interactive retention index database for compound identification in temperature-programmed capillary gas chromatography,
J. Chromatogr., 1989, 472, 129-143, https://doi.org/10.1016/S0021-9673(00)94101-3
. [all data]
Fernández-Sánchez, Fernández-Torres, et al., 1987
Fernández-Sánchez, E.; Fernández-Torres, A.; García-Domínguez, J.A.; García-Muñoz, J.; Menéndez, V.; Molera, M.J.; Santiuste, J.M.; Pertierra-Rimada, E.,
Mixed stationary phases in gas-liquid chromatography. Partition coefficients and retention indices in OV-101-OV-25, OV-101-Carbowax 20M and OV-225-SP-2340 mixtures,
J. Chromatogr., 1987, 410, 13-29, https://doi.org/10.1016/S0021-9673(00)90031-1
. [all data]
Voelkel, 1987
Voelkel, A.,
Retention Indices and Thermodynamic Functions of Solution for Model Non-Ionic Surfactants in Standard Stationary Phases Determined by Gas Chromatography,
J. Chromatogr., 1987, 387, 95-104, https://doi.org/10.1016/S0021-9673(01)94516-9
. [all data]
Betts, 1986
Betts, T.J.,
Triangular Characterization of Gas Chromatographic Stationary Phases,
J. Chromatogr., 1986, 354, 1-6, https://doi.org/10.1016/S0021-9673(01)87005-9
. [all data]
Haken and Korhonen, 1985
Haken, J.K.; Korhonen, I.O.O.,
Gas chromatography of homologous esters. XXVII. Retention increments of C1-C18 primary alkanols and their 2-chloropropanoyl and 3-chloropropanoyl derivatives on SE-30 and OV-351 capillary columns,
J. Chromatogr., 1985, 319, 131-142, https://doi.org/10.1016/S0021-9673(01)90548-5
. [all data]
Stolyarov and Kartsova, 1984
Stolyarov, B.V.; Kartsova, L.A.,
Comparative experimental estimation of polarity and selectivity of stationary phases in gas chromatography by means of Forschneider-McReynolds constants and on the basis of thermodynamic characteristics,
Zh. Anal. Khim., 1984, 39, 5, 883-889. [all data]
Tiess, 1984
Tiess, D.,
Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30,
Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]
Valko, Papp, et al., 1984
Valko, K.; Papp, O.; Darvas, F.,
Selection of Gas Chromatographic Stationary Phase Pairs for Characterization of the 1-Octanol-Water Partition Coefficient,
J. Chromatogr., 1984, 301, 355-364, https://doi.org/10.1016/S0021-9673(01)89210-4
. [all data]
Winskowski, 1983
Winskowski, J.,
Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren,
Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041
. [all data]
Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A.,
On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor,
J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40
. [all data]
Gröbler and Bálizs, 1979
Gröbler, A.; Bálizs, G.,
Investigations on mixed gas chromatographic stationary phases. Part I. Dependence of the retention index on the composition of the stationary phase,
J. Chromatogr. Sci., 1979, 17, 11, 631-635, https://doi.org/10.1093/chromsci/17.11.631
. [all data]
Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S.,
Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols,
J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5
. [all data]
Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S.,
Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]
Evans and Newton, 1976
Evans, M.B.; Newton, R.,
Inverse gas chromatography in the study of polymer degradation. Part I. Oxidation of squalene as a model for the oxidative degradation of natural rubber,
Chromatographia, 1976, 9, 11, 561-566, https://doi.org/10.1007/BF02275963
. [all data]
Ryba, 1976
Ryba, M.,
Unlösliche Restfilme er stationären Flüssigkeit in gas-chromatographischen Glaskapillaren,
Chromatographia, 1976, 9, 3, 105-112, https://doi.org/10.1007/BF02330376
. [all data]
Pías and Gascó, 1975
Pías, J.B.; Gascó, L.,
GC Retention Data of Alcohols and Benzoyl Derivatives of Alcohols,
J. Chromatogr. - Chrom. Data, 1975, d14-d16. [all data]
Ashes and Haken, 1974
Ashes, J.R.; Haken, J.K.,
Gas chromatography of homologous esters. VI. Structure-retention increments of aliphatic esters,
J. Chromatogr., 1974, 101, 1, 103-123, https://doi.org/10.1016/S0021-9673(01)94737-5
. [all data]
Golovnya and Garbuzov, 1974
Golovnya, R.V.; Garbuzov, V.G.,
Effect of heteroatom in aliphatic sulfur- and oxygen-containing compounds on the values of the retention indices in gas chromatography,
Izv. Akad. Nauk SSSR Ser. Khim., 1974, 7, 1519-1521. [all data]
Agrawal, Tesarík, et al., 1972
Agrawal, B.B.; Tesarík, K.; Janák, J.,
Gas chromatographic characterization of sulphur compounds in the 93-162° gasoline cut from Romashkino crude oil using Kováts retention indices,
J. Chromatogr., 1972, 65, 1, 207-215, https://doi.org/10.1016/S0021-9673(00)86933-2
. [all data]
Wagaman and Smith, 1971
Wagaman, K.L.; Smith, T.G.,
Use of hydrocarbons as carrier gases in GLC,
J. Chromatogr. Sci., 1971, 9, 4, 241-244, https://doi.org/10.1093/chromsci/9.4.241
. [all data]
Mira and Sanchez, 1970
Mira, J.M.; Sanchez, L.G.,
Polarity of the Gas Chromatographic Stationary Phases and Retention Indices of Aliphatic Esters, Ketones and Alcohols,
Anal. Chim. Acta., 1970, 50, 2, 315-321, https://doi.org/10.1016/0003-2670(70)80071-X
. [all data]
Zarazir, Chovin, et al., 1970
Zarazir, D.; Chovin, P.; Guiochon, G.,
Identification of hydroxylic compounds and their derivatives by gas chromatography,
Chromatographia, 1970, 3, 4, 180-195, https://doi.org/10.1007/BF02269018
. [all data]
Shimadzu, 2003
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Takeoka, Perrino, et al., 1996
Takeoka, G.; Perrino, C., Jr.; Buttery, R.,
Volatile constituents of used frying oils,
J. Agric. Food Chem., 1996, 44, 3, 654-660, https://doi.org/10.1021/jf950430m
. [all data]
Takeoka, Flath, et al., 1990
Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M.,
Volatile Constituents of Apricot (Prunus armeniaca),
J. Agric. Food Chem., 1990, 38, 2, 471-477, https://doi.org/10.1021/jf00092a031
. [all data]
Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F.,
Volatile components of chickpea (Cicer arietinum L.) seed,
J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018
. [all data]
Morales and Duque, 1987
Morales, A.L.; Duque, C.,
Aroma constituents of the fruit of the moutain papaya (Carica pubescens) from Colombia,
J. Agric. Food Chem., 1987, 35, 4, 538-540, https://doi.org/10.1021/jf00076a024
. [all data]
Ohnishi and Shibamoto, 1984
Ohnishi, S.; Shibamoto, T.,
Volatile compounds from heated beef fat and beef fat with glycine,
J. Agric. Food Chem., 1984, 32, 5, 987-992, https://doi.org/10.1021/jf00125a008
. [all data]
Rasmussen, 1983
Rasmussen, P.,
Identification of Volatile Components of Jacjfruit by Gas Chromatography / MAss Spectrometry with Two Different Columns,
Anal. Chem., 1983, 55, 8, 1331-1335, https://doi.org/10.1021/ac00259a033
. [all data]
Greenberg, 1981
Greenberg, M.J.,
Characterization of meat and bone meal flavor volatiles,
J. Agric. Food Chem., 1981, 29, 6, 1276-1280, https://doi.org/10.1021/jf00108a043
. [all data]
Greenberg, 1981, 2
Greenberg, M.J.,
Characterization of poultry byproduct meal flavor volatiles,
J. Agric. Food Chem., 1981, 29, 4, 831-834, https://doi.org/10.1021/jf00106a038
. [all data]
SGE, 2005
SGE,
Guide to GC column selection, 2005, retrieved from http://www.sge.com/htm/support/productselection/prodselgc.asp. [all data]
Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory,
Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]
Castello, Timossi, et al., 1988
Castello, G.; Timossi, A.; Gerbino, T.C.,
Gas Chromatographic Separation of Halogenated Compounds on Non-Polar and Polar Wide Bore Capillary Columns,
J. Chromatogr., 1988, 454, 129-143, https://doi.org/10.1016/S0021-9673(00)88608-2
. [all data]
Brander, Kepner, et al., 1980
Brander, C.F.; Kepner, R.E.; Webb, A.D.,
Identification of Some Volatile Compounds of Wine of Vitis Vinifera Cultivar Pinot Noir,
Am. J. Enol. Vitic, 1980, 31, 1, 69-75. [all data]
Moffat, Stead, et al., 1974
Moffat, A.C.; Stead, A.H.; Smalldon, K.W.,
Optimum use of paper, thin-layer and gas-liquid chromatography for the identification of basic drugs. III. Gas-liquid chromatography,
J. Chromatogr., 1974, 90, 1, 19-33, https://doi.org/10.1016/S0021-9673(01)94770-3
. [all data]
Annino and Villalobos, 1999
Annino, R.; Villalobos, R.,
A strategy for the simplification and solution of complex chromatographic analysis problems utilizing two-dimensional mapping of retention indexes followed by computer modeling of heart cuts from serially coupled columns containing different stationary phases,
J. Hi. Res. Chromatogr., 1999, 22, 10, 589-593. [all data]
Castello, Vezzani, et al., 1994
Castello, G.; Vezzani, S.; Moretti, P.,
The selectivity and polarity of carbon layer open tubular capillary columns modified with a polar liquid phase,
J. Hi. Res. Chromatogr., 1994, 17, 1, 31-36, https://doi.org/10.1002/jhrc.1240170108
. [all data]
Castello, Vezzani, et al., 1991
Castello, G.; Vezzani, S.; Gerbino, T.,
Gas chromatographic separation and automatic identification of complex mixtures of organic solvents in indrustrial wates,
J. Chromatogr., 1991, 585, 2, 273-280, https://doi.org/10.1016/0021-9673(91)85088-W
. [all data]
Kersten and Poole, 1987
Kersten, B.R.; Poole, C.F.,
Influence of concurrent retention mechanisms on the determination of stationary phase selectivity in gas chromatography,
J. Chromatogr., 1987, 399, 1-31, https://doi.org/10.1016/S0021-9673(00)96108-9
. [all data]
Podmaniczky, Szepesy, et al., 1985
Podmaniczky, L.; Szepesy, L.; Lakszner, K.; Schomburg, G.,
Relationship between thermodynamic characteristics and isothermal retention indices,
Chromatographia, 1985, 20, 10, 623-628, https://doi.org/10.1007/BF02263223
. [all data]
Goebel, 1982
Goebel, K.-J.,
Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe,
J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5
. [all data]
Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L.,
Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases,
Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]
Bonastre and Grenier, 1968
Bonastre, J.; Grenier, P.,
Contribution à l'étude de la polarité des phases stationnaires en chromatographie gaz-liquide. III. Calcul des coefficients d'activité relatifs et des indices de rétention de quelques alcools aliphatiques,
Bull. Soc. Chim. Fr., 1968, 1, 118-125. [all data]
Venkateshwarlu, Chandravadana, et al., 1999
Venkateshwarlu, G.; Chandravadana, M.V.; Tewari, R.P.,
Volatile flavour components of some edible mushrooms (Basidiomycetes),
Flavour Fragr. J., 1999, 14, 3, 191-194, https://doi.org/10.1002/(SICI)1099-1026(199905/06)14:3<191::AID-FFJ810>3.0.CO;2-7
. [all data]
Tatsuka, Suekane, et al., 1990
Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H.,
Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling,
J. Agric. Food Chem., 1990, 38, 12, 2176-2180, https://doi.org/10.1021/jf00102a015
. [all data]
Wyllie and Leach, 1990
Wyllie, S.G.; Leach, D.N.,
Aroma volatiles of Cucumis melo cv. golden crispy,
J. Agric. Food Chem., 1990, 38, 11, 2042-2044, https://doi.org/10.1021/jf00101a008
. [all data]
Umano, Shoji, et al., 1986
Umano, K.; Shoji, A.; Hagi, Y.; Shibamoto, T.,
Volatile constituents of peel of quince fruit, Cydonia oblonga Miller,
J. Agric. Food Chem., 1986, 34, 4, 593-596, https://doi.org/10.1021/jf00070a003
. [all data]
Galt and MacLeod, 1984
Galt, A.M.; MacLeod, G.,
Headspace sampling of cooked beef aroma using Tenax GC,
J. Agric. Food Chem., 1984, 32, 1, 59-64, https://doi.org/10.1021/jf00121a016
. [all data]
Tressl, Friese, et al., 1978
Tressl, R.; Friese, L.; Fendesack, F.; Köppler, H.,
Studies of the volatile composition of hops during storage,
J. Agric. Food Chem., 1978, 26, 6, 1426-1430, https://doi.org/10.1021/jf60220a036
. [all data]
Garruti, Franco, et al., 2001
Garruti, D.S.; Franco, M.R.B.; da Silva, M.A.A.A.P.; Janzantti, N.S.; Alves, G.L.,
Compostos voláteis do sabor de pseudofrutos de cajueiro anão precoce (Anacardium occidentale L.) CCP-76, Boletim de Pesquisa e Desenvolvimento 4, Empresa Brasileira de Pesquisa Agropecuária, Fortaleza, Brazil, 2001, 29, retrieved from http://www.cnpat.embrapa.br/publica/pub/BolPesq/pd4.pdf. [all data]
Slizhov and Gavrilenko, 2001
Slizhov, Yu.G.; Gavrilenko, M.A.,
Effect of thermal treatment of poly(ethylene glycol) modified with europium acetylacetonate on its chromatographic properties,
Russ. J. Phys. Chem. (Engl. Transl.), 2001, 75, 6, 1012-1013. [all data]
Engel and Ratel, 2007
Engel, E.; Ratel, J.,
Correction of the data generated by mass spectrometry analyses of biological tissues: Application to food authentication,
J. Chromatogr. A, 2007, 1154, 1-2, 331-341, https://doi.org/10.1016/j.chroma.2007.02.012
. [all data]
Methven L., Tsoukka M., et al., 2007
Methven L.; Tsoukka M.; Oruna-Concha M.J.; Parker J.K.; Mottram D.S.,
Influence of sulfur amino acids on the volatile and nonvolatile components of cooked salmon (Salmo salar),
J. Agric. Food Chem., 2007, 55, 4, 1427-1436, https://doi.org/10.1021/jf0625611
. [all data]
Bylaite and Meyer, 2006
Bylaite, E.; Meyer, A.S.,
· Characterisation of volatile aroma compounds of orange juices by three dynamic and static headspace gas chromatography techniques,
Eur. Food Res. Technol., 2006, 222, 1-2, 176-184, https://doi.org/10.1007/s00217-005-0141-8
. [all data]
Condurso, Verzera, et al., 2006
Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Trozzi, A.; Ragusa, S.,
The leaf volatile constituents of Isatis tinctoria by solid-phase microextraction and gas chromatography/mass spectrometry,
Planta Medica, 2006, 72, 10, 924-928, https://doi.org/10.1055/s-2006-946679
. [all data]
Elmore, Cooper, et al., 2005
Elmore, J.S.; Cooper, S.L.; Enser, M.; Mottram, D.S.; Sinclair, L.A.; Wilkinson, R.G.; Wood, J.D.,
Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb,
Meat Sci., 2005, 69, 2, 233-242, https://doi.org/10.1016/j.meatsci.2004.07.002
. [all data]
Pino, Mesa, et al., 2005
Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R.,
Volatile components from mango (Mangifera indica L.) cultivars,
J. Agric. Food Chem., 2005, 53, 6, 2213-2223, https://doi.org/10.1021/jf0402633
. [all data]
Hierro, de la Hoz, et al., 2004
Hierro, E.; de la Hoz, L.; Ordóñez, J.A.,
Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species,
Food Chem., 2004, 85, 4, 649-657, https://doi.org/10.1016/j.foodchem.2003.07.001
. [all data]
Pino, Marbot, et al., 2004
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C.,
Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. Perry],
Flavour Fragr. J., 2004, 19, 1, 32-35, https://doi.org/10.1002/ffj.1269
. [all data]
Rodríguez-Burruezo, Kollmannsberger, et al., 2004
Rodríguez-Burruezo, A.; Kollmannsberger, H.; Prohens, J.; Nitz, S.; Nuez, F.,
Analysis of the volatile aroma constituents of parental and hybrid clones of pepino (Solanum muricatum),
J. Agric. Food Chem., 2004, 52, 18, 5663-5669, https://doi.org/10.1021/jf040107w
. [all data]
Siegmund, Derler, et al., 2004
Siegmund, B.; Derler, K.; Pfannhauser, W.,
Chemical and sensory effects of glass and laminated carton packages on fruit juice products. Still a controversial topic,
Lebensm. Wiss. Technol., 2004, 37, 4, 481-488, https://doi.org/10.1016/j.lwt.2003.11.005
. [all data]
Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T.,
Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography,
J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922
. [all data]
Pino, Almora, et al., 2003
Pino, J.; Almora, K.; Marbot, R.,
Volatile components of papaya (Carica papaya L., maradol variety) fruit,
Flavour Fragr. J., 2003, 18, 6, 492-496, https://doi.org/10.1002/ffj.1248
. [all data]
Pino, Marbot, et al., 2003
Pino, J.; Marbot, R.; Rosado, A.; Vázquez, C.,
Volatile constituents of fruits of Garcinia dulcis Kurz. from Cuba,
Flavour Fragr. J., 2003, 18, 4, 271-274, https://doi.org/10.1002/ffj.1187
. [all data]
Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J.,
Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere,
Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003
. [all data]
Pino, Marbot, et al., 2002
Pino, J.A.; Marbot, R.; Bello, A.,
Volatile compounds of Psidium salutare (H.B.K.) Berg. fruit,
J. Agric. Food Chem., 2002, 50, 18, 5146-5148, https://doi.org/10.1021/jf0116303
. [all data]
Pino, Marbot, et al., 2002, 2
Pino, J.A.; Marbot, R.; Vázquez, C.,
Characterization of volatile in Cosa Rican Guava [Psidium friedrichsthalianum (Berg) Niedenzu] fruit,
J. Agric. Food Chem., 2002, 50, 21, 6023-6026, https://doi.org/10.1021/jf011456i
. [all data]
Bruna, Hierro, et al., 2001
Bruna, J.M.; Hierro, E.M.; de la Hoz, L.; Mottram, D.S.; Fernández, M.; Ordóñez, J.A.,
The contribution of Penicillium aurantiogriseum to the volatile composition and sensory quality of dry fermented sausages,
Meat Sci., 2001, 59, 1, 97-107, https://doi.org/10.1016/S0309-1740(01)00058-4
. [all data]
Golovnya, Samusenko, et al., 2001
Golovnya, R.V.; Samusenko, A.L.; Kuz'menko, T.E.,
The use of a nonlinear equation for calculation of the retention indices of polar substances in gas chromatography with linear temperature programming,
Russ. Chem. Bull. (Engl. Transl.), 2001, 50, 6, 1027-1031, https://doi.org/10.1023/A:1011317218604
. [all data]
Larráyoz, Addis, et al., 2001
Larráyoz, P.; Addis, M.; Gauch, R.; Bosset, J.O.,
Comparison of dynamic headspace and simultaneous distillation extraction techniques used for the analysis of the volatile components in three European PDO ewes milk cheeses,
Int. Dairy J., 2001, 11, 11-12, 911-926, https://doi.org/10.1016/S0958-6946(01)00144-3
. [all data]
Pino and Marbot, 2001
Pino, J.A.; Marbot, R.,
Volatile flavor constituents of acerola (Malpighia emarginata DC.) fruit,
J. Agric. Food Chem., 2001, 49, 12, 5880-5882, https://doi.org/10.1021/jf010270g
. [all data]
Pino, Marbot, et al., 2001
Pino, J.A.; Marbot, R.; Vázquez, C.,
Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit,
J. Agric. Food Chem., 2001, 49, 12, 5883-5887, https://doi.org/10.1021/jf010414r
. [all data]
Bartelt, 1997
Bartelt, R.J.,
Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles,
Anal. Chem., 1997, 69, 3, 364-372, https://doi.org/10.1021/ac960820n
. [all data]
Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P.,
Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii,
J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212
. [all data]
Píry, Príbela, et al., 1995
Píry, J.; Príbela, A.; Durcanská, J.; Farkas, P.,
Fractionation of volatiles from blackcurrant (Ribes nigrum L.) by different extractive methods,
Food Chem., 1995, 54, 1, 73-77, https://doi.org/10.1016/0308-8146(95)92665-7
. [all data]
Peng, 1992
Peng, C.T.,
A method for tentative identificatoin of unknown gas chromatographic peaks by retention index,
J. Radioanal. Nucl. Chem., 1992, 160, 2, 449-460, https://doi.org/10.1007/BF02037120
. [all data]
Korhonen, 1984
Korhonen, I.O.O.,
Gas-Liquid Chromatographic Analyses. XXVI. Separation of Unsaturated Alcohols and Their Acetyl and Haloacetyl Derivatives on Capillary Columns Coated with SE-30 and OV-351,
J. Chromatogr., 1984, 288, 329-346, https://doi.org/10.1016/S0021-9673(01)93710-0
. [all data]
Hendriks and Bruins, 1983
Hendriks, H.; Bruins, A.P.,
A tentative identification of components in the essential oil of Cannabis sativa L. by a combination of gas chromatography negative ion chemical ionization mass spectrometry and retention indices,
Biomed. Mass Spectrom., 1983, 10, 6, 377-381, https://doi.org/10.1002/bms.1200100607
. [all data]
Schreyen, Dirinck, et al., 1976
Schreyen, L.; Dirinck, P.; van Wassenhove, F.; Schamp, N.,
Analysis of leek volatiles by headspace condensation,
J. Agric. Food Chem., 1976, 24, 6, 1147-1152, https://doi.org/10.1021/jf60208a023
. [all data]
Schreyen, Dirinck, et al., 1976, 2
Schreyen, L.; Dirinck, P.; van Wassenhove, F.; Schamp, N.,
Volatile flavor components of leek,
J. Agric. Food Chem., 1976, 24, 2, 336-341, https://doi.org/10.1021/jf60204a056
. [all data]
Mayr, van Ruth, et al., 2003
Mayr, D.; van Ruth, S.; Märk, T.D.,
Evaluation of the influence of mastication on temporal aroma release of ripe and unripe bananas, using a model mouth system and gas chromatography-olfactometry,
Eur. Food Res. Technol., 2003, 217, 4, 291-295, https://doi.org/10.1007/s00217-003-0777-1
. [all data]
Peng, 2000
Peng, C.T.,
Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index,
J. Chromatogr. A, 2000, 903, 1-2, 117-143, https://doi.org/10.1016/S0021-9673(00)00901-8
. [all data]
Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Maltby, D.,
Prediction of retention indexes. III. Silylated derivatives of polar compounds,
J. Chromatogr., 1991, 586, 1, 113-129, https://doi.org/10.1016/0021-9673(91)80029-G
. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Aubert and Chanforan, 2007
Aubert, C.; Chanforan, C.,
Postharvest Changes in Physicochemical Properties and Volatile Constituents of Apricot (Prunus armeniaca L.). Characterization of 28 Cultivars,
J. Agric. Food Chem., 2007, 55, 8, 3074-3082, https://doi.org/10.1021/jf063476w
. [all data]
Hashizume M., Gordon M.H., et al., 2007
Hashizume M.; Gordon M.H.; Mottram D.S.,
Light-induced off-flavor development in cloudy apple juice,
J. Agric. Food Chem., 2007, 55, 22, 9177-9182, https://doi.org/10.1021/jf0715727
. [all data]
Pozo-Bayon M.A., Ruiz-Rodriguez A., et al., 2007
Pozo-Bayon M.A.; Ruiz-Rodriguez A.; Pernin K.; Cayot N.,
Influence of eggs on the aroma composition of a sponge cake and on the aroma release in model studies on flavored sponge cakes,
J. Agric. Food Chem., 2007, 55, 4, 1418-1426, https://doi.org/10.1021/jf062203y
. [all data]
Wu, Zorn, et al., 2007
Wu, S.; Zorn, H.; Krings, U.; Berger, R.G.,
Volatiles from submerged and surface-cultured beefsteak fungus, Fistulina hepatica,
Flavour Fragr. J., 2007, 22, 1, 53-60, https://doi.org/10.1002/ffj.1758
. [all data]
Gurbuz O., Rouseff J.M., et al., 2006
Gurbuz O.; Rouseff J.M.; Rouseff R.L.,
Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography - Olfactometry and gas chromatography - Mass spectrometry,
J. Agric. Food Chem., 2006, 54, 11, 3990-3996, https://doi.org/10.1021/jf053278p
. [all data]
Osorio, Alarcon, et al., 2006
Osorio, C.; Alarcon, M.; Moreno, C.; Bonilla, A.; Barrios, J.; Garzon, C.; Duque, C.,
Characterization of Odor-Active Volatiles in Champa ( Campomanesia lineatifolia R. P.),
J. Agric. Food Chem., 2006, 54, 2, 509-516, https://doi.org/10.1021/jf052098c
. [all data]
Alasalvar, Taylor, et al., 2005
Alasalvar, C.; Taylor, K.D.A.; Shahidi, F.,
Comparison of volatiles of cultured and wild sea bream (Sparus aurata) during storage in ice by dynamic headspace analysis/gas chromatography-mass spectrometry,
J. Agric. Food Chem., 2005, 53, 7, 2616-2622, https://doi.org/10.1021/jf0483826
. [all data]
Cros, Lignot, et al., 2005
Cros, S.; Lignot, B.; Bourseau, P.; Jaouen, P.; Prost, C.,
Desalination of mussel cooking juices by electrodialysis: effect on the aroma profile,
J. Food Eng., 2005, 69, 4, 425-436, https://doi.org/10.1016/j.jfoodeng.2004.08.036
. [all data]
Elmore, Nisyrios, et al., 2005
Elmore, J.S.; Nisyrios, I.; Mottram, D.S.,
Analysis of the headspace aroma compounds of walnuts (Juglans regia L.),
Flavour Fragr. J., 2005, 20, 5, 501-506, https://doi.org/10.1002/ffj.1477
. [all data]
Fang and Qian, 2005
Fang, Y.; Qian, M.,
Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA),
Flavour Fragr. J., 2005, 20, 1, 22-29, https://doi.org/10.1002/ffj.1551
. [all data]
Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O.,
Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses,
Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007
. [all data]
Riu-Aumatell, Lopez-Tamames, et al., 2005
Riu-Aumatell, M.; Lopez-Tamames, E.; Buxaderas, S.,
Assessment of the Volatile Composition of Juices of Apricot, Peach, and Pear According to Two Pectolytic Treatments,
J. Agric. Food Chem., 2005, 53, 20, 7837-7843, https://doi.org/10.1021/jf051397z
. [all data]
Wu, Zorn, et al., 2005
Wu, S.; Zorn, H.; Krings, U.; Berger, R.G.,
Characteristic Volatiles from Young and Aged Fruiting Bodies of Wild Polyporus sulfureus (Bull.:Fr.) Fr.,
J. Agric. Food Chem., 2005, 53, 11, 4524-4528, https://doi.org/10.1021/jf0478511
. [all data]
Ledauphin, Saint-Clair, et al., 2004
Ledauphin, J.; Saint-Clair, J.-F.; Lablanquie, O.; Guichard, H.; Founier, N.; Guichard, E.; Barillier, D.,
Identification of trace volatile compounds in freshly distilled calvados and cognac using preparative separations coupled with gas chromatography-mass spectrometry,
J. Agric. Food Chem., 2004, 52, 16, 5124-5134, https://doi.org/10.1021/jf040052y
. [all data]
Nielsen, Larsen, et al., 2004
Nielsen, G.S.; Larsen, L.M.; Poll, L.,
Formation of volatile compounds in model experiments with crude leek (Allium ampeloprasum Var. Lancelot) enzyme extract and linoleic acid or linolenic acid,
J. Agric. Food Chem., 2004, 52, 8, 2315-2321, https://doi.org/10.1021/jf030600s
. [all data]
Brat, Rega, et al., 2003
Brat, P.; Rega, B.; Alter, P.; Reynes, M.; Brillouet, J.-M.,
Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice,
J. Agric. Food Chem., 2003, 51, 11, 3442-3447, https://doi.org/10.1021/jf026226y
. [all data]
Cros, Vandanjon, et al., 2003
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P.,
Processing of industrial mussel cooking juices by reverse osmosis: pollution abatement and aromas recovery, 2003, retrieved from http://www.membrane.unsw.edu.au/imstec03/content/papers/DAI/imstec064.pdf. [all data]
Chung, Yung, et al., 2002
Chung, H.-Y.; Yung, I.K.S.; Ma, W.C.J.; Kim, J.-S.,
Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry,
Food Res. Int., 2002, 35, 1, 43-53, https://doi.org/10.1016/S0963-9969(01)00107-7
. [all data]
Chung, Yung, et al., 2001
Chung, H.Y.; Yung, I.K.S.; Kim, J.-S.,
Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods,
J. Agric. Food Chem., 2001, 49, 1, 192-202, https://doi.org/10.1021/jf000692a
. [all data]
Liu, Yang, et al., 2001
Liu, T.-T.; Yang, T.-S.; Wu, C.-M.,
Changes of volatiles in soy sauce-stewed pork during cold storage and reheating,
J. Sci. Food Agric., 2001, 81, 15, 1547-1552, https://doi.org/10.1002/jsfa.978
. [all data]
Chung, 2000
Chung, H.Y.,
Volatile flavor components in red fermented soybean (Glycine max) curds,
J. Agric. Food Chem., 2000, 48, 5, 1803-1809, https://doi.org/10.1021/jf991272s
. [all data]
Chevance and Farmer, 1999
Chevance, F.F.V.; Farmer, L.J.,
Identification of major volatile odor compounds in frankfurters,
J. Agric. Food Chem., 1999, 47, 12, 5151-5160, https://doi.org/10.1021/jf990515d
. [all data]
Chung, 1999
Chung, H.Y.,
Volatile components in fermented soybean (Glycine max) curds,
J. Agric. Food Chem., 1999, 47, 7, 2690-2696, https://doi.org/10.1021/jf981166a
. [all data]
Cha, Kim, et al., 1998
Cha, Y.J.; Kim, H.; Cadwallader, K.R.,
Aroma-active compounds in Kimchi during fermentation,
J. Agric. Food Chem., 1998, 46, 5, 1944-1953, https://doi.org/10.1021/jf9706991
. [all data]
Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A.,
Determination and origin of the aroma impact compounds of yogurt flavor,
J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e
. [all data]
Mondello, Dugo, et al., 1995
Mondello, L.; Dugo, P.; Basile, A.; Dugo, G.,
Interactive use of linear retention indices, on polar and apolar columns, with a MS-library for reliable identification of complex mixtures,
J. Microcolumn Sep., 1995, 7, 6, 581-591, https://doi.org/10.1002/mcs.1220070605
. [all data]
Shimoda, Shigematsu, et al., 1995
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y.,
Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion,
J. Agric. Food Chem., 1995, 43, 6, 1616-1620, https://doi.org/10.1021/jf00054a037
. [all data]
Iwaoka, Hagi, et al., 1994
Iwaoka, W.; Hagi, Y.; Umano, K.; Shibamoto, T.,
Volatile chemicals identified in fresh and cooked breadfruit,
J. Agric. Food Chem., 1994, 42, 4, 975-976, https://doi.org/10.1021/jf00040a026
. [all data]
Sumitani, Suekane, et al., 1994
Sumitani, H.; Suekane, S.; Nakatani, A.; Tatsuka, K.,
Changes in composition of volatile compounds in high pressure treated peach,
J. Agric. Food Chem., 1994, 42, 3, 785-790, https://doi.org/10.1021/jf00039a037
. [all data]
Suárez and Duque, 1992
Suárez, M.; Duque, C.,
Change in volatile compounds during lulo (Solanum vestissimum D.) fruit maturation,
J. Agric. Food Chem., 1992, 40, 4, 647-649, https://doi.org/10.1021/jf00016a025
. [all data]
Umano, Hagi, et al., 1992
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T.,
Volatile constituents of green and ripened pineapple (Aanas comosus [L.] Merr.),
J. Agric. Food Chem., 1992, 40, 4, 599-603, https://doi.org/10.1021/jf00016a014
. [all data]
Humpf and Schreier, 1991
Humpf, H.-U.; Schreier, P.,
Bound aroma compounds from the fruit and the leaves of blackberry (Rubus laciniata L.),
J. Agric. Food Chem., 1991, 39, 10, 1830-1832, https://doi.org/10.1021/jf00010a028
. [all data]
Krammer, Winterhalter, et al., 1991
Krammer, G.; Winterhalter, P.; Schwab, M.; Schreier, P.,
Glycosidically bound aroma compounds in the fruits of Prunus species: Apricot (P. armeniaca, L.) peach (P. persica, L.) yellow plum (P. domestica, L. ssp. Syriaca),
J. Agric. Food Chem., 1991, 39, 4, 778-781, https://doi.org/10.1021/jf00004a032
. [all data]
Suárez and Duque, 1991
Suárez, M.; Duque, C.,
Volatile constituents of lulo (Salanum vestissimum D.) fruit,
J. Agric. Food Chem., 1991, 39, 8, 1498-1500, https://doi.org/10.1021/jf00008a026
. [all data]
Frohlich and Schreier, 1990
Frohlich, O.; Schreier, P.,
Volatile Constituents of Loquat (Eriobotrya japonica Lindl.) Fruit,
J. Food Sci., 1990, 55, 1, 176-180, https://doi.org/10.1111/j.1365-2621.1990.tb06046.x
. [all data]
Matiella and Hsieh, 1990
Matiella, J.E.; Hsieh, T.C.-Y.,
Analysis of crabmeat volatile compounds,
J. Food Sci., 1990, 55, 4, 962-966, https://doi.org/10.1111/j.1365-2621.1990.tb01575.x
. [all data]
Fröhlich, Duque, et al., 1989
Fröhlich, O.; Duque, C.; Schreier, P.,
Volatile constituents of curuba (Passiflora mollissima) fruit,
J. Agric. Food Chem., 1989, 37, 2, 421-425, https://doi.org/10.1021/jf00086a033
. [all data]
Schwab, Mahr, et al., 1989
Schwab, W.; Mahr, C.; Schreier, P.,
Studies on the enzymic hydrolysis of bound aroma components from Carica papaya fruit,
J. Agric. Food Chem., 1989, 37, 4, 1009-1012, https://doi.org/10.1021/jf00088a042
. [all data]
Vejaphan, Hsieh, et al., 1988
Vejaphan, W.; Hsieh, T.C.Y.; Williams, S.S.,
Volatile flavor components from boiled crayfish (Procambarus clarkii) tail meat,
J. Food Sci., 1988, 53, 6, 1666-1670, https://doi.org/10.1111/j.1365-2621.1988.tb07811.x
. [all data]
Chen, Kuo, et al., 1986
Chen, C.-C.; Kuo, M.-C.; Liu, S.-E.; Wu, C.-M.,
Volatile components of salted and pickled prunes (Prunus mume Sieb. et Zucc.),
J. Agric. Food Chem., 1986, 34, 1, 140-144, https://doi.org/10.1021/jf00067a038
. [all data]
van den Dool and Kratz, 1963
van den Dool, H.; Kratz, P. Dec.,
A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography,
J. Chromatogr., 1963, 11, 463-471, https://doi.org/10.1016/S0021-9673(01)80947-X
. [all data]
Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M.,
Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness,
J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393
. [all data]
Romeo, Ziino, et al., 2007
Romeo, V.; Ziino, M.; Giuffrrida, D.; Condurso, C.; Verzera, A.,
Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC?MS,
Food Chem., 2007, 101, 3, 1272-1278, https://doi.org/10.1016/j.foodchem.2005.12.029
. [all data]
Selli, Canbas, et al., 2006
Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Gunata, Z.,
Aroma components of cv. Muscat of Bornova wines and influence of skin contact treatment,
Food Chem., 2006, 94, 3, 319-326, https://doi.org/10.1016/j.foodchem.2004.11.019
. [all data]
Selli, Canbas, et al., 2006, 2
Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Lepoutre, J.-P.; Gunata, Z.,
Effect of skin contact on the free and bound aroma compounds of the white wine of Vitis vinifera L. cv Narince,
Food Control, 2006, 17, 1, 75-82, https://doi.org/10.1016/j.foodcont.2004.09.005
. [all data]
Aubert, Baumann, et al., 2005
Aubert, C.; Baumann, S.; Arguel, H.,
Optimization of the Analysis of Flavor Volatile Compounds by Liquid-Liquid Microextraction (LLME). Application to the Aroma Analysis of Melons, Peaches, Grapes, Strawberries, and Tomatoes,
J. Agric. Food Chem., 2005, 53, 23, 8881-8895, https://doi.org/10.1021/jf0510541
. [all data]
Ferrari, Lablanquie, et al., 2004
Ferrari, G.; Lablanquie, O.; Cantagrel, R.; Ledauphin, J.; Payot, T.; Fournier, N.; Guichard, E.,
Determination of key odorant compounds in freshly distilled cognac using GC-O, GC-MS, and sensory evaluation,
J. Agric. Food Chem., 2004, 52, 18, 5670-5676, https://doi.org/10.1021/jf049512d
. [all data]
Selli, Cabaroglu, et al., 2004
Selli, S.; Cabaroglu, T.; Canbas, A.; Erten, H.; Nurgel, C.; Lepoutre, J.P.; Gunata, Z.,
Volatile composition of red wine from cv. Kalecik Karasi grown in central Anatolia,
Food Chem., 2004, 85, 2, 207-213, https://doi.org/10.1016/j.foodchem.2003.06.008
. [all data]
Verzera, Ziino, et al., 2004
Verzera, A.; Ziino, M.; Condurso, C.; Romeo, V.; Zappala, M.,
Solid-phase microextraction and gas chromatography-mass spectrometry for rapid characterisation of semi-hard cheeses,
Anal. Bioanal. Chem., 2004, 380, 7-8, 930-936, https://doi.org/10.1007/s00216-004-2879-4
. [all data]
Boido, Lloret, et al., 2003
Boido, E.; Lloret, A.; Medina, K.; Fariña, L.; Carrau, f.; Versini, G.; Dellacassa, E.,
Aroma composition of Vitis vinifera Cv. Tannat: the typical red wine from Uruguay,
J. Agric. Food Chem., 2003, 51, 18, 5408-5413, https://doi.org/10.1021/jf030087i
. [all data]
da Porto, Pizzale, et al., 2003
da Porto, C.; Pizzale, L.; Bravin, M.; Conte, L.S.,
Analyses of orange spirit flavour by direct-injection gas chromatography-mass spectrometry and headspace solid-phase microextraction/GC-MC,
Flavour Fragr. J., 2003, 18, 1, 66-72, https://doi.org/10.1002/ffj.1164
. [all data]
Fuhrmann and Grosch, 2002
Fuhrmann, E.; Grosch, W.,
Character impact odorants of the apple cultivars Elstar and Cox Orange,
Nahrung/Food, 2002, 46, 3, 187-193, https://doi.org/10.1002/1521-3803(20020501)46:3<187::AID-FOOD187>3.0.CO;2-5
. [all data]
Nurgel, Erten, et al., 2002
Nurgel, C.; Erten, H.; Canbas, A.; Cabaroglu, T.; Selli, S.,
Contribution by Saccharomyces cerevisiae yeasts to fermentation and flavour compounds in wines from cv. Kalecik karasi grape,
J. Inst. Brew., 2002, 108, 1, 68-72, https://doi.org/10.1002/j.2050-0416.2002.tb00126.x
. [all data]
Cantergiani, Brevard, et al., 2001
Cantergiani, E.; Brevard, H.; Krebs, Y.; Feria-Morales, A.; Amadò, R.; Yeretzian, C.,
Characterisation of the aroma of green Mexican coffee and identification of mouldy/earthy defect,
Eur. Food Res. Technol., 2001, 212, 6, 648-657, https://doi.org/10.1007/s002170100305
. [all data]
Radovic, Careri, et al., 2001
Radovic, B.S.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E.,
Analytical, nutritional, and clinical methods section. Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey,
Food Chem., 2001, 72, 4, 511-520, https://doi.org/10.1016/S0308-8146(00)00263-6
. [all data]
Ziegleder, 2001
Ziegleder, G.,
Odorous compounds in paperboard as influenced by recycled material and storage,
Packag. Technol. Sci., 2001, 14, 4, 131-136, https://doi.org/10.1002/pts.541
. [all data]
Boulanger and Crouzet, 2000
Boulanger, R.; Crouzet, J.,
Free and bound flavour components of Amazonian fruits: 2. cupuacu volatile compounds,
Flavour Fragr. J., 2000, 15, 4, 251-257, https://doi.org/10.1002/1099-1026(200007/08)15:4<251::AID-FFJ905>3.0.CO;2-2
. [all data]
Boulanger and Crouzet, 2000, 2
Boulanger, R.; Crouzet, J.,
Free and bound flavour components of Amazonian fruits: 3-glycosidically bound components of cupuacu,
Food Chem., 2000, 70, 4, 463-470, https://doi.org/10.1016/S0308-8146(00)00112-6
. [all data]
Yasuhara, 1987
Yasuhara, A.,
Identification of Volatile Compounds in Poultry Manure by Gas Chromatography-Mass Spectrometry,
J. Chromatogr., 1987, 387, 371-378, https://doi.org/10.1016/S0021-9673(01)94539-X
. [all data]
Whitfield, Shea, et al., 1981
Whitfield, F.B.; Shea, S.R.; Gillen, K.J.; Shaw, K.J.,
Volatile components from the roots of Acacia pulchella R.Br. and their effect on Phytophthora cinnamomi rands,
Aust. J. Bot., 1981, 29, 2, 195-208, https://doi.org/10.1071/BT9810195
. [all data]
Tello, Lebron-Aguilar, et al., 2009
Tello, A.M.; Lebron-Aguilar, R.; Quintanilla-Lopez, J.E.; Santiuste, J.M.,
Isothermal retention indices on poly93-cyanopropylmethyl)siloxane stationary phases,
J. Chromatogr. A, 2009, 1216, 10, 1630-1639, https://doi.org/10.1016/j.chroma.2008.10.025
. [all data]
Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M.,
Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases,
J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025
. [all data]
Zhou and Wu, 2007
Zhou, L.; Wu, Q.,
Model of artificial neural network for quantitative structure-retention relations of saturated alcohols,
J. Southwest Univ. (Nat. Sci. Edn.), 2007, 33, 6, 1369-1372. [all data]
Shimadzu, 2003, 2
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Verevkin, Krasnykh, et al., 2003
Verevkin, Sergey P.; Krasnykh, Eugen L.; Vasiltsova, Tatiana V.; Heintz, Andreas,
Determination of Ambient Temperature Vapor Pressures and Vaporization Enthalpies of Branched Ethers,
J. Chem. Eng. Data, 2003, 48, 3, 591-599, https://doi.org/10.1021/je0255980
. [all data]
Yabumoto, Jennings, et al., 1977
Yabumoto, K.; Jennings, W.G.; Yamaguchi, M.,
Gas chromatographic retention as identification criteria,
Anal. Biochem., 1977, 78, 1, 244-251, https://doi.org/10.1016/0003-2697(77)90029-X
. [all data]
Anderson, 1968
Anderson, D.G.,
USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents,
J. Paint Technol., 1968, 40, 527, 549-557. [all data]
Bramston-Cook, 2013
Bramston-Cook, R.,
Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]
Goeminne, Vandendriessche, et al., 2012
Goeminne, P.C.; Vandendriessche, T.; Van Eldere, J.; Nicolai, B.M.; Hertog, M.L.; Dupont, L.J.,
Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis,
Respiratory Res., 2012, 13, 87, 1-9. [all data]
Pino, Marquez, et al., 2010
Pino, J.A.; Marquez, E.; Quijano, C.E.; Castro, D.,
Volatile compounds in noni (Morinda citrifolia L.) at two ripening stages,
Ciencia e Technologia de Alimentos, 2010, 30, 1, 183-187, https://doi.org/10.1590/S0101-20612010000100028
. [all data]
Raffo, Kelderer, et al., 2009
Raffo, A.; Kelderer, M.; Paoletti, F.; Zanella, A.,
Impact of innovative controlled atmosphere storage technologies and postharvest treatment on volatile compound production in Cv. Pinova apples,
J. Agric. Food Chem., 2009, 57, 3, 915-923, https://doi.org/10.1021/jf802054y
. [all data]
Mildner-Szkudlarz and Jelen, 2008
Mildner-Szkudlarz, S.; Jelen, H.H.,
The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil,
Food Chem., 2008, 110, 3, 751-761, https://doi.org/10.1016/j.foodchem.2008.02.053
. [all data]
Vasta, Ratel, et al., 2007
Vasta, V.; Ratel, J.; Engel, E.,
Mass Spectrometry Analysis of Volatile Compounds in Raw Meat for the Authentication of the Feeding Background of Farm Animals,
J. Agric. Food Chem., 2007, 55, 12, 4630-4639, https://doi.org/10.1021/jf063432n
. [all data]
Isidorov, Purzynska, et al., 2006
Isidorov, V.; Purzynska, A.; Modzelewska, A.; Serowiecka, M.,
Distribution coefficients of aliphatic alcohols, carbonyl compounds and esters between air and Carboxen/polydimethylsiloxane fiber coating,
Anal. Chim. Acta., 2006, 560, 1-2, 103-109, https://doi.org/10.1016/j.aca.2005.12.043
. [all data]
Pino, Marbot, et al., 2005
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C.,
Volatile constituents of genipap (Genipa americana L.) fruit from Cuba,
Flavour Fragr. J., 2005, 20, 6, 583-586, https://doi.org/10.1002/ffj.1491
. [all data]
Dhanda, Pegg, et al., 2003
Dhanda, J.S.; Pegg, R.B.; Shand, P.J.,
Saskatchewan specialty livestock value-added program - Saskatchewan agri-food innovation fund (AFIF) Project #98000016, 2003, retrieved from http://www.agr.gov.sk.ca/afif/Projects/19980016.pdf. [all data]
Mildner-Szkudlarz, Jelen, et al., 2003
Mildner-Szkudlarz, S.; Jelen, H.H.; Zawirska-Wojtasiak, R.; Wasowicz, E.,
Application of headspace - solid phase microextraction and multivariate analysis for plant oils differentiation,
Food Chem., 2003, 83, 4, 515-522, https://doi.org/10.1016/S0308-8146(03)00147-X
. [all data]
Isidorov and Jdanova, 2002
Isidorov, V.; Jdanova, M.,
Volatile organic compounds from leaves litter,
Chemosphere, 2002, 48, 9, 975-979, https://doi.org/10.1016/S0045-6535(02)00074-7
. [all data]
Pino, Marbot, et al., 2002, 3
Pino, J.A.; Marbot, R.; Vazquez, C.,
Characterization of volatiles in Loquat fruit (Eriobotrya japonica Lindl.),
Revista CENIC Ciencias Quimicas, 2002, 33, 3, 115-119. [all data]
Ngassoum, Jirovetz, et al., 2001
Ngassoum, M.B.; Jirovetz, L.; Buchbauer, G.,
SPME/GC/MS analysis of headspace aroma compounds of the Cameroonian fruit Tetrapleura tetraptera (Thonn.) Taub.,
Eur. Food Res. Technol., 2001, 213, 1, 18-21, https://doi.org/10.1007/s002170100330
. [all data]
Health Safety Executive, 2000
Health Safety Executive,
MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography
in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]
Tamura, Boonbumrung, et al., 2000
Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W.,
Volatile components of the essential oil in the pulp of four yellow mangoes (Mangifera indica L.) in Thailand,
Food Sci. Technol. Res., 2000, 6, 1, 68-73, https://doi.org/10.3136/fstr.6.68
. [all data]
Baraldi, Rapparini, et al., 1999
Baraldi, R.; Rapparini, F.; Rossi, F.; Latella, A.; Ciccioli, P.,
Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees,
Phys. Chem. Earth, 1999, 24, 6, 729-732, https://doi.org/10.1016/S1464-1909(99)00073-8
. [all data]
Jung, Wichmann, et al., 1999
Jung, A.; Wichmann, K.-H.; Kolb, M.,
VOC emission of polymeric packaging materials,
LaborPraxis, 1999, 23, 9, 20-22. [all data]
King, Matthews, et al., 1995
King, M.-F.; Matthews, M.A.; Rule, D.C.; Field, R.A.,
Effect of beef packaging method on volatile compounds developed by oven roasting or microwave cooking,
J. Agric. Food Chem., 1995, 43, 3, 773-778, https://doi.org/10.1021/jf00051a039
. [all data]
Buttery, Stern, et al., 1994
Buttery, R.G.; Stern, D.J.; Ling, L.C.,
Studies on flavor volatiles of some sweet corn products,
J. Agric. Food Chem., 1994, 42, 3, 791-795, https://doi.org/10.1021/jf00039a038
. [all data]
Egolf and Jurs, 1993
Egolf, L.M.; Jurs, P.C.,
Quantitative structure-retention and structure-odor intensity relationships for a diverse group of odor-active compounds,
Anal. Chem., 1993, 65, 21, 3119-3126, https://doi.org/10.1021/ac00069a027
. [all data]
King, Hamilton, et al., 1993
King, M.-F.; Hamilton, B.L.; Matthews, M.A.; Rule, D.C.; Field, R.A.,
Isolation and identification of volatiles and condensable material in raw beef with supercritical carbon dioxide extraction,
J. Agric. Food Chem., 1993, 41, 11, 1974-1981, https://doi.org/10.1021/jf00035a030
. [all data]
Shimoda, Shibamoto, et al., 1993
Shimoda, M.; Shibamoto, T.; Noble, A.C.,
Evaluation of heaspace volatiles of Cabernet Sauvignon wines sampled by an on-column method,
J. Agric. Food Chem., 1993, 41, 10, 1664-1668, https://doi.org/10.1021/jf00034a028
. [all data]
Shiota, 1993
Shiota, H.,
New esteric components in the volatiles of banana fruit (Musa sapientum L.),
J. Agric. Food Chem., 1993, 41, 11, 2056-2062, https://doi.org/10.1021/jf00035a046
. [all data]
Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A.,
Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation,
J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205
. [all data]
Misharina, Golovnya, et al., 1991
Misharina, T.A.; Golovnya, R.V.; Charnomskii, V.V.,
Volatile components of boiled shrimp funchalia woodwardi and crab geryon maritae,
Zh. Anal. Khim., 1991, 46, 1421-1429. [all data]
Anker, Jurs, et al., 1990
Anker, L.S.; Jurs, P.C.; Edwards, P.A.,
Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups,
Anal. Chem., 1990, 62, 24, 2676-2684, https://doi.org/10.1021/ac00223a006
. [all data]
Spadone, Takeoka, et al., 1990
Spadone, J.-C.; Takeoka, G.; Liardon, R.,
Analytical Investigation of Rio Off-Flavor in Green Coffee,
J. Agric. Food Chem., 1990, 38, 1, 226-233, https://doi.org/10.1021/jf00091a050
. [all data]
Binder, Flath, et al., 1989
Binder, R.G.; Flath, R.A.; Mon, T.R.,
Volatile components of bittermelon,
J. Agric. Food Chem., 1989, 37, 2, 418-420, https://doi.org/10.1021/jf00086a032
. [all data]
Sugisawa, Yamamoto, et al., 1989
Sugisawa, H.; Yamamoto, M.; Tamura, H.; Takagi, N.,
The comparison of volatile components in peel oil from four species of navel orange,
Nippon Shokuhin Kogio Gakkaishi, 1989, 36, 6, 455-462, https://doi.org/10.3136/nskkk1962.36.6_455
. [all data]
Schwab and Schreier, 1988
Schwab, W.; Schreier, P.,
Simultaneous enzyme catalysis extraction: A versatile technique for the study of flavor precursors,
J. Agric. Food Chem., 1988, 36, 6, 1238-1242, https://doi.org/10.1021/jf00084a028
. [all data]
Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F.,
Volatile components of Rooibos tea (Aspalathus linearis),
J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024
. [all data]
del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R.,
Comparison of headspace volatiles from winged beans and soybeans,
J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015
. [all data]
Labropoulos, Palmer, et al., 1982
Labropoulos, A.E.; Palmer, J.K.; Tao, P.,
Flavor evaluation and characterization of yogurt as affected by ultra-high temperature and vat processes,
J. Dairy Sci., 1982, 65, 2, 191-196, https://doi.org/10.3168/jds.S0022-0302(82)82176-0
. [all data]
Dahlmann, Köser, et al., 1979
Dahlmann, G.; Köser, H.J.K.; Oelert, H.H.,
Multiple korrelation von retentionsindizes,
Chromatographia, 1979, 12, 10, 665-671, https://doi.org/10.1007/BF02302943
. [all data]
Schreyen, Dirinck, et al., 1979
Schreyen, L.; Dirinck, P.; Sandra, P.; Schamp, N.,
Flavor analysis of quince,
J. Agric. Food Chem., 1979, 27, 4, 872-876, https://doi.org/10.1021/jf60224a058
. [all data]
Donetzhuber, Johansson, et al., 1976
Donetzhuber, A.; Johansson, K.; Sandstroem, C.,
Gas phase characterization of wood, pulp, and paper,
Appl. Polymer Symp., 1976, 28, 889-901. [all data]
Rotsatschakul, Visesanguan, et al., 2009
Rotsatschakul, P.; Visesanguan, W.; Smitinont, T.; Chaiseri, S.,
Changes in volatile compounds during fermentation of nham (Thai fermented sausage),
Int. Food Res. J., 2009, 16, 391-414. [all data]
Zhao, Li, et al., 2008
Zhao, Y.; Li, J.; Xu, Y.; Duan, H.; Fan, W.; Zhao, G.,
EXtraction, preparation and identification of volatile compounds in Changyu XO brandy,
Chinese J. Chromatogr., 2008, 26, 2, 212-222, https://doi.org/10.1016/S1872-2059(08)60014-0
. [all data]
Barra, Baldovini, et al., 2007
Barra, A.; Baldovini, N.; Loiseau, A.-M.; Albino, L.; Lesecq, C.; Cuvelier, L.L.,
Chemical analysis of French beans (Phaseolus vulgaris L.) by headspace solid phase microextraction (HS-SPME) and simultaneous distillation/extraction (SDE),
Food Chem., 2007, 101, 3, 1279-1284, https://doi.org/10.1016/j.foodchem.2005.12.027
. [all data]
Cajka, Hajslova, et al., 2007
Cajka, T.; Hajslova, J.; Cochran, J.; Holadova, K.; Klimankova, E.,
Solid phase microextraction - comprehensive two dimensional gas chromatography - time-of-flight mass spectrometry for the analysis of honey volatiles,
J. Sep. Sci., 2007, 30, 4, 534-546, https://doi.org/10.1002/jssc.200600413
. [all data]
Chen and Feng, 2007
Chen, Y.; Feng, C.,
QSPR study on gas chromatography retention index of some organic pollutants,
Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]
Feng and Mu, 2007
Feng, H.; Mu, L.-L.,
Quantitative structure-retention relationships for alkane and its derivatives based on electrotopological state index and molecular shape index,
Chem. Ind. Engineering (Chinese), 2007, 24, 2, 161-168. [all data]
Karlshøj, Nielsen, et al., 2007
Karlshøj, K.; Nielsen, P.V.; Larsen, T.O.,
Prediction of Penicillium expansum Spoilage and Patulin Concentration in Apples Used for Apple Juice Production by Electronic Nose Analysis,
J. Agric. Food Chem., 2007, 55, 11, 4289-4298, https://doi.org/10.1021/jf070134x
. [all data]
Liu, Xu, et al., 2007
Liu, Y.; Xu, X.-L.; Zhou, G.-H.,
Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques,
Int. J. Food Sci. Technol., 2007, 42, 5, 543-550, https://doi.org/10.1111/j.1365-2621.2006.01264.x
. [all data]
Kou, Zhang, et al., 2006
Kou, J.; Zhang, S.; Hu, Y.; Qiao, H.; Li, J.,
Stidy on the relationships between structures and gas chromatographic retention indices of alcohols,
Comput. Appl. Chem. (Chinese), 2006, 23, 7, 651-654. [all data]
Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A.,
Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina,
Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053
. [all data]
Himanen, Vuorinen, et al., 2005
Himanen, S.; Vuorinen, T.; Tuovinen, T.; Holopainen, J.K.,
Effects of Cyclamen Mite (Phytonemus pallidus) and Leaf Beetle (Galerucella tenella) Damage on Volatile Emission from Strawberry (Fragaria ´ ananassa Duch.) Plants and Orientation of Predatory Mites (Neoseiulus cucumeris, N. californicus, and Euseius finlandicus),
J. Agric. Food Chem., 2005, 53, 8624-8630. [all data]
Pino, Marbot, et al., 2005, 2
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C.,
Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. Perry],
Flavour Fragr. J., 2005, 20, 98-100. [all data]
Thierry, Maillard, et al., 2005
Thierry, A.; Maillard, M.-B.; Bonnarme, P.; Roussel, E.,
The addition of Propionibacterium freudenreichii to raclette cheese induces biochemical changes and enhances flavor development,
J. Agric. Food Chem., 2005, 53, 10, 4157-4165, https://doi.org/10.1021/jf0481195
. [all data]
Fu and Wang, 2004
Fu, S.-P.; Wang, Y.-Q.,
Estimation and prediction of gas chromatographic retention indices of alcohols by molecular electronegativity-distance vector,
J. Chongqing Univ., 2004, 27, 6, 106-109. [all data]
Vinogradov, 2004
Vinogradov, B.A.,
Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]
Begnaud, Pérès, et al., 2003
Begnaud, F.; Pérès, C.; Berdagué, J.-L.,
Characterization of volatile effluents of livestock buildings by solid-phase microextraction,
Int. J. Environ. Anal. Chem., 2003, 83, 10, 837-849, https://doi.org/10.1080/03067310310001603349
. [all data]
Jordán, Margaría, et al., 2003
Jordán, M.J.; Margaría, C.A.; Shaw, P.E.; Goodner, K.L.,
Volatile components and aroma active compounds in aqueous essence and fresh pink guava fruid puree (Psidium guajava L.) by GC-MS and multidimensional GC/GC-O,
J. Agric. Food Chem., 2003, 51, 5, 1421-1426, https://doi.org/10.1021/jf020765l
. [all data]
Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F.,
Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies,
Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]
Jordán, Goodner, et al., 2002
Jordán, M.J.; Goodner, K.L.; Shaw, P.E.,
Characterization of the aromatic profile in aqueous essence and fruit juice of yellow passion fruit (Passiflora edulis Sims F. Flavicarpa degner) by GC-MS and GC/O,
J. Agric. Food Chem., 2002, 50, 6, 1523-1528, https://doi.org/10.1021/jf011077p
. [all data]
Jordán, Margaría, et al., 2002
Jordán, M.J.; Margaría, C.A.; Shaw, P.E.; Goodner, K.L.,
Aroma active components in aqueous kiwi fruit essence and kiwi fruit puree by GC-MS and multidimensional GC/GC-O,
J. Agric. Food Chem., 2002, 50, 19, 5386-5390, https://doi.org/10.1021/jf020297f
. [all data]
van Ruth, Grossmann, et al., 2001
van Ruth, S.M.; Grossmann, I.; Geary, M.; Delahunty, C.M.,
Interactions between artificial saliva and 20 aroma compounds in water and oil model systems,
J. Agric. Food Chem., 2001, 49, 5, 2409-2413, https://doi.org/10.1021/jf001510f
. [all data]
Spanier, Shahidi, et al., 2001
Spanier, A.M.; Shahidi, F.; Par; iment, T.H.; Mussinan, C.,
Food Flavors and Chemistry. Advances of the New Millenium, Royal Soc. Chem., 2001, 666. [all data]
Estrada and Gutierrez, 1999
Estrada, E.; Gutierrez, Y.,
Modeling chromatographic parameters by a novel graph theoretical sub-structural approach,
J. Chromatogr. A, 1999, 858, 2, 187-199, https://doi.org/10.1016/S0021-9673(99)00808-0
. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B.,
Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases,
J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]
Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R.,
Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas,
Eur Commission EUR, 1994, 549-568. [all data]
Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M.,
Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry,
J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F
. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Weller and Wolf, 1989
Weller, J.-P.; Wolf, M.,
Massenspektroskopie und Headspace-GC,
Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]
Shibamoto, 1987
Shibamoto, T.,
Retention Indices in Essential Oil Analysis
in Capillary Gas Chromatography in Essential Oil Analysis, Sandra, P.; Bicchi, C., ed(s)., Hutchig Verlag, Heidelberg, New York, 1987, 259-274. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Sun, Siepmann, et al., 2006
Sun, L.; Siepmann, J.I.; Klotz, W.L.; Schure, M.R.,
retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment,
J. Chromatogr. A, 2006, 1126, 1-2, 373-380, https://doi.org/10.1016/j.chroma.2006.05.084
. [all data]
Wang and Wu, 1990
Wang, Z.; Wu, C.,
Volatile matter of Chinese lacquer,
Lin chan hua xue yu gong ye, 1990, 10, 1, 39-41. [all data]
Wanakhachornkrai and Lertsiri, 9999
Wanakhachornkrai, P.; Lertsiri, S.,
Comparison of determination method for volatile compounds in Thai soy sauce,
Analytical, Nutritional and Clinical Methods, 9999, 1-11. [all data]
Alves, da Penha, et al., 2012
Alves, V.C.C.; da Penha, M.F.A.; Pinto, N. deO.F.; Garruti, D. dosS.,
Volatile compounds profile of Musa FHIA 02: an option to counter losses by Black Sigatoka,
Nat. Prod. J., 2012, 5, 55-60. [all data]
Feng, Zhuang, et al., 2011
Feng, T.; Zhuang, H.; Ye, R.; Jin, Z.; Xu, X.; Xie, Z.,
Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC-MS and electronic nose,
Sensors and Actuators B: Chemical, 2011, 160, 1, 964-973, https://doi.org/10.1016/j.snb.2011.09.013
. [all data]
Kiss, Csoka, et al., 2011
Kiss, M.; Csoka, M.; Gyorfi, J.; Korany, K.,
Comparison of the fragrance constituents of Tuber aestivium and Tuber Brumale gathered in Hungary,
J. Appl. Botany Food Quality, 2011, 84, 102-110. [all data]
Duarte, Dias, et al., 2010
Duarte, W.F.; Dias, D.R.; Oliveira, J.M.; Teixeira, J.A.; de Almeida e Silva, J.B.; Schwan, R.F.,
Characterization of different fruit wines made from cacao,cupuassu, gabiroba, jaboticaba and umbu,
Food Sci. Technol., 2010, 43, 1564-1572. [all data]
Zhao, Xu, et al., 2009
Zhao, Y.; Xu, Y.; Li, J.; Fan, W.; Jiang, W.,
Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry,
J. Food. Sci., 2009, 74, 2, c90-c99, https://doi.org/10.1111/j.1750-3841.2008.01029.x
. [all data]
Soria, Sanz, et al., 2008
Soria, A.C.; Sanz, J.; Martinez-Castro, I.,
SPME followed by GC-MS: a powerful technique for qualitative analysis of honey volatiles,
Eur. Food Res. Technol., 2008, 1-12. [all data]
Cros, Vandanjon, et al., 2007
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P.,
Processing of Industrial Mussel Cooking Juices by Reverse Osmotis: Pollution Abatement and Aromas Recovery, 2007, retrieved from title of Internet file: [imstec064]. [all data]
Prososki, Etzel, et al., 2007
Prososki, R.A.; Etzel, M.R.; Rankin, S.A.,
Solvent type affects the number, distribution, and relative quantities of volatile compounds found in sweet whey powder,
J. Dairy Sci., 2007, 90, 2, 523-531, https://doi.org/10.3168/jds.S0022-0302(07)71535-7
. [all data]
Xu, Fan, et al., 2007
Xu, Y.; Fan, W.; Qian, M.C.,
Characterization of Aroma Compounds in Apple Cider Using Solvent-Assisted Flavor Evaporation and Headspace Solid-Phase Microextraction,
J. Agric. Food Chem., 2007, 55, 8, 3051-3057, https://doi.org/10.1021/jf0631732
. [all data]
Berlinet, Brat, et al., 2006
Berlinet, C.; Brat, P.; Brillouet, J.-M.; Ducruet, V.,
Ascorbic acid, aroma compounds and browning of orange juices related to PET packaging materials and pH,
J. of the Sci., Food and Agriculture, 2006, 86, 13, 2206-2212, https://doi.org/10.1002/jsfa.2597
. [all data]
Fan and Qian, 2006
Fan, W.; Qian, M.C.,
Characterization of Aroma Compounds of Chinese Wuliangye and Jiannanchun Liquors by Aroma Extract Dilution Analysis,
J. Agric. Food Chem., 2006, 54, 7, 2695-2704, https://doi.org/10.1021/jf052635t
. [all data]
Fan and Qian, 2006, 2
Fan, W.; Qian, M.C.,
Identification of aroma compounds in Chinese 'Yanghe Daqu' liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry,
Flavour Fragr. J., 2006, 21, 2, 333-342, https://doi.org/10.1002/ffj.1621
. [all data]
Perestrelo, Fernandes, et al., 2006
Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Camara, J.S.,
Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds,
Anal. Chim. Acta., 2006, 563, 1-2, 154-164, https://doi.org/10.1016/j.aca.2005.10.023
. [all data]
Wierda R.L., Fletcher G., et al., 2006
Wierda R.L.; Fletcher G.; Xu L.; Dufour J.P.,
Analysis of volatile compounds as spoilage indicators in fresh king salmon (Oncorhynchus tshawytscha) during storage using SPME-GC-MS,
J. Agric. Food Chem., 2006, 54, 22, 8480-8490, https://doi.org/10.1021/jf061377c
. [all data]
Fan and Qian, 2005
Fan, W.; Qian, M.C.,
Headspace Solid Phase Microextraction and Gas Chromatography-Olfactometry Dilution Analysis of Young and Aged Chinese Yanghe Daqu Liquors,
J. Agric. Food Chem., 2005, 53, 20, 7931-7938, https://doi.org/10.1021/jf051011k
. [all data]
Qian and Wang, 2005
Qian, M.C.; Wang, Y.,
Seasonal Variations of Volatile Composition and Odor Activity Value of Marion (Rubus spp. hyb) and Thornless Evergreen (R.laciniatus L.) Blackberries,
J. Food. Sci., 2005, 70, 1, c13-c20, https://doi.org/10.1111/j.1365-2621.2005.tb09013.x
. [all data]
Rizzolo, Cambiaghi, et al., 2005
Rizzolo, A.; Cambiaghi, P.; Grassi, M.; Zerbini, P.E.,
Influence of 1-Methylcyclopropene and Storage Atmosphere on Changes in Volatile Compounds and Fruit Quality of Conference Pears,
J. Agric. Food Chem., 2005, 53, 25, 9781-9789, https://doi.org/10.1021/jf051339d
. [all data]
Wu, Krings, et al., 2005
Wu, S.; Krings, U.; Zorn, H.; Berger, R.G.,
Volatile compounds from the fruiting bodies of beefsteak fungus Fistulina hepatica (Schaeffer: Fr.) Fr.,
Food Chem., 2005, 92, 2, 221-226, https://doi.org/10.1016/j.foodchem.2004.07.013
. [all data]
Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H.,
Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system,
J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p
. [all data]
López, Ezpeleta, et al., 2004
López, R.; Ezpeleta, E.; Sánchez, I.; Cacho, J.; Ferreira, V.,
Analysis of the aroma intensities of volatile compounds released from mild acid hydrolysates of odourless precursors extracted from Tempranillo and Grenache grapes using gas chromatography-olfactometry,
Food Chem., 2004, 88, 1, 95-103, https://doi.org/10.1016/j.foodchem.2004.01.025
. [all data]
Narain, Almeida, et al., 2004
Narain, N.; Almeida, J.N.; Galvão, M.S.; Madruga, M.S.; de Brito, E.S.,
Volatile compounds in passion fruit (Passiflora edulis forma Flavicarpa) and yellow mombin (Spondias mombin L.) fruits obtained by dynamic headspace technique,
Cienc. Tecnol. Aliment. Campinas, 2004, 24, 2, 212-216, https://doi.org/10.1590/S0101-20612004000200009
. [all data]
Alves and Franco, 2003
Alves, G.L.; Franco, M.R.B.,
Headspace gas chromatography-mass spectrometry of volatile compounds in murici (Byrsonima crassifolia L. Rich),
J. Chromatogr. A, 2003, 985, 1-2, 297-301, https://doi.org/10.1016/S0021-9673(02)01398-5
. [all data]
Cros, Vandanjon, et al., 2003, 2
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P.,
IMSTEC'03 Conference Proceedings, Processing of industrial mussel cooking juices by reverse osmosis: pollution abatement and aromas recovery, Universoty of New South Wales, Sydney, Australia, 2003, 6. [all data]
Dregus and Engel, 2003
Dregus, M.; Engel, K.-H.,
Volatile constituents of uncooked Rhubarb (Rheum rhabarbarum L.) stalks,
J. Agric. Food Chem., 2003, 51, 22, 6530-6536, https://doi.org/10.1021/jf030399l
. [all data]
Lee and Noble, 2003
Lee, S.-J.; Noble, A.C.,
Characterization of odor-active compounds in Californian Chardonnay wines using GC-olfactometry and GC-mass spectrometry,
J. Agric. Food Chem., 2003, 51, 27, 8036-8044, https://doi.org/10.1021/jf034747v
. [all data]
Miyazawa, Yamafuji, et al., 2003
Miyazawa, M.; Yamafuji, C.; Kurose, K.; Ishikawa, Y.,
Volatile components of the rhizomes of Cirsium japonicum DC,
Flavour Fragr. J., 2003, 18, 1, 15-17, https://doi.org/10.1002/ffj.1135
. [all data]
Wanakhachornkrai and Lertsiri, 2003
Wanakhachornkrai, P.; Lertsiri, S.,
Analytical, nutritional, and clinical methods. Comparison of determination method for volatile compounds in Thai soy sauce,
Food Chem., 2003, 83, 4, 619-629, https://doi.org/10.1016/S0308-8146(03)00256-5
. [all data]
Fukami, Ishiyama, et al., 2002
Fukami, K.; Ishiyama, S.; Yaguramaki, H.; Masuzawa, T.; Nabeta, Y.; Endo, K.; Shimoda, M.,
Identification of distinctive volatile compounds in fish sauce,
J. Agric. Food Chem., 2002, 50, 19, 5412-5416, https://doi.org/10.1021/jf020405y
. [all data]
Hayata, Sakamoto, et al., 2002
Hayata, Y.; Sakamoto, T.; Kozuka, H.; Sakamoto, K.; Osajima, Y.,
Analysis of aromatic volatile compounds in 'Miyabi' melon (Cucumis melo L.) using the Porapak Q column,
J. Jpn. Soc. Hortic. Sci., 2002, 71, 4, 517-525, https://doi.org/10.2503/jjshs.71.517
. [all data]
Ito, Sugimoto, et al., 2002
Ito, Y.; Sugimoto, A.; Kakuda, T.; Kubota, K.,
Identification of potent odorants in Chinese jasmine green tea scented with flowers of Jasminum sambac,
J. Agric. Food Chem., 2002, 50, 17, 4878-4884, https://doi.org/10.1021/jf020282h
. [all data]
Osorio, Duque, et al., 2002
Osorio, C.; Duque, C.; Suarez, M.; Salamanca, L.E.; Uruena, F.,
Free, glycosidically bound, and phosphate bound flavor constituents of badea (Passiflora quadrangularis) fruit pulp,
J. Sep. Sci., 2002, 25, 3, 147-154, https://doi.org/10.1002/1615-9314(20020201)25:3<147::AID-JSSC147>3.0.CO;2-G
. [all data]
Qian and Reineccius, 2002
Qian, M.; Reineccius, G.,
Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry,
J. Dairy Sci., 2002, 85, 6, 1362-1369, https://doi.org/10.3168/jds.S0022-0302(02)74202-1
. [all data]
Suhardi, Suzuki, et al., 2002
Suhardi, S.; Suzuki, M.; Yoshida, K.; Muto, T.; Fujita, A.; Watanbe, N.,
Changes in the volatile compounds and in the chemical and physical properties of snake fruit (Salacca edulis Reinw) Cv. Pondoh during maturation,
J. Agric. Food Chem., 2002, 50, 26, 7627-7633, https://doi.org/10.1021/jf020620e
. [all data]
Umano, Hagi, et al., 2002
Umano, K.; Hagi, Y.; Shibamoto, T.,
Volatile chemicals identified in extracts from newly hybrid citrus, dekopon (Shiranuhi mandarin Suppl. J.),
J. Agric. Food Chem., 2002, 50, 19, 5355-5359, https://doi.org/10.1021/jf0203951
. [all data]
Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S.,
Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix,
Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8
. [all data]
Miyazawa, Kurose, et al., 2001
Miyazawa, M.; Kurose, K.; Itoh, A.; Hiraoka, N.,
Comparison of the essential oils of Glehnia littoralis from Northern and Southern Japan,
J. Agric. Food Chem., 2001, 49, 11, 5433-5436, https://doi.org/10.1021/jf010219c
. [all data]
Weckerle, Bastl-Borrmann, et al., 2001
Weckerle, B.; Bastl-Borrmann, R.; Richling, E.; Hör, K.; Ruff, C.; Schreier, P.,
Cactus pear (Opuntia ficus indica) flavour constituents - chiral evaluation (MDGC-MS) and isotope ratio (HRGC-IRMS) analysis,
Flavour Fragr. J., 2001, 16, 5, 360-363, https://doi.org/10.1002/ffj.1012
. [all data]
Franco and Shibamoto, 2000
Franco, M.R.B.; Shibamoto, T.,
Volatile composition of some Brazilian fruits: umbu-caja (Spondias citherea), camu-camu (Myrciaria dubia), araca-boi (Eugenia stipitata), and cupuacu (Theobroma grandiflorum),
J. Agric. Food Chem., 2000, 48, 4, 1263-1265, https://doi.org/10.1021/jf9900074
. [all data]
Girard and Durance, 2000
Girard, B.; Durance, T.,
Headspace volatiles of sockeye and pink salmon as affected by retort process,
Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]
Lee and Shibamoto, 2000
Lee, K.-G.; Shibamoto, T.,
Antioxidant properties of aroma compounds isolated from soybeans and mung beans,
J. Agric. Food Chem., 2000, 48, 9, 4290-4293, https://doi.org/10.1021/jf000442u
. [all data]
Parada, Duque, et al., 2000
Parada, F.; Duque, C.; Fujimoto, Y.,
Free and bound volatile composition and characterization of some glucoconjugates as aroma precursors in Melón de olor fruit pulp (Sicana odorifera),
J. Agric. Food Chem., 2000, 48, 12, 6200-6204, https://doi.org/10.1021/jf0007232
. [all data]
Umano, Hagi, et al., 2000
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T.,
Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps Pamp.),
J. Agric. Food Chem., 2000, 48, 8, 3463-3469, https://doi.org/10.1021/jf0001738
. [all data]
Hwan and Chou, 1999
Hwan, C.-H.; Chou, C.-C.,
Volatile components of the Chinese fermented soya bean curd as affected by the addition of ethanol in ageing solution,
J. Sci. Food Agric., 1999, 79, 2, 243-248, https://doi.org/10.1002/(SICI)1097-0010(199902)79:2<243::AID-JSFA179>3.0.CO;2-I
. [all data]
Iwatsuki, Mizota, et al., 1999
Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M.,
Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis,
Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46, 9, 587-597, https://doi.org/10.3136/nskkk.46.587
. [all data]
Umano, Nakahara, et al., 1999
Umano, K.; Nakahara, K.; Shoji, A.; Shibamoto, T.,
Aroma chemicals isolated and identified from leaves of aloe arborescens Mill. Var. natalensis Berger,
J. Agric. Food Chem., 1999, 47, 9, 3702-3705, https://doi.org/10.1021/jf990116i
. [all data]
Buttery and Ling, 1998
Buttery, R.G.; Ling, L.C.,
Additional studies on flavor components of corn tortilla chips,
J. Agric. Food Chem., 1998, 46, 7, 2764-2769, https://doi.org/10.1021/jf980125b
. [all data]
Horiuchi, Umano, et al., 1998
Horiuchi, M.; Umano, K.; Shibamoto, T.,
Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide,
J. Agric. Food Chem., 1998, 46, 12, 5232-5237, https://doi.org/10.1021/jf980482m
. [all data]
Pollak and Berger, 1996
Pollak, F.C.; Berger, R.G.,
Geosmin and Related Volatiles in Bioreactor-Cultured Streptomyces citreus CBS 109.60,
Appl. Environ. Microbiol., 1996, 62, 4, 1295-1299. [all data]
Shuichi, Masazumi, et al., 1996
Shuichi, H.; Masazumi, N.; Hiromu, K.; Kiyoshi, F.,
Comparison of volatile compounds berween the crude drugs, Onji-tsutsu and Onji-niki,
Nippon nogei kagaku kaishi, 1996, 70, 2, 151-160. [all data]
Young, Gilbert, et al., 1996
Young, H.; Gilbert, J.M.; Murray, S.H.; Ball, R.D.,
Causal effects of aroma compounds on Royal Gala apple flavours,
J. Sci. Food Agric., 1996, 71, 3, 329-336, https://doi.org/10.1002/(SICI)1097-0010(199607)71:3<329::AID-JSFA588>3.0.CO;2-8
. [all data]
Girard and Lau, 1995
Girard, B.; Lau, O.L.,
Effect of maturity and storage on quality and volatile production of 'Jonagold' apples,
Food Res. Int., 1995, 28, 5, 465-471, https://doi.org/10.1016/0963-9969(96)81393-7
. [all data]
Kawakami, Kobayashi, et al., 1993
Kawakami, M.; Kobayashi, A.; Kator, K.,
Volatile constituents of Rooibos tea (Aspalathus linearis) as affected by extraction process,
J. Agric. Food Chem., 1993, 41, 4, 633-636, https://doi.org/10.1021/jf00028a023
. [all data]
Kawakami and Kobayashi, 1991
Kawakami, M.; Kobayashi, A.,
Volatitle constituents of greem mate and roasted mate,
J. Agric. Food Chem., 1991, 39, 7, 1275-1279, https://doi.org/10.1021/jf00007a016
. [all data]
Kubota, Nakamoto, et al., 1991
Kubota, K.; Nakamoto, A.; Moriguchi, M.; Kobayashi, A.; Ishii, H.,
Formation of pyrrolidino[1,2-e]-4H-2,4-dimethyl-1,3,5-dithiazine in the volatiles of boiled short-necked clam, clam, and corbicula,
J. Agric. Food Chem., 1991, 39, 6, 1127-1130, https://doi.org/10.1021/jf00006a027
. [all data]
Wyllie, Brophy, et al., 1990
Wyllie, S.G.; Brophy, J.J.; Sarafis, V.; Hobbs, M.,
Volatile Components of the Fruit of Pistacia Lentiscus,
J. Food. Sci., 1990, 55, 5, 1325-1326, https://doi.org/10.1111/j.1365-2621.1990.tb03926.x
. [all data]
Mihara, Tateba, et al., 1988
Mihara, S.; Tateba, H.; Nishimura, O.; Machii, Y.; Kishino, K.,
The volatile components of Chinese quince (Pseudocydonia sinensis Schneid)
in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 537-550. [all data]
Mihara, Tateba, et al., 1987
Mihara, S.; Tateba, H.; Nishimura, O.; Machii, Y.; Kishino, K.,
Volatile components of Chinese quince (Pseudocydonia sinensis Schneid),
J. Agric. Food Chem., 1987, 35, 4, 532-537, https://doi.org/10.1021/jf00076a023
. [all data]
MacLeod and Snyder, 1985
MacLeod, A.J.; Snyder, C.H.,
Volatile components of two cultivars of mango from Florida,
J. Agric. Food Chem., 1985, 33, 3, 380-384, https://doi.org/10.1021/jf00063a015
. [all data]
Engel and Tressl, 1983
Engel, K.-H.; Tressl, R.,
Formation of aroma components from nonvolatile precursors in passion fruit,
J. Agric. Food Chem., 1983, 31, 5, 998-1002, https://doi.org/10.1021/jf00119a019
. [all data]
Gyawali and Kim, 2012
Gyawali, R.; Kim, K.-S.,
Bioactive volatile compounds of three medicinal plants from Nepal,
Kathmandu Univ. J. Sci., Engineering and Technol., 2012, 8, 1, 51-62. [all data]
Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A.,
Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection,
J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002
. [all data]
Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F.,
Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS),
J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x
. [all data]
Povolo, Cabassi, et al., 2011
Povolo, M.; Cabassi, G.; Profaizer, M.; Lanteri, S.,
Study on the use of evolved gas analysis FT-IR (EGA FT-IR) for the evaluation of cheese volatile fraction,
The Open Food Sci. J., 2011, 5, 1, 10-16, https://doi.org/10.2174/1874256401105010010
. [all data]
Sampaio, Garruti, et al., 2011
Sampaio, K.S.; Garruti, D.S.; Franco, M.R.B.; Janzantti, N.S.; Da Silva, M.A.AP.,
Aroma volatiles recovered in the water phase of cashew apple (Anacardium occidentale L.) juice during concentration,
J. Sci. Food Agric., 2011, 91, 10, 1801-1809, https://doi.org/10.1002/jsfa.4385
. [all data]
Chinnici, Guerrero, et al., 2009
Chinnici, F.; Guerrero, E.D.; Sonni, F.; Natali, N.; Marin, R.N.; Riponi, C.,
Gas chromatography - mass spectrometry (GC-MS) characterization of volatile compounds in quality vinegars with protected Europian geographical indication,
J. Agric. Food Chem., 2009, 57, 11, 4784-4792, https://doi.org/10.1021/jf804005w
. [all data]
Ortiz, Echeverra, et al., 2009
Ortiz, A.; Echeverra, G.; Graell, J.; Lara, I.,
Calcium dips enhance volatile emission of cold-stored Fuji Kiki-8 apples,
J. Agric. Food Chem., 2009, 57, 11, 4931-4938, https://doi.org/10.1021/jf9003576
. [all data]
Rowan, Hunt, et al., 2009
Rowan, D.D.; Hunt, M.B.; Alspach, P.A.; Whitworth, C.J.; Oraguzie, N.C.,
Heriability and genetic and phenotypic correlations of apple (Malus x domestica) fruit volatiles in a genetically diverse breeding population,
J. Agric. Food Chem., 2009, 57, 17, 7944-7952, https://doi.org/10.1021/jf901359r
. [all data]
Rowan, Hunt, et al., 2009, 2
Rowan, D.D.; Hunt, M.B.; Dimouro A.; Alspach P.A.; Weskett R.; Volz, R.K.; Gardiner, S.E.; Chagne, D.,
Profiling fruit volatiles in the progeny of a Royal Gala x Granny Smith apple (Malus x domestica) cross,
J. Agr. Food Chem., 2009, 57, 17, 7953-7961, https://doi.org/10.1021/jf901678v
. [all data]
Soria, Martinez-Castro, et al., 2009
Soria, A.C.; Martinez-Castro, I.; Sanz, J.,
Study of the precision in the purge-and-trap-gas-chromatography-mass-spectrometry analysis of volatile compounds in honey,
J. Chromatogr. A., 2009, 1216, 15, 3300-3304, https://doi.org/10.1016/j.chroma.2009.01.065
. [all data]
Valappil, Fan, et al., 2009
Valappil, Z.A.; Fan, X.; Zhang, H.Q.; Rouseff, R.L.,
Impact of thermal and nonthermal processing technologies on unfermented apple cider aroma vilatiles,
J. Agric. Food Chem., 2009, 57, 3, 924-929, https://doi.org/10.1021/jf803142d
. [all data]
Kaack and Christensen, 2008
Kaack, K.; Christensen, L.P.,
Effect of packing materials and storage time on volatile compounds in tea processes from flowers of black elder (Sambucus nigra L.),
Eur. Food Res. Technol., 2008, 227, 4, 1259-1273, https://doi.org/10.1007/s00217-008-0844-8
. [all data]
Li, Tao, et al., 2008
Li, H.; Tao, Y.-S.; Wang, H.; Zhang, L.,
Impact odorants of Chardonnay dry white wine from Changli Counti (China),
Eur. Food. Res. Technol., 2008, 227, 1, 287-292, https://doi.org/10.1007/s00217-007-0722-9
. [all data]
Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J.,
Some aspects of dynamic headspace analysis of volatile components in honey,
Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010
. [all data]
Tao, Wenlai, et al., 2008
Tao, L.; Wenlai, F.; Yan, X.,
Characterization of volatile and semi-volatile compounds in Chinese rica wines by headspace solid phase microextraction followed by gas chromatography - mass spectrometry,
J. Inst. Brew., 2008, 114, 2, 172-179, https://doi.org/10.1002/j.2050-0416.2008.tb00323.x
. [all data]
Yongsheng, Hua, et al., 2008
Yongsheng, T.; Hua, L.; Hua, W.; Li, Z.,
Volatile composition of young Cabernet Savignon red wine from Changli Counti (China),
J. Food Composition and Analysis, 2008, 21, 8, 689-694, https://doi.org/10.1016/j.jfca.2008.05.007
. [all data]
Berard, Bianchi, et al., 2007
Berard, J.; Bianchi, F.; Careri, M.; Chatel, A.; Mangia, A.; Musci, M.,
Characterization of the volatile fraction and of free fatty acids of Fontina Valle d'Aosta, a protected designation of origin Italian cheese,
Food Chem., 2007, 105, 1, 293-300, https://doi.org/10.1016/j.foodchem.2006.11.041
. [all data]
Bosch-Fuste, Riu-Aumatell, et al., 2007
Bosch-Fuste, J.; Riu-Aumatell, M.; Guadayol, J.M.; Caixach, J.; Lopez-Tamames, E.; Buxaderas, S.,
Volatile profiles of sparkling wines obtained by three extraction methods and gas chromatography-mass spectrometry (GC-MS) analysis,
Food Chem., 2007, 105, 1, 428-435, https://doi.org/10.1016/j.foodchem.2006.12.053
. [all data]
Lara, Echeverría, et al., 2007
Lara, I.; Echeverría, G.; Graell, J.; López, M.L.,
Volatile Emission after Controlled Atmosphere Storage of Mondial Gala Apples (Malus domestica): Relationship to Some Involved Enzyme Activities,
J. Agric. Food Chem., 2007, 55, 15, 6087-6095, https://doi.org/10.1021/jf070464h
. [all data]
Li, Tao, et al., 2007
Li, H.; Tao, Y.-S.; Wang, H.; Zhang, L.,
Impact odorants of Chardonnay dry white wine from Changli County (China),
Eur. Food Res. Technol., 2007, https://doi.org/10.1007/s00217-007-0722-9
. [all data]
Lopez, Villatoro, et al., 2007
Lopez, M.L.; Villatoro, C.; Fuentes, T.; Graell, J.; Lara, I.; Echeverria, G.,
Volatile compounds, quality parameters and consumer acceptance of 'Pink Lady®' apples stored in different conditions,
Postharvest Biol. Technol., 2007, 43, 1, 55-66, https://doi.org/10.1016/j.postharvbio.2006.07.009
. [all data]
Loskos, Hernandez-Orte, et al., 2007
Loskos, N.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V.,
Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions,
J. Agric. Food Chem., 2007, 55, 16, 6674-6684, https://doi.org/10.1021/jf0702343
. [all data]
Tian, Zhang, et al., 2007
Tian, Y.; Zhang, X.; Huang, T.; Zou, K.; Zhou, J.,
Research advances on the essential oils from leaves of Eucalyptus,
Food Fermentation Ind. (Chinese), 2007, 33, 10, 143-147. [all data]
Weldegergis B.T., Tredoux A.G.J., et al., 2007
Weldegergis B.T.; Tredoux A.G.J.; Crouch A.M.,
Application of a headspace sorptive extraction method for the analysis of volatile components in South African wines,
J. Agric. Food Chem., 2007, 55, 21, 8696-8702, https://doi.org/10.1021/jf071554p
. [all data]
Krings, Zelena, et al., 2006
Krings, U.; Zelena, K.; Wu, S.; Berger, R.G.,
Thin-layer high-vacuum distillation to isolate volatile flavour compounds of cocoa powder,
Eur. Food Res. Technol., 2006, 223, 5, 675-681, https://doi.org/10.1007/s00217-006-0252-x
. [all data]
Lara, Graell, et al., 2006
Lara, I.; Graell, J.; López, M.L.; Echeverría, G.,
Multivariate analysis of modifications in biosynthesis of volatile compounds after CA storage of 'Fuji' apples,
Postharvest Biol. Technol., 2006, 39, 1, 19-28, https://doi.org/10.1016/j.postharvbio.2005.09.001
. [all data]
Quijano and Pino, 2006
Quijano, C.E.; Pino, J.A.,
Changes in volatile constituents during the ripening of cocona (Solanum sessiliflorum Dunal) fruit,
Revista CENIC Ciencias Quimicas, 2006, 37, 3, 133-136. [all data]
Jales, Maia, et al., 2005
Jales, K.A.; Maia, G.A.; Garruti, D.S.; Neto, M.A.S.; Janzantti, N.S.; Franco, M.R.B.,
Evaluation de los compuestos odoriferos del jugo de maracuya amarillo por GC-MS y GC-O (OSME),
Alimentis y bebidas, 2005, 3, 12-14. [all data]
Mattheis, Fan, et al., 2005
Mattheis, J.P.; Fan, X.; Argenta, L.C.,
Interactive Responses of Gala Apple Fruit Volatile Production to Controlled Atmosphere Storage and Chemical Inhibition of Ethylene Action,
J. Agric. Food Chem., 2005, 53, 11, 4510-4516, https://doi.org/10.1021/jf050121o
. [all data]
Echeverría, Correa, et al., 2004
Echeverría, G.; Correa, E.; Ruiz-Altisent, M.; Graell, J.; Puy, J.; López, L.,
Characterization of Fuji apples from different harvest dates and storage conditions from measurements of volatiles by gas chromatography and electronic nose,
J. Agric. Food Chem., 2004, 52, 10, 3069-3076, https://doi.org/10.1021/jf035271i
. [all data]
Kim. J.H., Ahn, et al., 2004
Kim. J.H.; Ahn, H.J.; Yook, H.S.; Kim, K.S.; Rhee, M.S.; Ryu, G.H.; Byun, M.W.,
Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce,
Radiation Phys. Chem., 2004, 69, 2, 179-187, https://doi.org/10.1016/S0969-806X(03)00400-6
. [all data]
le Pape, Grua-Priol, et al., 2004
le Pape, M.-A.; Grua-Priol, J.; Prost, C.; Demaimay, M.,
Optimization of dynamic headspace extraction of the edible red algae Palmaria palmata and identification of the volatile components,
J. Agric. Food Chem., 2004, 52, 3, 550-556, https://doi.org/10.1021/jf030478x
. [all data]
Echeverria, Fuentes, et al., 2003
Echeverria, G.; Fuentes, M.T.; Graell, J.; Lopez, M.L.,
Relationships between volatile production, fruit quality and sensory evaluation of Fuji apples stored in different atmospheres by means of multivariate analysis,
J. Sci. Food Agric., 2003, 84, 1, 5-20, https://doi.org/10.1002/jsfa.1554
. [all data]
Garruti, Franco, et al., 2003
Garruti, D.S.; Franco, M.R.B.; da Silva, M.A.A.P.; Janzantti, N.S.; Alves, G.L.,
Evaluation of volatile flavour compounds from cashew apple (Anacardium occidentale L) juice by the Osme gas chromatography/olfactometry technique,
J. Sci. Food Agric., 2003, 83, 14, 1455-1462, https://doi.org/10.1002/jsfa.1560
. [all data]
Selli, Cabaroglu, et al., 2003
Selli, s.; Cabaroglu, T.; Canbas, A.,
Flavour components of orange wine made from a Turkish cv. Kozan,
Int. J. Food Sci. Technol., 2003, 38, 5, 587-593, https://doi.org/10.1046/j.1365-2621.2003.00691.x
. [all data]
Tasdemir, Demirci, et al., 2003
Tasdemir, D.; Demirci, B.; Demirci, F.; Dönmez, A.A.; Baser, K.H.C.; Rüedi, P.,
Analysis of the Volatile Components of Five Turkish Rhododendron Species by Headspace Solid-Phase Microextraction and GC-MS (HS-SPME-GC-MS),
Z. Naturforsch., 2003, 58c, 797-803. [all data]
Mayorga, Knapp, et al., 2001
Mayorga, H.; Knapp, H.; Winterhalter, P.; Duque, C.,
Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.),
J. Agric. Food Chem., 2001, 49, 4, 1904-1908, https://doi.org/10.1021/jf0011743
. [all data]
Miranda, Nogueira, et al., 2001
Miranda, E.J.F.; Nogueira, R.I.; Pontes, S.M.; Rezende, C.M.,
Odour-active compounds of banana passa identified by aroma extract dilution analysis,
Flavour Fragr. J., 2001, 16, 4, 281-285, https://doi.org/10.1002/ffj.997
. [all data]
Lopez, Lavilla, et al., 2000
Lopez, M.L.; Lavilla, M.T.; Recasens, I.; Graell, J.; Vendrell, M.,
Changes in aroma quality of 'Golden Delicious' apples after storage at different oxygen and carbon dioxide concentrations,
J. Sci. Food Agric., 2000, 80, 3, 311-324, https://doi.org/10.1002/1097-0010(200002)80:3<311::AID-JSFA519>3.0.CO;2-F
. [all data]
Lavilla, Puy, et al., 1999
Lavilla, T.; Puy, J.; López, M.L.; Recasens, I.; Vendrell, M.,
Relationships between volatile production, fruit quality, and sensory evaluation in Granny Smith apples stored in different controlled-atmosphere treatments by means of multivariate analysis,
J. Agric. Food Chem., 1999, 47, 9, 3791-3803, https://doi.org/10.1021/jf990066h
. [all data]
López, Lavilla, et al., 1998
López, M.L.; Lavilla, T.; Recasens, I.; Riba, M.; Vendrell, M.,
Influence of different oxygen and carbon dioxide concentrations during storage on production of volatile compounds by Starking delicious apples,
J. Agric. Food Chem., 1998, 46, 2, 634-643, https://doi.org/10.1021/jf9608938
. [all data]
Vas, Gal, et al., 1998
Vas, G.; Gal, L.; Harangi, J.; Dobo, A.; Vekey, K.,
Determination of volatile aroma compounds of Blaeufrankisch wines extracted by solid-phase microextraction,
J. Chromatogr. Sci., 1998, 36, 10, 505-510, https://doi.org/10.1093/chromsci/36.10.505
. [all data]
Ziegleder, 1998
Ziegleder, G.,
Volatile and odorous compounds in unprinted paperboard,
Packag. Technol. Sci., 1998, 11, 5, 231-239, https://doi.org/10.1002/(SICI)1099-1522(1998090)11:5<231::AID-PTS437>3.0.CO;2-A
. [all data]
Chang, Seitz, et al., 1995
Chang, C.-Y.; Seitz, L.M.; Chambers, E., IV,
Volatile Flavor Components of Breads Made from Hard Red Winter Wheat and Hard White Winter Wheat,
Cereal Chem., 1995, 72, 3, 237-242. [all data]
Luning, de Rijk, et al., 1994
Luning, P.A.; de Rijk, T.; Wichers, H.J.; Roozen, J.P.,
Gas chromatography, mass spectrometry, and sniffing port analyses of volatile compounds of fresh bell peppers (Capsicum annuum) at different ripening stages,
J. Agric. Food Chem., 1994, 42, 4, 977-983, https://doi.org/10.1021/jf00040a027
. [all data]
Mattheis, Buchanan, et al., 1992
Mattheis, J.P.; Buchanan, D.A.; Fellman, J.K.,
Volatile compounds emitted by sweet cherries (Prunus avium Cv. Bing) during fruit development and ripening,
J. Agric. Food Chem., 1992, 40, 3, 471-474, https://doi.org/10.1021/jf00015a022
. [all data]
Peng, Yang, et al., 1991, 2
Peng, C.T.; Yang, Z.C.; Ding, S.F.,
Prediction of rentention idexes. II. Structure-retention index relationship on polar columns,
J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy S°gas Entropy of gas at standard conditions T Temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.