Benzene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas19.8 ± 0.2kcal/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfgas19.8kcal/molN/AGood and Smith, 1969Value computed using ΔfHliquid° value of 49.0±0.5 kj/mol from Good and Smith, 1969 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB
Δfgas19.82 ± 0.12kcal/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfgas19.1kcal/molN/ALandrieu, Baylocq, et al., 1929Value computed using ΔfHliquid° value of 46.0 kj/mol from Landrieu, Baylocq, et al., 1929 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
7.95250.Thermodynamics Research Center, 1997GT
8.391100.
10.02150.
12.71200.
17.82273.15
19.70298.15
19.84300.
27.132400.
33.305500.
38.262600.
42.251700.
45.519800.
48.236900.
50.5281000.
52.4761100.
54.1401200.
55.5661300.
56.8001400.
57.8661500.
59.9691750.
61.4872000.
62.6082250.
63.4562500.
64.1092750.
64.6203000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
22.30 ± 0.01333.15Todd S.S., 1978Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Scott D.W., 1947.; GT
22.90341.60
23.42 ± 0.01348.15
24.85 ± 0.01368.15
25.100370.
25.041371.20
26.00 ± 0.30388.
26.501390.
26.40 ± 0.30393.
27.230402.30
27.32 ± 0.02403.15
27.600410.
28.10 ± 0.30417.
28.40 ± 0.30428.
29.491436.15
29.62 ± 0.02438.15
30.30 ± 0.30463.
31.649471.10
31.77 ± 0.02473.15
31.40 ± 0.30481.
33.33 ± 0.02500.15
34.80 ± 0.02527.15

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Chlorine anion + Benzene = (Chlorine anion • Benzene)

By formula: Cl- + C6H6 = (Cl- • C6H6)

Quantity Value Units Method Reference Comment
Δr6.00 ± 0.46kcal/molN/ATschurl, Ueberfluss, et al., 2007gas phase; B
Δr9.4 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.90kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr8.7kcal/molPHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr10.4kcal/molPHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.cal/mol*KN/APaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr17.1cal/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr22.cal/mol*KN/ASunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.0 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr3.8 ± 1.6kcal/molIMREChowdhury and Kebarle, 1986gas phase; B
Δr4.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr3.80kcal/molIMREFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.6300.PHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
3.8300.PHPMSChowdhury and Kebarle, 1986gas phase; M
3.8300.PHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M

C6H5- + Hydrogen cation = Benzene

By formula: C6H5- + H+ = C6H6

Quantity Value Units Method Reference Comment
Δr401.22 ± 0.50kcal/molG+TSDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr401.16 ± 0.21kcal/molD-EAGunion, Gilles, et al., 1992gas phase; B
Δr400.7 ± 2.5kcal/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr401. ± 10.kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr398.0 ± 5.6kcal/molG+TSBohme and Young, 1971gas phase; B
Quantity Value Units Method Reference Comment
Δr392.40 ± 0.40kcal/molIMREDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr390.9 ± 2.0kcal/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr390.1 ± 6.5kcal/molIMRBBartmess and McIver Jr., 1979gas phase; B
Δr389.2 ± 5.5kcal/molIMRBBohme and Young, 1971gas phase; B

C6H6+ + Benzene = (C6H6+ • Benzene)

By formula: C6H6+ + C6H6 = (C6H6+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14. ± 8.kcal/molAVGN/AAverage of 7 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr28.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Δr27.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Δr23.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; M

Lithium ion (1+) + Benzene = (Lithium ion (1+) • Benzene)

By formula: Li+ + C6H6 = (Li+ • C6H6)

Quantity Value Units Method Reference Comment
Δr38.5 ± 3.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr37.9kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr36.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr27.5cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr29.7kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

Bromine anion + Benzene = (Bromine anion • Benzene)

By formula: Br- + C6H6 = (Br- • C6H6)

Quantity Value Units Method Reference Comment
Δr9.0 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.0cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr2.5 ± 1.0kcal/molIMREPaul and Kebarle, 1991gas phase; B
Δr3.9 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
0.0423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

(Sodium ion (1+) • Benzene) + Benzene = (Sodium ion (1+) • 2Benzene)

By formula: (Na+ • C6H6) + C6H6 = (Na+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr20. ± 1.kcal/molAVGN/AAverage of 7 values; Individual data points

Sodium ion (1+) + Benzene = (Sodium ion (1+) • Benzene)

By formula: Na+ + C6H6 = (Na+ • C6H6)

Quantity Value Units Method Reference Comment
Δr22.8 ± 1.4kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr21.1 ± 1.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr21.1 ± 1.1kcal/molCIDTArmentrout and Rodgers, 2000RCD
Δr28.0kcal/molHPMSGuo, Purnell, et al., 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr31.2cal/mol*KHPMSGuo, Purnell, et al., 1990gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
15.7298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

C9H13N+ + Benzene = (C9H13N+ • Benzene)

By formula: C9H13N+ + C6H6 = (C9H13N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr11.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.6331.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C7H9N+ + Benzene = (C7H9N+ • Benzene)

By formula: C7H9N+ + C6H6 = (C7H9N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.6kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C8H11N+ + Benzene = (C8H11N+ • Benzene)

By formula: C8H11N+ + C6H6 = (C8H11N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr10.0kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr2.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C10H10Fe+ + Benzene = (C10H10Fe+ • Benzene)

By formula: C10H10Fe+ + C6H6 = (C10H10Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr8.kcal/molPHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.0252.PHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

(Cobalt ion (1+) • Benzene) + Benzene = (Cobalt ion (1+) • 2Benzene)

By formula: (Co+ • C6H6) + C6H6 = (Co+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr39.9 ± 3.3kcal/molCIDTMeyer, Khan, et al., 1995RCD
Quantity Value Units Method Reference Comment
Δr27.8cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
39.9 (+3.2,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M
27.0 (+1.0,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

C7H8+ + Benzene = (C7H8+ • Benzene)

By formula: C7H8+ + C6H6 = (C7H8+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molMPIErnstberger, Krause, et al., 1990gas phase; M
Δr5.5kcal/molPIRuhl, Bisling, et al., 1986gas phase; from vIP of perpendicular dimer; M
Δr12.4kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C2H7O+ + Benzene = (C2H7O+ • Benzene)

By formula: C2H7O+ + C6H6 = (C2H7O+ • C6H6)

Quantity Value Units Method Reference Comment
Δr21.kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.7491.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

(Potassium ion (1+) • Benzene • Water) + Benzene = (Potassium ion (1+) • 2Benzene • Water)

By formula: (K+ • C6H6 • H2O) + C6H6 = (K+ • 2C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr14.4kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr30.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M

(Potassium ion (1+) • 2Water • Benzene) + Water = (Potassium ion (1+) • 3Water • Benzene)

By formula: (K+ • 2H2O • C6H6) + H2O = (K+ • 3H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr11.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)4H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr26.3cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)4H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Water • Benzene) + Water = (Potassium ion (1+) • 2Water • Benzene)

By formula: (K+ • H2O • C6H6) + H2O = (K+ • 2H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr12.7kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)3H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr21.4cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)3H2O; Searles and Kebarle, 1969; M

Iodide + Benzene = (Iodide • Benzene)

By formula: I- + C6H6 = (I- • C6H6)

Quantity Value Units Method Reference Comment
Δr6.1 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.1 ± 1.0kcal/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr14.2cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.8 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

C3H3+ + Benzene = (C3H3+ • Benzene)

By formula: C3H3+ + C6H6 = (C3H3+ • C6H6)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr9.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr6.kcal/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M

(Potassium ion (1+) • Water • 2Benzene) + Water = (Potassium ion (1+) • 2Water • 2Benzene)

By formula: (K+ • H2O • 2C6H6) + H2O = (K+ • 2H2O • 2C6H6)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr29.4cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M

(C6H6+ • 2Benzene) + Benzene = (C6H6+ • 3Benzene)

By formula: (C6H6+ • 2C6H6) + C6H6 = (C6H6+ • 3C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.0kcal/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M

(Potassium ion (1+) • Benzene • 2Water) + Benzene = (Potassium ion (1+) • 2Benzene • 2Water)

By formula: (K+ • C6H6 • 2H2O) + C6H6 = (K+ • 2C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr12.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr33.7cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M

Chromium ion (1+) + Benzene = (Chromium ion (1+) • Benzene)

By formula: Cr+ + C6H6 = (Cr+ • C6H6)

Quantity Value Units Method Reference Comment
Δr40.2kcal/molMIDLin, Chen, et al., 1997RCD
Δr39.2 ± 3.3kcal/molRAKLin and Dunbar, 1997RCD
Δr40.6 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
40.6 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Potassium ion (1+) • 2Benzene) + Water = (Potassium ion (1+) • Water • 2Benzene)

By formula: (K+ • 2C6H6) + H2O = (K+ • H2O • 2C6H6)

Quantity Value Units Method Reference Comment
Δr13.7kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 2H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr26.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 2H2O)C6H6; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Benzene) + Water = (Potassium ion (1+) • Water • Benzene)

By formula: (K+ • C6H6) + H2O = (K+ • H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr18.1kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ C6H6)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr29.9cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ C6H6)C6H6; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 2Water) + Benzene = (Potassium ion (1+) • Benzene • 2Water)

By formula: (K+ • 2H2O) + C6H6 = (K+ • C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 3Water) + Benzene = (Potassium ion (1+) • Benzene • 3Water)

By formula: (K+ • 3H2O) + C6H6 = (K+ • C6H6 • 3H2O)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Water) + Benzene = (Potassium ion (1+) • Benzene • Water)

By formula: (K+ • H2O) + C6H6 = (K+ • C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr16.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M

(Chromium ion (1+) • Benzene) + Benzene = (Chromium ion (1+) • 2Benzene)

By formula: (Cr+ • C6H6) + C6H6 = (Cr+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr50.7 ± 9.1kcal/molRAKLin and Dunbar, 1997RCD
Δr55.4 ± 4.3kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
55.3 (+4.4,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Fluorine anion + Benzene = (Fluorine anion • Benzene)

By formula: F- + C6H6 = (F- • C6H6)

Quantity Value Units Method Reference Comment
Δr15.30kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.5cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr9.40kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

Manganese ion (1+) + Benzene = (Manganese ion (1+) • Benzene)

By formula: Mn+ + C6H6 = (Mn+ • C6H6)

Quantity Value Units Method Reference Comment
Δr34.4kcal/molMIDLin, Chen, et al., 1997RCD
Δr31.8 ± 2.2kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.8 (+2.1,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Vanadium ion (1+) + Benzene = (Vanadium ion (1+) • Benzene)

By formula: V+ + C6H6 = (V+ • C6H6)

Quantity Value Units Method Reference Comment
Δr>55.kcal/molRAKGapeev and Dunbar, 2002RCD
Δr55.9 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
55.8 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Iron ion (1+) + Benzene = (Iron ion (1+) • Benzene)

By formula: Fe+ + C6H6 = (Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr47.1kcal/molRAKGapeev and Dunbar, 2002RCD
Δr49.5 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
49.6 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Titanium ion (1+) + Benzene = (Titanium ion (1+) • Benzene)

By formula: Ti+ + C6H6 = (Ti+ • C6H6)

Quantity Value Units Method Reference Comment
Δr50.9kcal/molRAKGapeev and Dunbar, 2002RCD
Δr61.9 ± 2.2kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
61.8 (+2.1,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Potassium ion (1+) • Benzene) + Benzene = (Potassium ion (1+) • 2Benzene)

By formula: (K+ • C6H6) + C6H6 = (K+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr16.1 ± 1.7kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr18.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr33.9cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

C4H9+ + Benzene = (C4H9+ • Benzene)

By formula: C4H9+ + C6H6 = (C4H9+ • C6H6)

Quantity Value Units Method Reference Comment
Δr22.kcal/molPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M
Quantity Value Units Method Reference Comment
Δr49.cal/mol*KPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M

(C6H6+ • Benzene) + Benzene = (C6H6+ • 2Benzene)

By formula: (C6H6+ • C6H6) + C6H6 = (C6H6+ • 2C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.8 ± 0.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr19.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M

Potassium ion (1+) + Benzene = (Potassium ion (1+) • Benzene)

By formula: K+ + C6H6 = (K+ • C6H6)

Quantity Value Units Method Reference Comment
Δr17.5 ± 0.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr19.2kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr24.6cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

C6H7N+ + Benzene = (C6H7N+ • Benzene)

By formula: C6H7N+ + C6H6 = (C6H7N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr11.9kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C11H10+ + Benzene = (C11H10+ • Benzene)

By formula: C11H10+ + C6H6 = (C11H10+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

C6H5Cl+ + Benzene = (C6H5Cl+ • Benzene)

By formula: C6H5Cl+ + C6H6 = (C6H5Cl+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14.0kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C9H12+ + Benzene = (C9H12+ • Benzene)

By formula: C9H12+ + C6H6 = (C9H12+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

Nitric oxide anion + Benzene = (Nitric oxide anion • Benzene)

By formula: NO- + C6H6 = (NO- • C6H6)

Quantity Value Units Method Reference Comment
Δr41.1kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

(Iron ion (1+) • Benzene) + Benzene = (Iron ion (1+) • 2Benzene)

By formula: (Fe+ • C6H6) + C6H6 = (Fe+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr44.7 ± 3.8kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
44.7 (+3.9,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Titanium ion (1+) • Benzene) + Benzene = (Titanium ion (1+) • 2Benzene)

By formula: (Ti+ • C6H6) + C6H6 = (Ti+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr60.5 ± 4.3kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
60.4 (+4.4,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Manganese ion (1+) • Benzene) + Benzene = (Manganese ion (1+) • 2Benzene)

By formula: (Mn+ • C6H6) + C6H6 = (Mn+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr48.5 ± 3.8kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
48.4 (+3.9,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • Benzene) + Benzene = (Nickel ion (1+) • 2Benzene)

By formula: (Ni+ • C6H6) + C6H6 = (Ni+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr35.1 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
35.1 (+2.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • Benzene) + Benzene = (Copper ion (1+) • 2Benzene)

By formula: (Cu+ • C6H6) + C6H6 = (Cu+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr37.0 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
37.1 (+2.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(CAS Reg. No. 79431-04-2 • 4294967295Benzene) + Benzene = CAS Reg. No. 79431-04-2

By formula: (CAS Reg. No. 79431-04-2 • 4294967295C6H6) + C6H6 = CAS Reg. No. 79431-04-2

Quantity Value Units Method Reference Comment
Δr21.5 ± 4.2kcal/molTherLee and Squires, 1986gas phase; Between SiH4, tBuOH; value altered from reference due to change in acidity scale; B

Nickel ion (1+) + Benzene = (Nickel ion (1+) • Benzene)

By formula: Ni+ + C6H6 = (Ni+ • C6H6)

Quantity Value Units Method Reference Comment
Δr58.1 ± 2.6kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
58.1 (+2.5,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C6H6+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.24378 ± 0.00007eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)179.3kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity173.4kcal/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
178.4Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kcal/mol) Reference Comment
172.5Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
9.24384 ± 0.00006TENemeth, Selzle, et al., 1993LL
9.24372 ± 0.00005TEChewter, Sander, et al., 1987LBLHLM
9.20EIStahl and Maquin, 1984LBLHLM
9.2459 ± 0.0002SGrubb, Whetten, et al., 1984LBLHLM
9.23 ± 0.03EIArimura and Yoshikawa, 1984LBLHLM
9.25PEKlasinc, Kovac, et al., 1983LBLHLM
9.23PECetinkaya, Lappert, et al., 1983LBLHLM
9.25PEKimura, Katsumata, et al., 1981LLK
9.240 ± 0.002LSDuncan, Dietz, et al., 1981LLK
9.44EIClare and Sowerby, 1981LLK
9.25PEBieri and Asbrink, 1980LLK
9.22PESell, Mintz, et al., 1978LLK
9.24PEMattsson, Karlsson, et al., 1977LLK
9.25 ± 0.02PEBieri, Burger, et al., 1977LLK
9.25 ± 0.07EISelim, 1976LLK
9.24PEBehan, Johnstone, et al., 1976LLK
9.70EIBaldwin, Loudon, et al., 1976LLK
9.25CTSPitt, 1973LLK
9.2 ± 0.1EITajima, Shimizu, et al., 1972LLK
9.26 ± 0.06EIFinney and Harrison, 1972LLK
9.27PEChizhov, Kleimenov, et al., 1972LLK
9.24 ± 0.01PISergeev, Akopyan, et al., 1970RDSH
9.25 ± 0.01PIDemeo and El-Sayed, 1970RDSH
9.36 ± 0.05EIBuchs, 1970RDSH
9.241 ± 0.001PEAsbrink, Lindholm, et al., 1970RDSH
9.241TEPeatman, Borne, et al., 1969RDSH
9.24 ± 0.01PEDewar and Worley, 1969RDSH
9.25 ± 0.01PIMomigny, Goffart, et al., 1968RDSH
9.20 ± 0.04EIBock, Seidl, et al., 1968RDSH
9.24PEBaker, May, et al., 1968RDSH
9.25PEBaker, Brundle, et al., 1968RDSH
9.25 ± 0.02PEClark and Frost, 1967RDSH
9.26 ± 0.02EINounou, 1966RDSH
9.246 ± 0.005PIBrehm, 1966RDSH
9.241 ± 0.006PINicholson, 1965RDSH
9.24 ± 0.01PIDibeler and Reese, 1964RDSH
9.25PEAl-Joboury and Turner, 1964RDSH
9.2PITerenin, 1961RDSH
9.248SEl-Sayed, Kaaba, et al., 1961RDSH
9.247 ± 0.002SWilkinson, 1956RDSH
9.25 ± 0.01PIWatanabe, 1954RDSH
9.8 ± 0.1EIHustrulid, Kusch, et al., 1938RDSH
9.242 ± 0.005SPrice and Wood, 1935RDSH
9.23PEHowell, Goncalves, et al., 1984Vertical value; LBLHLM
9.25PEKovac, Mohraz, et al., 1980Vertical value; LLK
9.25PEKaim, Tesmann, et al., 1980Vertical value; LLK
9.22PESell and Kupperman, 1978Vertical value; LLK
9.23PEKobayashi, 1978Vertical value; LLK
9.3PEKlasinc, Novak, et al., 1978Vertical value; LLK
9.24 ± 0.02PESchmidt, 1977Vertical value; LLK
9.25 ± 0.05PEGower, Kane-Maguire, et al., 1977Vertical value; LLK
9.24PEBock, Kaim, et al., 1977Vertical value; LLK
9.24PEClar and Schmidt, 1976Vertical value; LLK
9.23PEKobayashi and Nagakura, 1975Vertical value; LLK
9.24PEBischof, Dewar, et al., 1974Vertical value; LLK
9.24PESchafer and Schweig, 1972Vertical value; LLK
9.25 ± 0.03PEKlessinger, 1972Vertical value; LLK
9.24PEBock, Wagner, et al., 1972Vertical value; LLK
9.2PECarlson and Anderson, 1971Vertical value; LLK
9.24PEBock and Fuss, 1971Vertical value; LLK
9.24PEGleiter, Heilbronner, et al., 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+28.2 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
C2H2+19. ± 0.4?EILifshitz and Reuben, 1969RDSH
C2H2+18.6?EINatalis and Franklin, 1965RDSH
C2H2+32.6 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
C2H3+19. ± 0.4?EILifshitz and Reuben, 1969RDSH
C3H3+13.43?LSKuhlewind, Kiermeier, et al., 1986LBLHLM
C3H3+15.34 ± 0.06C3H3EISelim, 1976LLK
C3H3+16.90C3H3PEEland, Frey, et al., 1976LLK
C3H3+13.79C3H3PIRosenstock, Larkins, et al., 1973LLK
C3H3+14.7 ± 0.1?EILifshitz and Reuben, 1969RDSH
C4H2+17.5 ± 0.3?EILifshitz and Reuben, 1969RDSH
C4H3+18.48 ± 0.07H+C2H2EISelim, 1976LLK
C4H3+17.6 ± 0.1?EILifshitz and Reuben, 1969RDSH
C4H4+13.40C2H2LSKuhlewind, Kiermeier, et al., 1986T = 0K; LBLHLM
C4H4+13.9 ± 0.1C2H2EIRosenstock, McCulloh, et al., 1977LLK
C4H4+14.17 ± 0.08C2H2PIRosenstock, McCulloh, et al., 1977LLK
C4H4+14.85C2H2PEEland, Frey, et al., 1976LLK
C4H4+13.85C2H2PIRosenstock, Larkins, et al., 1973LLK
C4H4+14.1C2H2EIHickling and Jennings, 1970RDSH
C4H4+14.5 ± 0.2C2H2EILifshitz and Reuben, 1969RDSH
C5H3+15.7 ± 0.1CH3EILifshitz and Reuben, 1969RDSH
C6H+29. ± 2.?EILifshitz and Reuben, 1969RDSH
C6H4+12.93H2LSKuhlewind, Kiermeier, et al., 1986T = 0K; LBLHLM
C6H4+14.14 ± 0.08H2EISelim, 1976LLK
C6H4+12.94H2PIRosenstock, Larkins, et al., 1973LLK
C6H4+14.04 ± 0.06H2EIBentley, Johnstone, et al., 1973LLK
C6H4+14.09 ± 0.07H2EINatalis and Franklin, 1965RDSH
C6H5+13.12 ± 0.05HEVALKlippenstein, Faulk, et al., 1993T = 0K; LL
C6H5+12.90HLSKuhlewind, Kiermeier, et al., 1986T = 0K; LBLHLM
C6H5+13.7 ± 0.1HEIRosenstock, McCulloh, et al., 1977LLK
C6H5+13.78 ± 0.08HPIRosenstock, McCulloh, et al., 1977LLK
C6H5+14.56 ± 0.07HEISelim, 1976LLK
C6H5+12.94HPIRosenstock, Larkins, et al., 1973LLK
C6H5+13.97 ± 0.06HEIBentley, Johnstone, et al., 1973LLK
C6H5+14.1 ± 0.1HEIGross, 1972LLK
C6H5+13.80 ± 0.03HPISergeev, Akopyan, et al., 1970RDSH
C6H5+14.1 ± 0.1HEILifshitz and Reuben, 1969RDSH
C6H5+13.8 ± 0.1HPIBrehm, 1966RDSH
C6H71-43-24+14.2 ± 0.2H2EILifshitz and Reuben, 1969RDSH

De-protonation reactions

C6H5- + Hydrogen cation = Benzene

By formula: C6H5- + H+ = C6H6

Quantity Value Units Method Reference Comment
Δr401.22 ± 0.50kcal/molG+TSDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr401.16 ± 0.21kcal/molD-EAGunion, Gilles, et al., 1992gas phase; B
Δr400.7 ± 2.5kcal/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr401. ± 10.kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr398.0 ± 5.6kcal/molG+TSBohme and Young, 1971gas phase; B
Quantity Value Units Method Reference Comment
Δr392.40 ± 0.40kcal/molIMREDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr390.9 ± 2.0kcal/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr390.1 ± 6.5kcal/molIMRBBartmess and McIver Jr., 1979gas phase; B
Δr389.2 ± 5.5kcal/molIMRBBohme and Young, 1971gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Benzene = (Silver ion (1+) • Benzene)

By formula: Ag+ + C6H6 = (Ag+ • C6H6)

Quantity Value Units Method Reference Comment
Δr37.3 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr39.9 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

(Silver ion (1+) • Benzene) + Benzene = (Silver ion (1+) • 2Benzene)

By formula: (Ag+ • C6H6) + C6H6 = (Ag+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr39.9 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

Aluminum ion (1+) + Benzene = (Aluminum ion (1+) • Benzene)

By formula: Al+ + C6H6 = (Al+ • C6H6)

Quantity Value Units Method Reference Comment
Δr35.1 ± 1.9kcal/molRAKDunbar, Klippenstein, et al., 1996RCD

Gold ion (1+) + Benzene = (Gold ion (1+) • Benzene)

By formula: Au+ + C6H6 = (Au+ • C6H6)

Quantity Value Units Method Reference Comment
Δr70.0kcal/molIMRBSchroeder, Hrusak, et al., 1995RCD

Bismuth ion (1+) + Benzene = (Bismuth ion (1+) • Benzene)

By formula: Bi+ + C6H6 = (Bi+ • C6H6)

Quantity Value Units Method Reference Comment
Δr<35.5kcal/molPDisWilley, Yeh, et al., 1992RCD

Bromine anion + Benzene = (Bromine anion • Benzene)

By formula: Br- + C6H6 = (Br- • C6H6)

Quantity Value Units Method Reference Comment
Δr9.0 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.0cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr2.5 ± 1.0kcal/molIMREPaul and Kebarle, 1991gas phase; B
Δr3.9 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
0.0423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

CH6N+ + Benzene = (CH6N+ • Benzene)

By formula: CH6N+ + C6H6 = (CH6N+ • C6H6)

Quantity Value Units Method Reference Comment
Δr18.8kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr25.1cal/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

C2H7O+ + Benzene = (C2H7O+ • Benzene)

By formula: C2H7O+ + C6H6 = (C2H7O+ • C6H6)

Quantity Value Units Method Reference Comment
Δr21.kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.7491.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

C3H3+ + Benzene = (C3H3+ • Benzene)

By formula: C3H3+ + C6H6 = (C3H3+ • C6H6)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr9.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr6.kcal/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M

C3H9Si+ + Benzene = (C3H9Si+ • Benzene)

By formula: C3H9Si+ + C6H6 = (C3H9Si+ • C6H6)

Quantity Value Units Method Reference Comment
Δr23.9kcal/molPHPMSWojtyniak and Stone, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr34.7cal/mol*KPHPMSWojtyniak and Stone, 1986gas phase; M

C3H10N+ + Benzene = (C3H10N+ • Benzene)

By formula: C3H10N+ + C6H6 = (C3H10N+ • C6H6)

Quantity Value Units Method Reference Comment
Δr15.9kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr27.7cal/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

C4H4S+ + Benzene = (C4H4S+ • Benzene)

By formula: C4H4S+ + C6H6 = (C4H4S+ • C6H6)

Quantity Value Units Method Reference Comment
Δr13.kcal/molHPMSField, Hamlet, et al., 1969gas phase; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; M

C4H9+ + Benzene = (C4H9+ • Benzene)

By formula: C4H9+ + C6H6 = (C4H9+ • C6H6)

Quantity Value Units Method Reference Comment
Δr22.kcal/molPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M
Quantity Value Units Method Reference Comment
Δr49.cal/mol*KPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M

C6H5Cl+ + Benzene = (C6H5Cl+ • Benzene)

By formula: C6H5Cl+ + C6H6 = (C6H5Cl+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14.0kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C6H6+ + Benzene = (C6H6+ • Benzene)

By formula: C6H6+ + C6H6 = (C6H6+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14. ± 8.kcal/molAVGN/AAverage of 7 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr28.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Δr27.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Δr23.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; M

(C6H6+ • Benzene) + Benzene = (C6H6+ • 2Benzene)

By formula: (C6H6+ • C6H6) + C6H6 = (C6H6+ • 2C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.8 ± 0.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr19.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M

(C6H6+ • 2Benzene) + Benzene = (C6H6+ • 3Benzene)

By formula: (C6H6+ • 2C6H6) + C6H6 = (C6H6+ • 3C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.0kcal/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M

(C6H6+ • 5Benzene) + Benzene = (C6H6+ • 6Benzene)

By formula: (C6H6+ • 5C6H6) + C6H6 = (C6H6+ • 6C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.5kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 6Benzene) + Benzene = (C6H6+ • 7Benzene)

By formula: (C6H6+ • 6C6H6) + C6H6 = (C6H6+ • 7C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.3kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 7Benzene) + Benzene = (C6H6+ • 8Benzene)

By formula: (C6H6+ • 7C6H6) + C6H6 = (C6H6+ • 8C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.0kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 8Benzene) + Benzene = (C6H6+ • 9Benzene)

By formula: (C6H6+ • 8C6H6) + C6H6 = (C6H6+ • 9C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.9kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 9Benzene) + Benzene = (C6H6+ • 10Benzene)

By formula: (C6H6+ • 9C6H6) + C6H6 = (C6H6+ • 10C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.8kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 10Benzene) + Benzene = (C6H6+ • 11Benzene)

By formula: (C6H6+ • 10C6H6) + C6H6 = (C6H6+ • 11C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.8kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 11Benzene) + Benzene = (C6H6+ • 12Benzene)

By formula: (C6H6+ • 11C6H6) + C6H6 = (C6H6+ • 12C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.0kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 12Benzene) + Benzene = (C6H6+ • 13Benzene)

By formula: (C6H6+ • 12C6H6) + C6H6 = (C6H6+ • 13C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.3kcal/molPDissBeck and Hecht, 1991gas phase; M

(C6H6+ • 13Benzene) + Benzene = (C6H6+ • 14Benzene)

By formula: (C6H6+ • 13C6H6) + C6H6 = (C6H6+ • 14C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr8.1kcal/molPDissBeck and Hecht, 1991gas phase; M

C6H6NO- + 2Benzene = C12H12NO-

By formula: C6H6NO- + 2C6H6 = C12H12NO-

Quantity Value Units Method Reference Comment
Δr17.5 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C6H7+ + Benzene = (C6H7+ • Benzene)

By formula: C6H7+ + C6H6 = (C6H7+ • C6H6)

Quantity Value Units Method Reference Comment
Δr11.0kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C6H7N+ + Benzene = (C6H7N+ • Benzene)

By formula: C6H7N+ + C6H6 = (C6H7N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr11.9kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C7H8+ + Benzene = (C7H8+ • Benzene)

By formula: C7H8+ + C6H6 = (C7H8+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molMPIErnstberger, Krause, et al., 1990gas phase; M
Δr5.5kcal/molPIRuhl, Bisling, et al., 1986gas phase; from vIP of perpendicular dimer; M
Δr12.4kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C7H9N+ + Benzene = (C7H9N+ • Benzene)

By formula: C7H9N+ + C6H6 = (C7H9N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.6kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C8H11N+ + Benzene = (C8H11N+ • Benzene)

By formula: C8H11N+ + C6H6 = (C8H11N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr10.0kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr2.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C9H12+ + Benzene = (C9H12+ • Benzene)

By formula: C9H12+ + C6H6 = (C9H12+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C9H13N+ + Benzene = (C9H13N+ • Benzene)

By formula: C9H13N+ + C6H6 = (C9H13N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr11.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.6331.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C10H10Fe+ + Benzene = (C10H10Fe+ • Benzene)

By formula: C10H10Fe+ + C6H6 = (C10H10Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr8.kcal/molPHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.0252.PHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

C11H10+ + Benzene = (C11H10+ • Benzene)

By formula: C11H10+ + C6H6 = (C11H10+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

Cadmium ion (1+) + Benzene = (Cadmium ion (1+) • Benzene)

By formula: Cd+ + C6H6 = (Cd+ • C6H6)

Quantity Value Units Method Reference Comment
Δr32.5 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

Chlorine anion + Benzene = (Chlorine anion • Benzene)

By formula: Cl- + C6H6 = (Cl- • C6H6)

Quantity Value Units Method Reference Comment
Δr6.00 ± 0.46kcal/molN/ATschurl, Ueberfluss, et al., 2007gas phase; B
Δr9.4 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.90kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr8.7kcal/molPHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr10.4kcal/molPHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.cal/mol*KN/APaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr17.1cal/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr22.cal/mol*KN/ASunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.0 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr3.8 ± 1.6kcal/molIMREChowdhury and Kebarle, 1986gas phase; B
Δr4.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr3.80kcal/molIMREFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.6300.PHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
3.8300.PHPMSChowdhury and Kebarle, 1986gas phase; M
3.8300.PHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Benzene = (Cobalt ion (1+) • Benzene)

By formula: Co+ + C6H6 = (Co+ • C6H6)

Quantity Value Units Method Reference Comment
Δr61.2 ± 2.6kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
61.1 (+2.5,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Cobalt ion (1+) • Benzene) + Benzene = (Cobalt ion (1+) • 2Benzene)

By formula: (Co+ • C6H6) + C6H6 = (Co+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr39.9 ± 3.3kcal/molCIDTMeyer, Khan, et al., 1995RCD
Quantity Value Units Method Reference Comment
Δr27.8cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
39.9 (+3.2,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M
27.0 (+1.0,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Chromium ion (1+) + Benzene = (Chromium ion (1+) • Benzene)

By formula: Cr+ + C6H6 = (Cr+ • C6H6)

Quantity Value Units Method Reference Comment
Δr40.2kcal/molMIDLin, Chen, et al., 1997RCD
Δr39.2 ± 3.3kcal/molRAKLin and Dunbar, 1997RCD
Δr40.6 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
40.6 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Chromium ion (1+) • Benzene) + Benzene = (Chromium ion (1+) • 2Benzene)

By formula: (Cr+ • C6H6) + C6H6 = (Cr+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr50.7 ± 9.1kcal/molRAKLin and Dunbar, 1997RCD
Δr55.4 ± 4.3kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
55.3 (+4.4,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Cesium ion (1+) + Benzene = (Cesium ion (1+) • Benzene)

By formula: Cs+ + C6H6 = (Cs+ • C6H6)

Quantity Value Units Method Reference Comment
Δr15.4 ± 1.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD

(Cesium ion (1+) • Benzene) + Benzene = (Cesium ion (1+) • 2Benzene)

By formula: (Cs+ • C6H6) + C6H6 = (Cs+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr14.0 ± 1.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD

Copper ion (1+) + Benzene = (Copper ion (1+) • Benzene)

By formula: Cu+ + C6H6 = (Cu+ • C6H6)

Quantity Value Units Method Reference Comment
Δr52.1 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
52.1 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • Benzene) + Benzene = (Copper ion (1+) • 2Benzene)

By formula: (Cu+ • C6H6) + C6H6 = (Cu+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr37.0 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
37.1 (+2.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Fluorine anion + Benzene = (Fluorine anion • Benzene)

By formula: F- + C6H6 = (F- • C6H6)

Quantity Value Units Method Reference Comment
Δr15.30kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.5cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr9.40kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

Iron ion (1+) + Benzene = (Iron ion (1+) • Benzene)

By formula: Fe+ + C6H6 = (Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr47.1kcal/molRAKGapeev and Dunbar, 2002RCD
Δr49.5 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
49.6 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Iron ion (1+) • Benzene) + Benzene = (Iron ion (1+) • 2Benzene)

By formula: (Fe+ • C6H6) + C6H6 = (Fe+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr44.7 ± 3.8kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
44.7 (+3.9,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

NH4+ + Benzene = (NH4+ • Benzene)

By formula: H4N+ + C6H6 = (H4N+ • C6H6)

Quantity Value Units Method Reference Comment
Δr19.3kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr23.3cal/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

(NH4+ • Benzene) + Benzene = (NH4+ • 2Benzene)

By formula: (H4N+ • C6H6) + C6H6 = (H4N+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr17.0kcal/molPHPMSLiebman, Romm, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr30.5cal/mol*KPHPMSLiebman, Romm, et al., 1991gas phase; M

(NH4+ • 2Benzene) + Benzene = (NH4+ • 3Benzene)

By formula: (H4N+ • 2C6H6) + C6H6 = (H4N+ • 3C6H6)

Quantity Value Units Method Reference Comment
Δr14.2kcal/molPHPMSLiebman, Romm, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr32.9cal/mol*KPHPMSLiebman, Romm, et al., 1991gas phase; M

Iodide + Benzene = (Iodide • Benzene)

By formula: I- + C6H6 = (I- • C6H6)

Quantity Value Units Method Reference Comment
Δr6.1 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.1 ± 1.0kcal/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr14.2cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.8 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

Potassium ion (1+) + Benzene = (Potassium ion (1+) • Benzene)

By formula: K+ + C6H6 = (K+ • C6H6)

Quantity Value Units Method Reference Comment
Δr17.5 ± 0.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr19.2kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr24.6cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

(Potassium ion (1+) • Benzene) + Benzene = (Potassium ion (1+) • 2Benzene)

By formula: (K+ • C6H6) + C6H6 = (K+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr16.1 ± 1.7kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr18.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr33.9cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

(Potassium ion (1+) • 2Benzene) + Benzene = (Potassium ion (1+) • 3Benzene)

By formula: (K+ • 2C6H6) + C6H6 = (K+ • 3C6H6)

Quantity Value Units Method Reference Comment
Δr14.5kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr32.7cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

(Potassium ion (1+) • 3Benzene) + Benzene = (Potassium ion (1+) • 4Benzene)

By formula: (K+ • 3C6H6) + C6H6 = (K+ • 4C6H6)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr41.4cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

(Potassium ion (1+) • Benzene • Water) + Benzene = (Potassium ion (1+) • 2Benzene • Water)

By formula: (K+ • C6H6 • H2O) + C6H6 = (K+ • 2C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr14.4kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr30.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M

(Potassium ion (1+) • Benzene • 2Water) + Benzene = (Potassium ion (1+) • 2Benzene • 2Water)

By formula: (K+ • C6H6 • 2H2O) + C6H6 = (K+ • 2C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr12.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr33.7cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Water) + Benzene = (Potassium ion (1+) • Benzene • Water)

By formula: (K+ • H2O) + C6H6 = (K+ • C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr16.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 2Water) + Benzene = (Potassium ion (1+) • Benzene • 2Water)

By formula: (K+ • 2H2O) + C6H6 = (K+ • C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 3Water) + Benzene = (Potassium ion (1+) • Benzene • 3Water)

By formula: (K+ • 3H2O) + C6H6 = (K+ • C6H6 • 3H2O)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M

Lithium ion (1+) + Benzene = (Lithium ion (1+) • Benzene)

By formula: Li+ + C6H6 = (Li+ • C6H6)

Quantity Value Units Method Reference Comment
Δr38.5 ± 3.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr37.9kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr36.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr27.5cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr29.7kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

(Lithium ion (1+) • Benzene) + Benzene = (Lithium ion (1+) • 2Benzene)

By formula: (Li+ • C6H6) + C6H6 = (Li+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr24.9 ± 1.7kcal/molCIDTAmicangelo and Armentrout, 2000RCD

Magnesium ion (1+) + Benzene = (Magnesium ion (1+) • Benzene)

By formula: Mg+ + C6H6 = (Mg+ • C6H6)

Quantity Value Units Method Reference Comment
Δr32.0 ± 2.3kcal/molCIDTAndersen, Muntean, et al., 2000RCD
Δr37.0kcal/molRAKGapeev and Dunbar, 2000RCD

Manganese ion (1+) + Benzene = (Manganese ion (1+) • Benzene)

By formula: Mn+ + C6H6 = (Mn+ • C6H6)

Quantity Value Units Method Reference Comment
Δr34.4kcal/molMIDLin, Chen, et al., 1997RCD
Δr31.8 ± 2.2kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.8 (+2.1,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Manganese ion (1+) • Benzene) + Benzene = (Manganese ion (1+) • 2Benzene)

By formula: (Mn+ • C6H6) + C6H6 = (Mn+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr48.5 ± 3.8kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
48.4 (+3.9,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Nitric oxide anion + Benzene = C6H6NO-

By formula: NO- + C6H6 = C6H6NO-

Quantity Value Units Method Reference Comment
Δr9.5 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Benzene = (Nitric oxide anion • Benzene)

By formula: NO- + C6H6 = (NO- • C6H6)

Quantity Value Units Method Reference Comment
Δr41.1kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Sodium ion (1+) + Benzene = (Sodium ion (1+) • Benzene)

By formula: Na+ + C6H6 = (Na+ • C6H6)

Quantity Value Units Method Reference Comment
Δr22.8 ± 1.4kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr21.1 ± 1.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr21.1 ± 1.1kcal/molCIDTArmentrout and Rodgers, 2000RCD
Δr28.0kcal/molHPMSGuo, Purnell, et al., 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr31.2cal/mol*KHPMSGuo, Purnell, et al., 1990gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
15.7298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Sodium ion (1+) • Benzene) + Benzene = (Sodium ion (1+) • 2Benzene)

By formula: (Na+ • C6H6) + C6H6 = (Na+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr20. ± 1.kcal/molAVGN/AAverage of 7 values; Individual data points

Nickel ion (1+) + Benzene = (Nickel ion (1+) • Benzene)

By formula: Ni+ + C6H6 = (Ni+ • C6H6)

Quantity Value Units Method Reference Comment
Δr58.1 ± 2.6kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
58.1 (+2.5,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • Benzene) + Benzene = (Nickel ion (1+) • 2Benzene)

By formula: (Ni+ • C6H6) + C6H6 = (Ni+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr35.1 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
35.1 (+2.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Oxygen anion + Benzene = C6H6O2-

By formula: O2- + C6H6 = C6H6O2-

Quantity Value Units Method Reference Comment
Δr14.1 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Lead ion (1+) + Benzene = (Lead ion (1+) • Benzene)

By formula: Pb+ + C6H6 = (Pb+ • C6H6)

Quantity Value Units Method Reference Comment
Δr26.2kcal/molPHPMSGuo, Purnell, et al., 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr21.6cal/mol*KPHPMSGuo, Purnell, et al., 1990gas phase; M

Rubidium ion (1+) + Benzene = (Rubidium ion (1+) • Benzene)

By formula: Rb+ + C6H6 = (Rb+ • C6H6)

Quantity Value Units Method Reference Comment
Δr16.4 ± 0.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD

(Rubidium ion (1+) • Benzene) + Benzene = (Rubidium ion (1+) • 2Benzene)

By formula: (Rb+ • C6H6) + C6H6 = (Rb+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr15.0 ± 1.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD

Titanium ion (1+) + Benzene = (Titanium ion (1+) • Benzene)

By formula: Ti+ + C6H6 = (Ti+ • C6H6)

Quantity Value Units Method Reference Comment
Δr50.9kcal/molRAKGapeev and Dunbar, 2002RCD
Δr61.9 ± 2.2kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
61.8 (+2.1,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Titanium ion (1+) • Benzene) + Benzene = (Titanium ion (1+) • 2Benzene)

By formula: (Ti+ • C6H6) + C6H6 = (Ti+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr60.5 ± 4.3kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
60.4 (+4.4,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Vanadium ion (1+) + Benzene = (Vanadium ion (1+) • Benzene)

By formula: V+ + C6H6 = (V+ • C6H6)

Quantity Value Units Method Reference Comment
Δr>55.kcal/molRAKGapeev and Dunbar, 2002RCD
Δr55.9 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
55.8 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Vanadium ion (1+) • Benzene) + Benzene = (Vanadium ion (1+) • 2Benzene)

By formula: (V+ • C6H6) + C6H6 = (V+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr58.8 ± 4.4kcal/molCIDMeyer, Khan, et al., 1995gas phase; ΔrH(0k), guided ion beam CID; M,RCD

(V- • Benzene, fluoro-) + Benzene = (V- • Benzene • Benzene, fluoro-)

By formula: (V- • C6H5F) + C6H6 = (V- • C6H6 • C6H5F)

Quantity Value Units Method Reference Comment
Δr3. ± 15.kcal/molN/AJudai, Hirano, et al., 1997gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 114388

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Romand and Vodar, 1951
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 118
Instrument n.i.g.
Melting point 5.5
Boiling point 80.0

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   D6h     Symmetry Number σ = 12


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1g 1 CH str 3062  C  ia 3061.9 VS p liq.
a1g 2 Ring str 992  C  ia 991.6 VS p liq.
a2g 3 CH bend 1326  E  ia 1326 VW liq.
a2u 4 CH bend 673  B 673 S gas  ia
b1u 5 CH str 3068  C 3067.57 VW sln.  ia
b1u 6 Ring deform 1010  C 1010 W sln.  ia
b2g 7 CH bend 995  E  ia  ia OC197207)
b2g 8 Ring deform 703  E  ia  ia OC198, ν208)
b2u 9 Ring str 1310  C 1310 W liq.  ia
b2u 10 CH bend 1150  C 1150 W liq.  ia
e1g 11 CH bend 849  C  ia 848.9 M dp liq.
e1u 12 CH str 3063  E 3080 S liq.  ia FR1316)
e1u 12 CH str 3063  E 3030 S liq.  ia FR1316)
e1u 13 Ring str + deform 1486  B 1486 S gas  ia
e1u 14 CH bend 1038  B 1038 S gas  ia
e2g 15 CH str 3047  C  ia 3046.8 S dp liq.
e2g 16 Ring str 1596  E  ia 1606.4 S dp liq. FR218)
e2g 16 Ring str 1596  E  ia 1584.6 S dp liq. FR218)
e2g 17 CH bend 1178  C  ia 1178.0 S dp liq.
e2g 18 Ring deform 606  C  ia 605.6 S dp liq.
e2u 19 CH bend 975  C 975 W liq.  ia
e2u 20 Ring deform 410  C 417.7 S sln.  ia
e2u 20 Ring deform 410  C 403.0 S sln.  ia

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
iaInactive
pPolarized
dpDepolarized
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
OCFrequency estimated from an overtone or a combination tone indicated in the parentheses.
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
E15~30 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryRTX-5100.685.Ádámová, Orinák, et al., 200530. m/0.25 mm/0.25 μm, N2
CapillaryRTX-5120.694.74Ádámová, Orinák, et al., 200530. m/0.25 mm/0.25 μm, N2
CapillaryRTX-560.672.74Ádámová, Orinák, et al., 200530. m/0.25 mm/0.25 μm, N2
CapillaryRTX-580.674.03Ádámová, Orinák, et al., 200530. m/0.25 mm/0.25 μm, N2
CapillaryHP-10.651.1Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-110.648.9Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-120.657.6Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-130.650.2Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-140.646.8Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-150.645.Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-160.652.6Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
PackedSE-30160.638.Kurbatova, Finkelstein, et al., 2004Chromaton N-AW; Column length: 1. m
CapillaryHP-5100.678.8Pérez-Parajón, Santiuste, et al., 200460. m/0.25 mm/0.25 μm
CapillaryHP-5120.683.3Pérez-Parajón, Santiuste, et al., 200460. m/0.25 mm/0.25 μm
CapillarySqualane70.641.51Soják, 2004H2
CapillarySqualane70.641.45Soják, 2004N2
CapillarySqualane70.641.96Soják, 2004N2
CapillaryDB-1313.649.89Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1323.651.77Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1333.653.93Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1343.656.09Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1353.658.35Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1363.660.36Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1373.663.60Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1383.664.40Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1393.666.96Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1403.670.44Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1413.672.02Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-1423.674.86Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5313.666.03Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5323.667.42Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5333.669.56Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5343.671.74Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5353.673.50Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5363.675.70Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5373.677.75Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5383.680.27Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5393.681.27Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5403.683.59Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5413.685.29Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
CapillaryDB-5423.687.79Ciaznska-Halarewicz and Kowalska, 200330. m/0.32 mm/1. μm
PackedOV-1130.672.Gurevich and Roshchina, 2003He or N2, Gas-Chrom Q
CapillarySE-30160.684.6Santiuste, Harangi, et al., 2003 
CapillaryHP-5120.682.5Santiuste, Harangi, et al., 2003 
CapillaryHP-5120.676.Santiuste J.M. and Takacs J.M., 200360. m/0.25 mm/0.25 μm, N2
CapillaryHP-5140.686.4Santiuste J.M. and Takacs J.M., 200360. m/0.25 mm/0.25 μm, N2
CapillaryMethyl Silicone150.670.45Berezkin, Korolev, et al., 2002He; Column length: 15. m; Column diameter: 0.24 mm
CapillarySqualane50.636.6Wick, Siepmann, et al., 200230. m/0.25 mm/0.25 μm, He
CapillarySqualane60.639.1Wick, Siepmann, et al., 200230. m/0.25 mm/0.25 μm, He
CapillarySqualane70.641.7Wick, Siepmann, et al., 200230. m/0.25 mm/0.25 μm, He
CapillarySqualane80.644.5Wick, Siepmann, et al., 200230. m/0.25 mm/0.25 μm, He
CapillarySqualane90.646.6Wick, Siepmann, et al., 200230. m/0.25 mm/0.25 μm, He
CapillarySqualane100.650.0Wick, Siepmann, et al., 200230. m/0.25 mm/0.25 μm, He
CapillarySqualane110.652.5Wick, Siepmann, et al., 200230. m/0.25 mm/0.25 μm, He
PackedC78, Branched paraffin130.677.2Dallos, Sisak, et al., 2000He; Column length: 3.3 m
CapillaryHP-10160.654.52Garay, 200050. m/0.2 mm/0.2 μm, H2
CapillaryOV-101110.662.Zhuravleva, 200050. m/0.3 mm/0.4 μm, He
CapillarySqualane200.675.Castello, Vezzani, et al., 1999 
CapillaryOV-1100.663.Zhu, Zhang, et al., 1999Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-1100.663.0Zhu, Zhang, et al., 1999Column length: 50. m; Column diameter: 0.25 mm
CapillaryDB-1140.668.Beens, Tijssen, et al., 199810. m/0.25 mm/0.25 μm, He
CapillaryDB-160.654.Dewulf, Van Langenhove, et al., 199730. m/0.53 mm/5.0 μm, He
CapillaryOV-1010.644.Skrbic, 1997 
CapillaryOV-101110.677.Terenina, Zhuravieva, et al., 199750. m/0.3 mm/0.4 μm, He
PackedOV-101100.663.2Righezza, Hassani, et al., 1996N2, Chromosorb G HP; Column length: 5. m
PackedOV-101110.667.4Righezza, Hassani, et al., 1996N2, Chromosorb G HP; Column length: 5. m
PackedOV-10180.654.7Righezza, Hassani, et al., 1996N2, Chromosorb G HP; Column length: 5. m
PackedOV-10190.660.2Righezza, Hassani, et al., 1996N2, Chromosorb G HP; Column length: 5. m
CapillaryCP Sil 260.649.4Estel, Mohnke, et al., 1995100. m/0.25 mm/0.25 μm
CapillaryCP Sil 280.656.3Estel, Mohnke, et al., 1995100. m/0.25 mm/0.25 μm
CapillarySPB-160.643.Castello, Vezzani, et al., 199430. m/0.32 mm/0.25 μm, He
CapillaryOV-101150.678.1Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryOV-101180.688.0Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryDB-160.653.8Krupcik, Skacani, et al., 1994H2; Phase thickness: 0.25 μm
CapillaryPONA60.654.2Krupcik, Skacani, et al., 1994H2; Phase thickness: 0.5 μm
CapillaryPONA60.654.2Krupcik, Skacani, et al., 1994H2; Phase thickness: 0.5 μm
CapillaryDB-160.654.4Krupcik, Skacani, et al., 1994H2; Phase thickness: 1. μm
CapillaryOV-10160.653.5Krupcik, Skacani, et al., 1994H2; Phase thickness: 0.2 μm
CapillaryCP Sil 5 CB20.647.2Do and Raulin, 199225. m/0.15 mm/2. μm, H2
PackedOV-101120.669.9Hassani and Meklati, 1992N2, Chromosorb G HP; Column length: 5. m
PackedSqualane100.649.Hongwei and Zhide, 1992H2, Silanized white support (80-100 mesh); Column length: 3. m
PackedSE-30120.666.Kowalski, 1992He, Gas Chrom Q (100-120 mesh); Column length: 0.25 m
PackedC78, Branched paraffin130.675.0Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
CapillaryHP-160.655.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-160.655.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-1100.664.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-1100.664.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryOV-1100.663.1Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm
CapillaryOV-1120.670.7Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm
CapillaryOV-101100.663.Dimov and Mekenyan, 1989Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-145.651.3Guan, Kiraly, et al., 198920. m/0.32 mm/1.2 μm, He
CapillaryOV-165.655.4Guan, Kiraly, et al., 198920. m/0.32 mm/1.2 μm, He
CapillaryOV-145.651.4Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
CapillaryOV-165.655.8Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
CapillarySqualane50.637.2Guan, Kiraly, et al., 198950. m/0.22 mm/0.21 μm, He
CapillarySqualane70.641.8Guan, Kiraly, et al., 198950. m/0.22 mm/0.21 μm, He
CapillarySE-5445.666.5Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
CapillarySE-5465.667.4Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
PackedSqualane70.645.Safina, Poznyak, et al., 1989He, Risorb (0.2-0.3 mm); Column length: 2. m
CapillaryHP-160.654.Bangjie, Yijian, et al., 1988N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-160.655.Bangjie, Yijian, et al., 1988N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryOV-10140.649.Laub and Purnell, 1988 
CapillaryOV-10160.653.Laub and Purnell, 1988 
CapillaryOV-10180.658.Laub and Purnell, 1988 
CapillarySqualane50.637.Lunskii and Paizanskaya, 1988He; Column length: 50. m; Column diameter: 0.22 mm
CapillarySqualane70.641.4Lunskii and Paizanskaya, 1988He; Column length: 50. m; Column diameter: 0.22 mm
CapillarySE-30110.662.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillarySE-3080.661.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillaryPoraPLOT Q200.630.de Zeeuw, de Nijs, et al., 1988H2; Column length: 25. m; Column diameter: 0.53 mm
CapillaryPoraPLOT Q200.650.de Zeeuw, de Nijs, et al., 1988H2; Column length: 25. m; Column diameter: 0.53 mm
CapillaryOV-101100.664.Engewald, Topalova, et al., 1987Column length: 50. m; Column diameter: 0.30 mm
PackedApolane150.687.Evans and Haken, 1987He, Chromosorb G AW DCMS; Column length: 3.7 m
PackedOV-101120.672.Fernández-Sánchez, Fernández-Torres, et al., 1987N2, Chromosorb W AW DMCS (80-100 mesh); Column length: 2. m
PackedSqualane80.646.Fernández-Sánchez, García-Domínguez, et al., 1987H2
PackedSqualane80.642.Kersten and Poole, 1987N2; Column length: 3.5 m
CapillarySqualane100.651.Nabivach and Vasiliev, 1987 
CapillaryOV-10140.652.1Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10150.654.1Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10160.656.0Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10170.658.3Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
PackedApolane150.687.Haken and Vernon, 1986Chromosorb G AW DCMS; Column length: 3.7 m
PackedSE-30180.681.Oszczapowicz, Osek, et al., 1985N2, Chromosorb A AW; Column length: 3. m
PackedSE-3042.655.Rudenko, Mal'tsev, et al., 1985Column length: 3. m
PackedSE-30180.681.Oszczapowicz, Osek, et al., 1984N2, Chromosorb W AW; Column length: 3. m
PackedSE-30120.668.Stolyarov and Kartsova, 1984N2; Column length: 200. m
PackedSE-30150.675.Tiess, 1984Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m
PackedOV-1120.669.Valko, Papp, et al., 1984Gas Chrom Q; Column length: 2. m
CapillaryOV-101100.662.Boneva, Papazova, et al., 1983N2; Column length: 85. m; Column diameter: 0.28 mm
CapillaryOV-101100.664.Boneva, Papazova, et al., 1983N2; Column length: 85. m; Column diameter: 0.28 mm
CapillaryOV-101100.662.Boneva, Papazova, et al., 1983N2; Column length: 85. m; Column diameter: 0.28 mm
CapillaryOV-101110.664.Boneva, Papazova, et al., 1983N2; Column length: 85. m; Column diameter: 0.28 mm
PackedApolane100.670.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSqualane100.647.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSqualane120.653.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSqualane125.652.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSqualane200.675.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
CapillaryOV-10130.647.Chien, Furio, et al., 1983 
CapillaryOV-10140.649.Chien, Furio, et al., 1983 
CapillaryOV-10150.651.Chien, Furio, et al., 1983 
CapillaryOV-10160.653.Chien, Furio, et al., 1983 
CapillaryOV-10170.656.Chien, Furio, et al., 1983 
CapillaryOV-10180.658.Chien, Furio, et al., 1983 
CapillaryOV-330.671.1Chien, Furio, et al., 1983, 2 
CapillaryOV-340.673.0Chien, Furio, et al., 1983, 2 
CapillaryOV-350.675.1Chien, Furio, et al., 1983, 2 
CapillaryOV-360.677.2Chien, Furio, et al., 1983, 2 
CapillaryOV-370.679.5Chien, Furio, et al., 1983, 2 
CapillaryOV-380.681.9Chien, Furio, et al., 1983, 2 
CapillarySqualane106.650.Kugucheva and Mashinsky, 1983He; Column length: 100. m
CapillarySqualane96.647.Kugucheva and Mashinsky, 1983He; Column length: 100. m
CapillaryDB-160.653.8Lubeck and Sutton, 1983Column length: 60. m; Column diameter: 0.264 mm
CapillaryDB-160.654.4Lubeck and Sutton, 198360. m/0.259 mm/1. μm
CapillarySE-3070.657.1Tóth, 1983N2; Column length: 15. m; Column diameter: 0.25 mm
PackedApiezon L100.685.2Vernon and Suratman, 1983He; Column length: 2. m
PackedApiezon L100.685.6Vernon and Suratman, 1983He; Column length: 2. m
PackedApiezon L100.686.8Vernon and Suratman, 1983He; Column length: 2. m
PackedApiezon L100.687.4Vernon and Suratman, 1983He; Column length: 2. m
PackedSE-30100.664.Winskowski, 1983Gaschrom Q; Column length: 2. m
CapillaryOV-150.652.Anders, Scheller, et al., 1982Column length: 55. m; Column diameter: 0.21 mm
CapillarySE-30130.670.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySE-3080.659.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillaryOV-101100.664.Gerasimenko and Nabivach, 1982N2; Column length: 50. m; Column diameter: 0.30 mm
CapillaryOV-101120.671.Gerasimenko and Nabivach, 1982N2; Column length: 50. m; Column diameter: 0.30 mm
CapillaryOV-101140.678.Gerasimenko and Nabivach, 1982N2; Column length: 50. m; Column diameter: 0.30 mm
PackedApiezon L70.667.Jaworski, 1982Column length: 1.8 m
PackedApiezon L150.680.Jaworski, 1982Column length: 3. m
CapillaryOV-10150.654.Johansen and Ettre, 1982100. m/0.27 mm/0.20 μm
CapillaryOV-10150.651.Johansen and Ettre, 198255. m/0.27 mm/0.9 μm
CapillaryOV-150.653.Johansen and Ettre, 198217.5 m/0.2 mm/0.15 μm
CapillarySE-3050.650.Johansen and Ettre, 198217.5 m/0.2 mm/0.15 μm
CapillarySqualane86.648.Macák, Nabivach, et al., 1982N2; Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane96.650.22Macák, Nabivach, et al., 1982N2; Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-130.648.4Chien, Kopecni, et al., 1981H2
CapillaryOV-140.650.5Chien, Kopecni, et al., 1981H2
CapillaryOV-150.652.6Chien, Kopecni, et al., 1981H2
CapillaryOV-160.654.9Chien, Kopecni, et al., 1981H2
CapillaryOV-170.657.2Chien, Kopecni, et al., 1981H2
CapillaryOV-180.659.7Chien, Kopecni, et al., 1981H2
CapillarySE-3030.645.7Chien, Kopecni, et al., 1981H2
CapillarySE-3040.648.Chien, Kopecni, et al., 1981H2
CapillarySE-3050.650.3Chien, Kopecni, et al., 1981H2
CapillarySE-3060.652.7Chien, Kopecni, et al., 1981H2
CapillarySE-3070.655.2Chien, Kopecni, et al., 1981H2
CapillarySE-3080.658.2Chien, Kopecni, et al., 1981H2
CapillaryOV-101100.663.6Gerasimenko, Kirilenko, et al., 1981N2; Column length: 50. m; Column diameter: 0.3 mm
CapillaryOV-101120.670.7Gerasimenko, Kirilenko, et al., 1981N2; Column length: 50. m; Column diameter: 0.3 mm
CapillaryOV-101140.677.8Gerasimenko, Kirilenko, et al., 1981N2; Column length: 50. m; Column diameter: 0.3 mm
CapillarySqualane50.638.Mitra, 1981N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane50.638.Mitra, 1981N2; Column length: 100. m; Column diameter: 0.25 mm
CapillaryOV-160.646.Nijs and Jacobs, 1981He; Column length: 150. m; Column diameter: 0.50 mm
CapillarySE-3080.659.1Albaigés and Guardino, 1980He; Column length: 64. m; Column diameter: 0.25 mm
CapillarySqualane80.642.9Albaigés and Guardino, 1980He; Column length: 100. m; Column diameter: 0.25 mm
CapillaryApiezon L100.683.Morishita, Okano, et al., 1980Column length: 45. m; Column diameter: 0.25 mm
PackedSqualane100.650.Nabivach and Kirilenko, 1980He, Chromaton N-AW-HMDS; Column length: 1. m
CapillarySqualane50.637.4Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.642.2Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane50.637.2Bajus, Veselý, et al., 1979, 2Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.642.5Bajus, Veselý, et al., 1979, 2Column length: 100. m; Column diameter: 0.25 mm
PackedTriacontane80.651.Castello and D'Amato, 1979He, Chromosorb W AW (60-80 mesh); Column length: 3. m
PackedSqualane80.652.Castello and D'Amato, 1979He, Chromosorb W AW (60-80 mesh); Column length: 3. m
PackedSqualane100.648.Gröbler and Bálizs, 1979Column length: 1. m
CapillarySqualane86.647.8Nabivach and Kirilenko, 1979N2; Column length: 50. m
CapillarySqualane86.648.0Nabivach and Kirilenko, 1979N2; Column length: 50. m
CapillarySqualane86.648.7Nabivach and Kirilenko, 1979N2; Column length: 50. m
CapillarySqualane86.649.0Nabivach and Kirilenko, 1979N2; Column length: 50. m
CapillarySqualane70.642.5Nabivach and Kirilenko, 1979N2; Column length: 50. m
CapillarySqualane70.642.9Nabivach and Kirilenko, 1979N2; Column length: 50. m
CapillarySqualane70.641.1Drozd, Novák, et al., 1978Column length: 10. m; Column diameter: 0.25 mm
CapillarySqualane70.641.4Drozd, Novák, et al., 1978Column length: 10. m; Column diameter: 0.25 mm
CapillarySqualane86.648.Nabivach, Bur'yan, et al., 1978Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane96.650.2Nabivach, Bur'yan, et al., 1978Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane50.636.8Welsch, Engewald, et al., 1978Column length: 80. m; Column diameter: 0.23 mm
CapillaryApiezon M120.684.Golovnya and Misharina, 1977 
CapillarySqualane100.650.Engewald and Wennrich, 1976N2; Column length: 100. m; Column diameter: 0.23 mm
CapillarySqualane100.645.5Lulova, Leont'eva, et al., 1976He; Column length: 120. m; Column diameter: 0.25 mm
CapillarySqualane100.646.Lulova, Leont'eva, et al., 1976He; Column length: 120. m; Column diameter: 0.25 mm
PackedApolane70.659.2Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
CapillarySqualane60.639.Ryba, 1976Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane60.642.Ryba, 1976Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane80.644.42Soják and Rijks, 1976H2; Column length: 100. m; Column diameter: 0.25 mm
PackedSE-3040.648.Vylegzhanina and Keiser, 1976Chromaton N-AW-GMDS; Column length: 1. m
PackedSE-3060.647.Vylegzhanina and Keiser, 1976Chromaton N-AW-GMDS; Column length: 1. m
PackedSqualane100.650.Vernon and Edwards, 1975N2, DCMS-treated Celite; Column length: 1. m
PackedSE-30150.674.Ashes and Haken, 1974Celaton (62-72 mesh); Column length: 3.7 m
CapillarySqualane42.5636.Engewald, Epsch, et al., 1974N2; Column length: 100. m; Column diameter: 0.23 mm
CapillarySqualane70.644.Engewald, Epsch, et al., 1974N2; Column length: 100. m; Column diameter: 0.23 mm
CapillarySqualane50.637.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.642.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySE-3065.654.8Svob, Deur-Siftar, et al., 1974He; Column length: 25.5 m; Column diameter: 0.5 mm
CapillarySE-3065.654.8Svob, Deur-Siftar, et al., 1974He; Column length: 25.5 m; Column diameter: 0.5 mm
CapillarySE-3065.654.8Svob, Deur-Siftar, et al., 1974He; Column length: 25.5 m; Column diameter: 0.5 mm
CapillarySE-3065.654.7Svob, Deur-Siftar, et al., 1974He; Column length: 25.5 m; Column diameter: 0.5 mm
CapillarySE-3065.654.7Svob, Deur-Siftar, et al., 1974He; Column length: 25.5 m; Column diameter: 0.5 mm
CapillarySE-3065.654.8Svob and Deur-Siftar, 1974He; Column length: 25.5 m; Column diameter: 0.5 mm
CapillarySqualane100.650.4Svob and Deur-Siftar, 1974He; Column length: 10.5 m; Column diameter: 0.25 mm
CapillarySqualane50.638.Gäumann and Bonzo, 1973Column length: 100. m
CapillaryOV-10150.652.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillaryOV-10150.654.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillaryOV-10160.654.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillaryOV-10160.656.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillarySqualane100.660.7Schomburg and Dielmann, 1973Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane120.649.Agrawal, Tesarík, et al., 1972N2, Celite 545; Column length: 50. m; Column diameter: 0.3 mm
CapillarySqualane86.644.Agrawal, Tesarík, et al., 1972N2, Celite 545; Column length: 50. m; Column diameter: 0.3 mm
CapillaryVacuum Grease Oil (VM-4)35.652.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)45.655.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)50.657.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)58.660.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)68.662.Sidorov, Petrova, et al., 1972 
PackedSqualane50.640.0Takács, Tálas, et al., 1972N2, Chromosorb W; Column length: 3. m
CapillarySqualane70.639.7Dimov and Schopov, 1971Column length: 100. m; Column diameter: 0.25 mm
PackedSE-3075.656.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m
PackedSqualane100.648.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m
PackedSqualane50.637.Vernon, 1971N2
PackedApiezon L100.685.Wagaman and Smith, 1971CH4; Column length: 3. m
CapillarySqualane80.648.5Wallaert, 1971Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane115.653.6Soják and Bucinská, 1970N2; Column length: 200. m; Column diameter: 0.2 mm
CapillarySqualane86.646.6Soják and Bucinská, 1970N2; Column length: 200. m; Column diameter: 0.2 mm
PackedApiezon L100.681.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m
PackedSqualane27.634.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.640.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.645.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.649.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedApiezon L100.680.Bonastre and Grenier, 1967Chromosorb P; Column length: 10. m
PackedApiezon L120.686.Bonastre and Grenier, 1967Chromosorb P; Column length: 10. m
PackedApiezon L140.694.Bonastre and Grenier, 1967Chromosorb P; Column length: 10. m
PackedApiezon L80.681.Bonastre and Grenier, 1967Chromosorb P; Column length: 10. m
PackedSqualane100.650.Bonastre and Grenier, 1967Chromosorb P; Column length: 6. m
PackedSqualane120.655.Bonastre and Grenier, 1967Chromosorb P; Column length: 6. m
PackedSqualane140.660.Bonastre and Grenier, 1967Chromosorb P; Column length: 6. m
PackedSqualane80.645.Bonastre and Grenier, 1967Chromosorb P; Column length: 6. m
PackedSqualane22.631.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane30.632.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane40.634.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane55.643.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane70.645.Evans, 1966Untreated celite; Column length: 1.8 m
PackedApiezon L130.691.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5662.Buchin, Salmon, et al., 200260. m/0.32 mm/1. μm, He, 40. C @ 5. min, 3. K/min, 230. C @ 2. min
CapillarySE-54650.Rembold, Wallner, et al., 198930. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C
CapillaryOV-101642.Hayes and Pitzer, 1982110. m/0.25 mm/0.20 μm, He, 1. K/min; Tstart: 35. C; Tend: 200. C
CapillaryApiezon L665.Louis, 1971N2, 1. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryBP-1647.SGE, 2005Program: not specified
CapillaryBP-5667.SGE, 2005Program: not specified
CapillaryBPX-5664.SGE, 2005Program: not specified
CapillaryHP-1629.Wongpornchai, Sriseadka, et al., 200330. m/0.25 mm/0.25 μm, He; Program: 35C => 2C/min => 100C => 5C/min => 230C(2min)
CapillaryPetrocol DH-100649.7Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1649.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min
PackedApiezon M681.3Jalali-Heravi and Garkani-Nejad, 1993Chromosorb W; Column length: 2. m; Program: not specified
CapillarySPB-1661.6Castello, Timossi, et al., 1988N2; Column length: 60. m; Column diameter: 0.75 mm; Program: not specified
CapillarySqualane652.Papazova and Pankova, 1975N2; Column length: 100. m; Column diameter: 0.25 mm; Program: not specified
PackedSE-30650.Moffat, Stead, et al., 1974Chromosrb G; Column length: 2. m; Program: not specified

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M160.979.Kurbatova, Finkelstein, et al., 2004Chromaton N-AW; Column length: 1. m
CapillaryZB-Wax100.979.4Pérez-Parajón, Santiuste, et al., 200460. m/0.25 mm/0.25 μm
CapillaryZB-Wax120.988.6Pérez-Parajón, Santiuste, et al., 200460. m/0.25 mm/0.25 μm
CapillaryZB-Wax140.999.5Pérez-Parajón, Santiuste, et al., 200460. m/0.25 mm/0.25 μm
CapillaryDB-Wax40.947.77Ciaznska-Halarewicz and Kowalska, 2003Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-Wax50.953.66Ciaznska-Halarewicz and Kowalska, 2003Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-Wax60.963.67Ciaznska-Halarewicz and Kowalska, 2003Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-Wax70.971.57Ciaznska-Halarewicz and Kowalska, 2003Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-Wax80.980.53Ciaznska-Halarewicz and Kowalska, 2003Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-Wax90.989.54Ciaznska-Halarewicz and Kowalska, 2003Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-Wax100.998.62Ciaznska-Halarewicz and Kowalska, 2003Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-Wax110.1007.64Ciaznska-Halarewicz and Kowalska, 2003Column length: 30. m; Column diameter: 0.32 mm
CapillaryCarbowax 20M150.970.Egazaryants and Maximov, 1998He; Column length: 15. m; Column diameter: 0.5 mm
CapillaryCarbowax 20M150.971.Egazaryants and Maximov, 1998He; Column length: 15. m; Column diameter: 0.5 mm
CapillaryPEG-40M150.925.Terenina, Zhuravieva, et al., 199750. m/0.3 mm/0.4 μm, He
CapillarySupelcowax-1060.955.5Castello, Vezzani, et al., 199430. m/0.32 mm/0.25 μm, He
CapillaryPEG-20M80.945.2Orav, Kuningas, et al., 199450. m/0.2 mm/0.13 μm, He
CapillaryPEG-20M80.958.2Orav, Kuningas, et al., 199450. m/0.2 mm/0.19 μm, He
CapillaryPEG-20M80.959.5Orav, Kuningas, et al., 199450. m/0.2 mm/0.22 μm, He
CapillarySupelcowax-1060.964.Castello, Vezzani, et al., 1991N2; Column length: 60. m; Column diameter: 0.75 mm
PackedCarbowax 20M120.992.Fernández-Sánchez, Fernández-Torres, et al., 1987N2, Chromosorb W AW DMCS; Column length: 2. m
PackedCarbowax 20M80.952.Kersten and Poole, 1987N2, Chromosorb W-AW; Column length: 3.5 m
PackedCarbowax 20M150.971.Haken and Vernon, 1986Chromosorb G AW DCMS; Column length: 3.7 m; Column diameter: 6.4 mm
CapillaryCarbowax 20M100.968.66Podmaniczky, Szepesy, et al., 1985 
CapillaryCarbowax 20M110.972.80Podmaniczky, Szepesy, et al., 1985 
CapillaryCarbowax 20M120.976.91Podmaniczky, Szepesy, et al., 1985 
CapillaryCarbowax 20M70.957.21Podmaniczky, Szepesy, et al., 1985 
CapillaryCarbowax 20M80.960.69Podmaniczky, Szepesy, et al., 1985 
CapillaryCarbowax 20M90.964.88Podmaniczky, Szepesy, et al., 1985 
PackedPEG-20M120.979.Stolyarov and Kartsova, 1984N2, Chromaton N AW HMDS; Column length: 2. m
CapillaryPEG-20M70.954.5Tóth, 1983N2; Column length: 30. m; Column diameter: 0.3 mm
PackedCarbowax 20M100.965.7Vernon and Suratman, 1983He; Column length: 2. m
PackedCarbowax 20M100.973.3Vernon and Suratman, 1983He; Column length: 2. m
PackedCarbowax 20M100.979.3Vernon and Suratman, 1983He; Column length: 2. m
PackedCarbowax 20M100.982.6Vernon and Suratman, 1983He; Column length: 2. m
PackedCarbowax 20M100.969.7Vernon and Suratman, 1983, 2He, A silanized white support; Column length: 2. m
PackedCarbowax 20M110.974.2Vernon and Suratman, 1983, 2He, A silanized white support; Column length: 2. m
PackedCarbowax 20M120.978.8Vernon and Suratman, 1983, 2He, A silanized white support; Column length: 2. m
PackedCarbowax 20M130.983.4Vernon and Suratman, 1983, 2He, A silanized white support; Column length: 2. m
PackedCarbowax 20M150.992.6Vernon and Suratman, 1983, 2He, A silanized white support; Column length: 2. m
PackedCarbowax 20M75.959.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
CapillaryPEG-20M100.955.Morishita, Okano, et al., 1980Column length: 75. m; Column diameter: 0.25 mm
PackedCarbowax 20M150.967.0Ellis and Still, 1979Chromosorb W, AW-DMCS
PackedCarbowax 20M115.972.6Ellis and Still, 1979Chromosorb G
PackedCarbowax 20M115.973.4Ellis and Still, 1979Chromosorb G
PackedCarbowax 20M165.985.7Ellis and Still, 1979, 2Chromosorb W, AW-DMCS
CapillaryCarbowax 20M100.947.2Engewald and Wennrich, 1976N2; Column length: 100. m; Column diameter: 0.23 mm
CapillaryCarbowax 20M90.933.4Döring, Estel, et al., 1974Column length: 100. m; Column diameter: 0.2 mm
PackedPEG-2000150.987.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.978.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.1005.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.991.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.1000.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-20M150.970.Tibor and Anna, 1971N2, Chromosorb W-AW; Column length: 2. m
PackedPEG-20M170.985.Tibor and Anna, 1971N2, Chromosorb W-AW; Column length: 2. m
PackedPolyethylene Glycol 4000100.974.Bonastre and Grenier, 1967Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000120.981.Bonastre and Grenier, 1967Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000140.987.Bonastre and Grenier, 1967Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 400080.967.Bonastre and Grenier, 1967Chromosorb P; Column length: 6. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax924.Umano and Shibamoto, 1987He, 40. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryBP-20947.SGE, 2005Program: not specified
CapillaryPEG-20M953.Slizhov and Gavrilenko, 2001He; Column length: 10. m; Column diameter: 0.2 mm; Program: not specified
CapillarySupelcowax-10967.7Castello, Timossi, et al., 1988N2; Column length: 60. m; Column diameter: 0.75 mm; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-5663.Engel and Ratel, 200760. m/0.32 mm/1. μm, 40. C @ 2. min, 3. K/min, 230. C @ 10. min
CapillaryCP-Sil 8CB-MS654.Elmore, Cooper, et al., 20050. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillaryHP-5662.Insausti, Goñi, et al., 200550. m/0.32 mm/1.05 μm, He, 35. C @ 15. min, 8. K/min, 220. C @ 5. min
CapillaryCP-Sil 8CB-MS663.Hierro, de la Hoz, et al., 200460. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillaryPetrocol DH647.5Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryHP-5648.Isidorov, Vinogorova, et al., 200325. C @ 5. min, 3. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 150. C
CapillarySPB-1638.32LECO Corporation, 200330. m/0.25 mm/0.25 μm, 40. C @ 2. min, 10. K/min, 250. C @ 2. min
CapillarySPB-1638.98LECO Corporation, 200330. m/0.25 mm/0.25 μm, 40. C @ 2. min, 10. K/min, 250. C @ 2. min
CapillaryDB-5654.8Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5653.8Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 4. K/min; Tend: 310. C
CapillaryDB-5654.2Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5654.8Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5656.1Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5660.6Xu, van Stee, et al., 200330. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-5648.Dallüge, van Stee, et al., 200230. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C
CapillaryOV-101645.0Yin, Liu, et al., 2001N2, 1. K/min; Column length: 80. m; Column diameter: 0.22 mm; Tstart: 30. C; Tend: 130. C
CapillaryCP Sil 8 CB658.Yassaa, Meklati, et al., 199925. m/0.2 mm/0.25 μm, 40. C @ 8. min, 2. K/min; Tend: 200. C
CapillaryDB-1639.Beens, Tijssen, et al., 199810. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 30. C; Tend: 225. C
CapillaryDB-5664.Madruga and Mottram, 199830. m/0.32 mm/1. μm, 60. C @ 5. min, 4. K/min, 250. C @ 20. min
CapillarySE-54654.1Kivi-Etelätalo, Kostiainen, et al., 199750. m/0.32 mm/1. μm, He, 40. C @ 2. min, 10. K/min, 220. C @ 5. min
CapillaryPONA638.6Martos, Saraullo, et al., 199750. m/0.2 mm/0.5 μm, 35. C @ 0.5 min, 1. K/min, 220. C @ 8. min
CapillaryPONA640.7Martos, Saraullo, et al., 199750. m/0.2 mm/0.5 μm, 35. C @ 0.5 min, 1. K/min, 220. C @ 8. min
CapillaryDB-1645.DeMilo, Lee, et al., 199630. m/0.248 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min; Tend: 250. C
CapillaryDB-1645.DeMilo, Lee, et al., 199630. m/0.248 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min; Tend: 250. C
CapillaryDB-1646.DeMilo, Lee, et al., 199630. m/0.248 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min; Tend: 250. C
CapillaryOV-1643.1Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
CapillaryDB-1640.5Helmig, Pollock, et al., 199630. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C
CapillaryDB-5660.1Helmig, Pollock, et al., 199660. m/0.33 mm/0.25 μm, 6. K/min; Tstart: -50. C; Tend: 180. C
CapillaryDB-5654.2Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5654.8Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5656.1Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5654.8Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5653.8Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 4. K/min; Tend: 310. C
CapillaryPetrocol DH641.77Subramaniam, Bochniak, et al., 1994100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH641.83Subramaniam, Bochniak, et al., 1994100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryDB-1630.Yu, Lin, et al., 199460. m/0.25 mm/1.0 μm, He, 40. C @ 5. min, 2. K/min, 260. C @ 60. min
CapillaryUltra-1644.Olson, Sinkevitch, et al., 19924. K/min; Tstart: -40. C; Tend: 230. C
CapillaryDB-1654.Peng, Hua, et al., 199230. m/0.32 mm/1.5 μm, 40. C @ 4. min, 8. K/min; Tend: 280. C
CapillaryPetrocol DH641.72White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH642.White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH642.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryDB-5654.Morinaga, Hara, et al., 199015. m/0.53 mm/1.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 90. C
CapillaryHP-1651.4Bangjie, Xijian, et al., 1987N2, 10. K/min; Column length: 25. m; Column diameter: 0.2 mm; Tstart: 30. C
CapillaryHP-1648.9Bangjie, Xijian, et al., 1987N2, 2. K/min; Column length: 25. m; Column diameter: 0.2 mm; Tstart: 30. C
CapillaryHP-1648.Bangjie, Xijian, et al., 1987N2, 30. C @ 5. min, 5. K/min; Column length: 25. m; Column diameter: 0.2 mm
CapillaryUltra-1640.61Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 1. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-1643.07Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 2. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-1644.46Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 3. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-2655.57Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 1. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-2658.13Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 2. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-2659.63Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 3. K/min; Tstart: -30. C; Tend: 240. C
PackedSE-30654.Buchman, Cao, et al., 1984He, Chromosorb AW, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m
CapillaryOV-1645.26Knoppel, de Bortoli, et al., 198335. C @ 5. min; Column length: 50. m; Column diameter: 0.2 mm; Tend: 280. C
CapillaryOV-1642.7Knoppel, de Bortoli, et al., 198335. C @ 5. min; Column length: 25. m; Column diameter: 0.31 mm; Tend: 280. C
CapillaryOV-1646.Knoppel, de Bortoli, et al., 198224. m/0.3 mm/1.1 μm, 35. C @ 5. min, 4. K/min; Tend: 250. C
CapillaryOV-1647.11Knoppel, de Bortoli, et al., 198230. m/0.3 mm/1.1 μm, 35. C @ 5. min, 4. K/min; Tend: 250. C
CapillaryOV-101642.Hayes and Pitzer, 1981108. m/0.25 mm/0.2 μm, 1. K/min; Tstart: 35. C; Tend: 200. C
PackedOV-101650.Nixon, Wong, et al., 1979Gas-Chrom Q, 2. K/min; Column length: 2.5 m; Tstart: 50. C; Tend: 220. C
CapillaryOV-1648.Schreyen, Dirinck, et al., 19761. K/min; Column length: 183. m; Column diameter: 0.762 mm; Tstart: 0. C; Tend: 230. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCP Sil 8 CB659.Duckham, Dodson, et al., 200160. m/0.25 mm/0.25 μm; Program: 0C => rapidly => 40C(8min) => 4C/min => 250C(10min)
CapillaryDB-1630.Peng, 200015. m/0.53 mm/1. μm, He; Program: 40C(3min) => 8C/min => 200(1min) => 5C/min => 300C(25min)
CapillaryMethyl Silicone640.20Hassoun, Pilling, et al., 199950. m/0.25 mm/1. μm, He; Program: -50C(2min) => 49.9C/min => 35C(10min) => 3C/min => 200C(2min) => 40C/min => 240C(30min)
PackedSE-30654.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)
PackedSE-30654.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Wax 52CB936.Alasalvar, Taylor, et al., 200560. m/0.25 mm/0.25 μm, 35. C @ 4. min, 3. K/min; Tend: 203. C
CapillarySupelcowax-10940.Elmore, Nisyrios, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C
CapillaryCarbowax954.Censullo, Jones, et al., 200360. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min
CapillaryCP-Wax 52CB942.Liu, Yang, et al., 2001H2, 2. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 50. C; Tend: 200. C
CapillaryDB-Wax943.Peng, 200015. m/0.53 mm/1. μm, He, 40. C @ 3. min, 5. K/min, 220. C @ 30. min
CapillaryHP-Wax947.Peng, 200015. m/0.53 mm/1. μm, He, 40. C @ 3. min, 5. K/min, 220. C @ 30. min
CapillaryFFAP939.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
CapillaryDB-Wax938.Shimoda, Peralta, et al., 199660. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 50. C; Tend: 230. C
CapillaryDB-Wax940.Sumitani, Suekane, et al., 1994He, 40. C @ 5. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax947.Peng, Hua, et al., 199230. m/0.53 mm/1. μm, 40. C @ 4. min, 8. K/min, 200. C @ 20. min
CapillarySupelcowax-10938.Matiella and Hsieh, 199060. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillaryCP-WAX 57CB926.Baltes and Mevissen, 1988He, 50. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.24 mm; Tend: 210. C
PackedCarbowax 20M965.Buchman, Cao, et al., 1984He, Supelcoport, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10936.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10938.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 40C(1min) => 10C/min => 120C => 15C/min => 200C (1min)
CapillarySupelcowax-10938.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10938.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryCP-Wax 52CB930.Madruga and Mottram, 199850. m/0.32 mm/0.21 μm; Program: 0C(5min) => fast => 60C(5min) => 4C/min => 220C(20min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPolydimethyl siloxane105.663.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane75.657.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane90.660.Tello, Lebron-Aguilar, et al., 2009 
PackedPolydimethyl siloxane120.667.Tello, Lebron-Aguilar, et al., 2009 
PackedPolydimethyl siloxane120.668.Tello, Lebron-Aguilar, et al., 2009 
PackedPolydimethyl siloxane120.668.Tello, Lebron-Aguilar, et al., 2009 
CapillaryMethyl Silicone100.662.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.668.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.672.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.658.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.668.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.668.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.668.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.678.Chen and Feng, 2006 
CapillaryOV-10140.654.Li and Deng, 1998N2; Column length: 51. m; Column diameter: 0.25 mm
CapillaryOV-101100.663.Tian, 1993Column length: 50. m; Column diameter: 0.20 mm
CapillaryOV-101100.664.Tian, 1993Column length: 50. m; Column diameter: 0.20 mm
CapillaryOV-101120.670.Tian, 1993Column length: 50. m; Column diameter: 0.20 mm
CapillaryOV-101120.670.Tian, 1993Column length: 50. m; Column diameter: 0.20 mm
CapillaryOV-101102.656.Wang, Deng, et al., 1992Column length: 23. m; Column diameter: 0.50 mm
CapillaryOV-101106.657.Wang, Deng, et al., 1992Column length: 23. m; Column diameter: 0.50 mm
CapillaryOV-101110.658.Wang, Deng, et al., 1992Column length: 23. m; Column diameter: 0.50 mm
CapillaryOV-101114.659.Wang, Deng, et al., 1992Column length: 23. m; Column diameter: 0.50 mm
CapillaryOV-10194.654.Wang, Deng, et al., 1992Column length: 23. m; Column diameter: 0.50 mm
CapillaryOV-10198.655.Wang, Deng, et al., 1992Column length: 23. m; Column diameter: 0.50 mm
CapillaryOV-10198.655.Wang, Deng, et al., 1992Column length: 23. m; Column diameter: 0.50 mm
CapillaryMethyl Silicone50.638.N/AN2; Column length: 74.6 m; Column diameter: 0.28 mm
CapillaryOV-10150.651.Wu and Lu, 1984 
CapillaryOV-10170.655.Wu and Lu, 1984 
CapillaryE-301100.670.Bermejo, Moinelo, et al., 1980N2; Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane100.652.Bermejo, Moinelo, et al., 1980N2; Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane95.4638.Sojak and Vigdergauz, 1978H2
CapillarySqualane110.650.Papazova and Pankova, 1975N2; Column length: 100. m; Column diameter: 0.25 mm
PackedApiezon L100.682.Kavan, 1973Column length: 3.2 m
CapillarySqualane86.635.Vigdergauz and Martynov, 1971He; Column length: 150. m; Column diameter: 0.35 mm
PackedDC-400150.658.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m
PackedSqualane125.655.Cremer and Nonn, 1964H2, Chromosorb W (80-100 mesh); Column length: 3. m
PackedPolydimethyl siloxane110.654.Ferrand, 1962 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
PackedSE-30660.MHA, 9999Nitrogen, Chromosorb G AW DMCS (80-100 mesh); Column length: 2. m; Tstart: 100. C; Tend: 300. C
CapillaryPolydimethyl siloxane: CP-Sil 5 CB648.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryHP-5 MS653.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min
CapillaryPetrocol DH643.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryUltra-ALLOY-5653.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryZB-5657.Harrison and Priest, 200930. m/0.25 mm/0.25 μm, Helium, 40. C @ 1. min, 6. K/min, 280. C @ 9. min
CapillaryPONA637.Zhang, Ding, et al., 200950. m/0.20 mm/0.50 μm, Nitrogen, 35. C @ 15. min, 2. K/min, 200. C @ 10. min
CapillarySPB-5661.Vasta, Ratel, et al., 200760. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 230. C @ 5. min
CapillaryOV-101657.Zenkevich, Eliseenkov, et al., 2006Nitrogen, 6. K/min, 240. C @ 10. min; Column length: 25. m; Column diameter: 0.20 mm; Tstart: 60. C
CapillarySPB-5646.Pino, Marbot, et al., 200530. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillaryOV-101656.Zenkevich, Makarov, et al., 200525. m/0.25 mm/0.20 μm, Nitrogen, 60. C @ 0. min, 8. K/min, 240. C @ 0. min
CapillaryHP-5653.Isidorov and Jdanova, 20023. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tstart: 50. C; Tend: 200. C
CapillarySPB-5661.Poligné, Collignan, et al., 200160. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 200. C
CapillaryBP-1652.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-5MS645.3Shoenmakers, Oomen, et al., 200030. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min; Tend: 250. C
CapillaryMethyl Silicone638.83Baraldi, Rapparini, et al., 199960. m/0.25 mm/0.25 μm, 40. C @ 10. min, 5. K/min; Tend: 220. C
CapillaryHP-5667.Jung, Wichmann, et al., 199925. m/0.20 mm/0.33 μm, 50. C @ 3. min, 5. K/min; Tend: 180. C
CapillaryOV-101649.Orav, Kailas, et al., 199950. m/0.20 mm/0.50 μm, Helium, 30. C @ 6. min, 1. K/min; Tend: 100. C
CapillaryDB-1648.Barrefors, Björkqvist, et al., 199650. m/0.32 mm/1. μm, 3. K/min; Tstart: -30. C
CapillarySE-54661.Huang, Liang, et al., 199636. m/0.25 mm/0.25 μm, 5. K/min; Tstart: 35. C; Tend: 240. C
CapillaryHP-5671.3Wang and Fingas, 199530. m/0.25 mm/0.25 μm, He, 35. C @ 2. min, 10. K/min, 300. C @ 10. min
CapillaryDB-1649.Ciccioli, Cecinato, et al., 199260. m/0.32 mm/1.2 μm, He, 30. C @ 10. min, 3. K/min; Tend: 240. C
CapillaryOV-1638.Guan, Zheng, et al., 199250. m/0.32 mm/0.52 μm, H2, 1. K/min; Tstart: 30. C
CapillaryOV-1640.Guan, Zheng, et al., 199250. m/0.32 mm/0.52 μm, H2, 2. K/min; Tstart: 35. C
CapillaryCP Sil 5 CB640.Hartgers, Damste, et al., 199225. m/0.32 mm/0.45 μm, He, 0. C @ 5. min, 3. K/min, 320. C @ 10. min
CapillaryOV-101653.Zenkevich and Ventura, 1991Helium, 50. C @ 0. min, 5. K/min, 240. C @ 0. min; Column length: 54. m; Column diameter: 0.26 mm
CapillaryDB-1644.Binder, Benson, et al., 19904. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C
CapillaryDB-1647.Binder, Turner, et al., 19904. K/min, 230. C @ 10. min; Tstart: 50. C
CapillaryHP-5640.Spadone, Takeoka, et al., 1990H2, 16. K/min; Column length: 50. m; Column diameter: 0.3 mm; Tstart: 80. C; Tend: 250. C
CapillaryDB-1642.Binder, Flath, et al., 19894. K/min, 250. C @ 5. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C
CapillaryDB-1643.Binder and Flath, 198950. C @ 0.1 min, 4. K/min, 250. C @ 5. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryOV-1640.5Durand, Boscher, et al., 198750. m/0.2 mm/0.52 μm, He, 35. C @ 10. min, 1.1 K/min; Tend: 150. C
CapillaryDB-1644.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C
CapillaryOV-101641.del Rosario, de Lumen, et al., 1984He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C
CapillarySE-30642.Heydanek and McGorrin, 198140. C @ 3. min, 3. K/min; Column length: 50. m; Column diameter: 0.5 mm; Tend: 170. C
CapillarySE-30641.Heydanek and McGorrin, 1981, 2He, 40. C @ 3. min, 3. K/min; Column length: 50. m; Column diameter: 0.5 mm; Tend: 170. C
PackedApiezon L663.Dahlmann, Köser, et al., 1979Chromosorb G-AW-DMCS, 10. K/min; Column length: 2. m; Tstart: 25. C
CapillaryOV-1648.Schreyen, Dirinck, et al., 1979N2, 1. K/min; Column length: 183. m; Column diameter: 0.762 mm; Tstart: 0. C; Tend: 230. C
CapillarySF-96652.Donetzhuber, Johansson, et al., 1976Nitrogen, 3. K/min, 130. C @ 40. min; Column length: 111. m; Column diameter: 0.76 mm; Initial hold: 8. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS657.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-5642.Yusuf and Bewaji, 2011Column length: 30. m; Column diameter: 0.32 mm; Program: not specified
CapillaryDB-5642.Yusuf and Bewaji, 2011, 2Helium; Column length: 30. m; Column diameter: 0.32 mm; Program: not specified
CapillaryNonpolar655.Staples and Zeiger, 2008Program: not specified
CapillaryDB-5 MS661.Liu, Xu, et al., 200760. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 6 0C/min -> 100 0C 4 0C/min -> 180 0C 8 0C/min -> 250 0C (12 min)
CapillaryOV-101670.Ebrahimi and Hadjmohammadi, 2006Program: not specified
CapillaryMethyl Silicone651.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryApiezon L686.Finkelstein, Kurbatova, et al., 2002Program: not specified
CapillaryMethyl phenyl siloxane (not specified)662.Poligne, Collignan, et al., 2002Program: not specified
CapillaryBP-1639.25Cooke, Hassoun, et al., 200150. m/0.25 mm/1. μm, He; Program: -50C => 49.9C/min => 5C(3min) => 3C/min => 50C => 5C/min => 220C(20 min)
CapillaryCP Sil 8 CB663.Duckham, Dodson, et al., 200160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-5 MS671.Luo and Agnew, 200130. m/0.25 mm/1.0 μm, Helium; Program: not specified
CapillaryOV-101664.Zhu and Wang, 2001Program: not specified
CapillaryDB-1654.Zhu and Wang, 2001Program: not specified
CapillaryMethyl Silicone649.Spieksma, 1999Program: not specified
CapillaryMethyl Silicone657.Zenkevich, 1998Program: not specified
CapillarySPB-1655.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryDB-1654.Peng, 199630. m/0.53 mm/1.5 μm; Program: 40 0C (4 min) 8 0C/min -> 200 0C (1 min) 5 0C/min -> 280 0C (20 min)
CapillarySE-30657.Xiuhua, Zhang, et al., 1996Program: not specified
CapillarySE-30664.Xiuhua, Zhang, et al., 1996Program: not specified
CapillaryMethyl Silicone657.Zenkevich, 1996Program: not specified
CapillaryDB-5674.Sorimachi, Tanabe, et al., 1995He; Column length: 30. m; Program: not specified
CapillaryMethyl Silicone643.Xu, Chu, et al., 1995Program: not specified
CapillaryDB-1640.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified
CapillaryDB-1651.Schuberth, 199430. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C
CapillaryDB-1640.Ciccioli, Brancaleoni, et al., 199360. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min
CapillarySE-30658.Lou, Liu, et al., 1993Column diameter: 0.25 mm; Program: not specified
CapillarySPB-1665.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1660.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryOV-1648.6Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm; Program: 1) 1st 30m column temp ramp 4C/min 60-120C 2)2nd 30m column isothermal 100C
CapillaryOV-1658.Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm; Program: 1) 1st 30m column temp ramp 4C/min 60-120C. 2) 2nd 30m column isothermal 120C.
CapillaryOV-1663.5Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm; Program: 1) 1st 30m column temp ramp 6C/min 60-120C. 2) 2nd 30m column isothermal 120C.
CapillaryOV-1664.6Engewald and Maurer, 1990Column length: 60. m; Column diameter: 0.32 mm; Program: 1)1st 30m column temp ramp 3C/min 60-120 2)2nd 30m column isothermal 120C
CapillaryDB-1644.Binder, Flath, et al., 1989Column length: 60. m; Column diameter: 0.32 mm; Program: not specified
CapillaryDB-1644.Binder and Flath, 1989Column length: 60. m; Column diameter: 0.32 mm; Program: not specified
CapillarySqualane650.4Dimov and Mekenyan, 1989Program: not specified
CapillaryCP Sil 8 CB663.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryDB-1634.Takeoka, Flath, et al., 198830. m/0.25 mm/0.25 μm, H2; Program: 30C (2min) => 2C/min => 150C => 4C/min => 250C
CapillaryDB-1644.Takeoka, Flath, et al., 198830. m/0.25 mm/0.25 μm, H2; Program: 30C (2min) => 2C/min => 150C => 4C/min => 250C
CapillarySE-30665.P'yanova, Zvereva, et al., 1987Column length: 25. m; Column diameter: 0.25 mm; Program: not specified
CapillarySE-52666.van Langenhove and Schamp, 1986Column length: 100. m; Column diameter: 0.50 mm; Program: not specified
CapillaryOV-1669.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.653.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.673.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1660.Ramsey and Flanagan, 1982Program: not specified
CapillarySE-30644.Heydanek and McGorrin, 1981, 2He; Column length: 50. m; Column diameter: 0.5 mm; Program: -10C (8min) => 12C/min => 26C => 3C/min => 170C (30min)
PackedSE-30665.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSqualane645.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)
PackedSE-30665.Robinson and Odell, 1971, 2Chrom W; Column length: 6.1 m; Program: 50C(10min) => 20C/min(2min) => 90C(6min) => 10C/min(6min) => (hold at 150C)
PackedSqualane645.Robinson and Odell, 1971, 2Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min(5min) => 4C/min(15min) => (hold at 95C)

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M100.975.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M120.982.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M140.994.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M60.956.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M80.965.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryPEG-40M100.959.Nesterov, Nesterova, et al., 2000Column length: 50. m
CapillaryPEG-40M100.960.Nesterov, Nesterova, et al., 2000Column length: 50. m
CapillaryPEG-40M120.965.Nesterov, Nesterova, et al., 2000Column length: 50. m
CapillaryPEG-40M60.947.Nesterov, Nesterova, et al., 2000Column length: 50. m
CapillaryPEG-40M80.952.Nesterov, Nesterova, et al., 2000Column length: 50. m
CapillaryCarbowax 20M90.933.Sutter, Peterson, et al., 1997 

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax957.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax937.Ganeko, Shoda, et al., 20084. K/min; Column length: 60. m; Column diameter: 0.35 mm; Tstart: 40. C; Tend: 200. C
CapillaryDB-Wax955.Chida, Sone, et al., 200460. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax957.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryCarbowax 20M983.Kasali, Winterhalter, et al., 200230. m/0.25 mm/0.325 μm, He, 4. K/min, 215. C @ 20. min; Tstart: 50. C
CapillaryDB-Wax934.Duque, Bonilla, et al., 200130. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C
CapillaryDB-Wax932.Horiuchi, Umano, et al., 199860. m/0.25 mm/1. μm, He, 3. K/min, 200. C @ 40. min; Tstart: 50. C
CapillaryDB-Wax938.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M930.Herain, MRAVEC, et al., 199170. C @ 21. min, 5. K/min, 150. C @ 999. min
CapillaryDB-Wax937.Binder, Benson, et al., 19904. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C
CapillaryDB-Wax937.Binder, Turner, et al., 19904. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C
CapillaryDB-Wax938.Binder, Flath, et al., 198950. C @ 0.1 min, 4. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryDB-Wax937.Binder and Flath, 198950. C @ 0.1 min, 4. K/min, 250. C @ 5. min; Column length: 60. m; Column diameter: 0.32 mm

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySOLGel-Wax938.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax936.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillarySupelko CO Wax951.Vekiari, Orepoulou, et al., 201060. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 75 0C 5 0C/min -> 250 0C (10 min)
CapillarySupelcowax-10936.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10938.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillaryHP-Innowax924.Narain, Galvao, et al., 200730. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (5 min) 5 0C/min -> 100 0C (5 min) 1 0C/min -> 130 0C 10 0C/min -> 195 0C (45 min)
CapillaryCarbowax 20M979.Finkelstein, Kurbatova, et al., 2002Program: not specified
CapillaryDB-Wax947.Peng, 199630. m/0.53 mm/1.0 μm; Program: 40 0C (4 min) 4 0C/min -> 200 0C (20 min)
CapillaryPEG-20M954.Xiuhua, Zhang, et al., 1996Program: not specified
CapillaryDB-Wax947.Peng, Yang, et al., 1991Program: not specified
CapillaryDB-Wax950.Peng, Yang, et al., 1991Program: not specified
CapillaryDB-Wax937.Binder, Flath, et al., 1989Column length: 60. m; Column diameter: 0.32 mm; Program: not specified
CapillaryDB-Wax937.Binder and Flath, 1989Column length: 60. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M935.Dimov and Mekenyan, 1989Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.959.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.965.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M948.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Good and Smith, 1969
Good, W.D.; Smith, N.K., Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data, 1969, 14, 102-106. [all data]

Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D., Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene, J. Res. NBS, 1945, 34, 65-70. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes, J. Res. NBS, 1946, 36, 455-461. [all data]

Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R., Etude thermochimique dans la serie furanique, Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Todd S.S., 1978
Todd S.S., Vapor-flow calorimetry of benzene, J. Chem. Thermodyn., 1978, 10, 641-648. [all data]

Montgomery J.B., 1942
Montgomery J.B., The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene, J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]

Pitzer K.S., 1943
Pitzer K.S., The thermodynamics and molecular structure of benzene and its methyl derivatives, J. Am. Chem. Soc., 1943, 65, 803-829. [all data]

Scott D.W., 1947
Scott D.W., The heat capacity of benzene vapor. The contribution of anharmonicity, J. Chem. Phys., 1947, 15, 565-568. [all data]

Tschurl, Ueberfluss, et al., 2007
Tschurl, M.; Ueberfluss, C.; Boesl, U., Anion photoelectron, photodetachment, and infrared dissociation spectra of Cl-center dot C6H6, Chem. Phys. Lett., 2007, 439, 1-3, 23-28, https://doi.org/10.1016/j.cplett.2007.03.059 . [all data]

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I), Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Sunner, Nishizawa, et al., 1981
Sunner, J.; Nishizawa, K.; Kebarle, P., Ion - Solvent Molecule Interactions in the Gas Phase. Potassium Ion and Benzene, J. Phys. Chem., 1981, 85, 13, 1814, https://doi.org/10.1021/j150613a011 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Chowdhury and Kebarle, 1986
Chowdhury, S.; Kebarle, P., Role of Binding Energies in A-.B and A.B- Complexes in the Kinetics of Gas Phase Electron Transfer Reactions:A- + B = A + B- Involving Perfluoro Compounds: SF6, C6F11CF3, J. Chem. Phys., 1986, 85, 9, 4989, https://doi.org/10.1063/1.451687 . [all data]

Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R., The C-H bond energy of benzene, J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023 . [all data]

Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F., Anchoring the gas-phase acidity scale, J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n . [all data]

Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P., Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5, J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o . [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr., The Gas Phase Acidity Scale in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]

Hiraoka, Fujimaki, et al., 1991
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Stability and Structure of Benzene Dimer Cation (C6H6)2+, J. Chem. Phys., 1991, 95, 11, 8413, https://doi.org/10.1063/1.461270 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Field, Hamlet, et al., 1969
Field, F.H.; Hamlet, P.; Libby, W.F., Effect of Temperature on the Mass Spectrum of Benzene at High Pressures, J. Am. Chem. Soc., 1969, 91, 11, 2839, https://doi.org/10.1021/ja01039a003 . [all data]

Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B., Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Guo, Purnell, et al., 1990
Guo, B.C.; Purnell, J.W.; Castleman, A.W., The Clustering Reactions of Benzene with Sodium and Lead Ions, Chem. Phys. Lett., 1990, 168, 2, 155, https://doi.org/10.1016/0009-2614(90)85122-S . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Meot-Ner (Mautner), 1989
Meot-Ner (Mautner), M., Ion DChemistry of Ferrocene. Thermochemistry of Ionization and Protonation and Solvent Clustering. Slow and Entropy - Driven Proton - Transfer Kinetics, J. Am. Chem. Soc., 1989, 111, 8, 2830, https://doi.org/10.1021/ja00190a014 . [all data]

Meyer, Khan, et al., 1995
Meyer, F.; Khan, F.A.; Armentrout, P.B., Thermochemistry of Transition Metal Benzene complexes: Binding energies of M(C6H6)x+ (x = 1,2) for M = Ti to Cu, J. Am. Chem. Soc., 1995, 117, 38, 9740, https://doi.org/10.1021/ja00143a018 . [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J., Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer, J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603 . [all data]

Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H., Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet, Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6 . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Searles and Kebarle, 1969
Searles, S.K.; Kebarle, P., Hydration of the Potassium Ion in the Gas Phase: Enthalpies and Entropies of Hydration Reactions K+(H2O)n-1 + H2O = K+(H2O)n for n=1 to n=6, Can. J. Chem., 1969, 47, 14, 2619, https://doi.org/10.1139/v69-432 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Lin, Chen, et al., 1997
Lin, C.-Y.; Chen, Q.; Chen, H.; Freiser, B.S., Observing Unimolecular Dissociation of Metastable Ions in FT-ICR: A Novel Application of the Continuous Ejection Technique, J. Phys. Chem. A, 1997, 101, 34, 6023, https://doi.org/10.1021/jp970446a . [all data]

Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C., Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives, Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n . [all data]

Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S., A Determination of the Stability and Structure of F-(C6H6) and F-(C6F6) Clusters, J. Chem. Phys., 1987, 86, 7, 4102, https://doi.org/10.1063/1.451920 . [all data]

Gapeev and Dunbar, 2002
Gapeev, A.; Dunbar, R.C., Reactivity and Binding Energies of Transition Metal Halide Ions with Benzene, J. Am. Soc. Mass Spectrom., 2002, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2 . [all data]

Sen Sharma, Ikuta, et al., 1982
Sen Sharma, D.K.; Ikuta, S.; Kebarle, P., Alkylation of Benzene by Alkyl Cations. Stability of the tert - Butyl Benzenium Ion, Can. J. Chem., 1982, 60, 18, 2325, https://doi.org/10.1139/v82-331 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Lee and Squires, 1986
Lee, R.E.; Squires, R.R., Anionic homoaromaticity: A gas phase experimental study, J. Am. Chem. Soc., 1986, 105, 5078. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Nemeth, Selzle, et al., 1993
Nemeth, G.I.; Selzle, H.L.; Schlag, E.W., Magnetic ZEKE experiments with mass analysis, Chem. Phys. Lett., 1993, 215, 151. [all data]

Chewter, Sander, et al., 1987
Chewter, L.A.; Sander, M.; Muller-Dethlefs, K.; Schalg, E.W., High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential, J. Chem. Phys., 1987, 86, 4737. [all data]

Stahl and Maquin, 1984
Stahl, D.; Maquin, F., Charge-stripping mass spectrometry of molecular ions from polyacenes and molecular orbital theory, Chem. Phys. Lett., 1984, 108, 613. [all data]

Grubb, Whetten, et al., 1984
Grubb, S.G.; Whetten, R.L.; Albrecht, A.C.; Grant, E.R., A precise determination of the first ionization potential of benzene, Chem. Phys. Lett., 1984, 108, 420. [all data]

Arimura and Yoshikawa, 1984
Arimura, M.; Yoshikawa, Y., Ionization efficiency and ionization energy of cyclic compounds by electron impact, Mass Spectrosc. (Tokyo), 1984, 32, 375. [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Cetinkaya, Lappert, et al., 1983
Cetinkaya, B.; Lappert, M.F.; Suffolk, R.J., Photoelectron spectra of some sterically hindered phenols and related compounds, J. Chem. Res. Synop., 1983, 316. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Duncan, Dietz, et al., 1981
Duncan, M.A.; Dietz, T.G.; Smalley, R.E., Two-color photoionization of naphthalene and benzene at threshold, J. Chem. Phys., 1981, 75, 2118. [all data]

Clare and Sowerby, 1981
Clare, P.; Sowerby, D.B., Electron impact ionisation energies of some halo-cyclotriphosphazenes, J. Inorg. Nucl. Chem., 1981, 43, 477. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Sell, Mintz, et al., 1978
Sell, J.A.; Mintz, D.M.; Kupperman, A., Photoelectron angular distributions of carbon-carbon π electrons in ethylene, benzene, and their fluorinated derivatives, Chem. Phys. Lett., 1978, 58, 601. [all data]

Mattsson, Karlsson, et al., 1977
Mattsson, L.; Karlsson, L.; Jadrny, R.; Siegbahn, K., Valence electron spectrum of C6H6 excited by linearly polarized HeI radiation, Phys. Scr., 1977, 16, 221. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Selim, 1976
Selim, E.T.M., Electron impact study of benzene, Egypt. J. Phys., 1976, 7, 91. [all data]

Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W., An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes, Org. Mass Spectrom., 1976, 11, 207. [all data]

Baldwin, Loudon, et al., 1976
Baldwin, M.A.; Loudon, A.G.; Maccoll, A.; Webb, K.S., The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds, Org. Mass Spectrom., 1976, 11, 1181. [all data]

Pitt, 1973
Pitt, C.G., Hyperconjugation and its role in group IV chemistry, J. Organomet. Chem., 1973, 61, 49. [all data]

Tajima, Shimizu, et al., 1972
Tajima, S.; Shimizu, Y.; Tsuchiya, T., The effect of the shield voltage on appearance potential measurements using a mass spectrometer, Bull. Chem. Soc. Jpn., 1972, 45, 931. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Chizhov, Kleimenov, et al., 1972
Chizhov, Yu.V.; Kleimenov, V.I.; Medynskii, G.S.; Vilesov, F.I., Photoelectron spectra of some bromoethylenes and 2-bromopropene, Can. J. Chem., 1972, 50, 2642. [all data]

Sergeev, Akopyan, et al., 1970
Sergeev, Yu.L.; Akopyan, M.E.; Vilesov, F.I.; Kleimenov, V.I., Photoionization processes in phenyl halides, Opt. i Spektroskopiya, 1970, 29, 119, In original 63. [all data]

Demeo and El-Sayed, 1970
Demeo, D.A.; El-Sayed, M.A., Ionization potential and structure of olefins, J. Chem. Phys., 1970, 52, 2622. [all data]

Buchs, 1970
Buchs, A., Etude par spectrometrie de masse de l'ionisation de benzonitriles, de phenylacetonitriles et de N,N-dimethylanilines substitues, Helv. Chim. Acta, 1970, 53, 2026. [all data]

Asbrink, Lindholm, et al., 1970
Asbrink, L.; Lindholm, E.; Edqvist, O., Jahn-Teller effect in the vibrational structure of the photoelectron spectrum of benzene, Chem. Phys. Lett., 1970, 5, 609. [all data]

Peatman, Borne, et al., 1969
Peatman, W.B.; Borne, T.B.; Schlag, E.W., Photoionization resonance spectra. I. Nitric oxide and benzene, Chem. Phys. Lett., 1969, 3, 492. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Momigny, Goffart, et al., 1968
Momigny, J.; Goffart, C.; D'Or, L., Photoionization studies by total ionization measurements. I. Benzene and its monohalogeno derivatives, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 53. [all data]

Bock, Seidl, et al., 1968
Bock, H.; Seidl, H.; Fochler, M., d-Orbitaleffekte in silicium-substituierten π-Elektronensystemen. X. Vertikale Ionisierungsenergien von Alkyl- und Silyl-benzolen, Chem. Ber., 1968, 101, 2815. [all data]

Baker, May, et al., 1968
Baker, A.D.; May, D.P.; Turner, D.W., Molecular photoelectron spectroscopy. Part VII. The vertical ionisation potentials of benzene and some of its monosubstituted and 1,4-disubstituted derivatives, J. Chem. Soc. B, 1968, 22. [all data]

Baker, Brundle, et al., 1968
Baker, A.D.; Brundle, C.R.; Turner, D.W., The interpretation of photoelectron spectra especially those of benzene and water, Int. J. Mass Spectrom. Ion Phys., 1968, 1, 443. [all data]

Clark and Frost, 1967
Clark, I.D.; Frost, D.C., A study of the energy levels in benzene and some fluorobenzenes by photoelectron spectroscopy, J. Am. Chem. Soc., 1967, 89, 244. [all data]

Nounou, 1966
Nounou, P., Etude des composes aromatiques par spectrometrie de masse. I. Mesure des potentials d'ionisation et d'apparition par la methode du potential retardateur et interpretation des courbes d'ionisation differentielle, J. Chim. Phys., 1966, 63, 994. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Dibeler and Reese, 1964
Dibeler, V.H.; Reese, R.M., Mass spectrometric study of photoionization. I. Apparatus and initial observations on acetylene, acetylene-d2, benzene, and benzene-d6, J. Res. NBS, 1964, 68A, 409. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Terenin, 1961
Terenin, A., Charge transfer in organic solids, induced by light, Proc. Chem. Soc., London, 1961, 321. [all data]

El-Sayed, Kaaba, et al., 1961
El-Sayed, M.F.A.; Kaaba, M.; Tanaka, Y., Ionization potentials of benzene, hexadeuterobenzene, and pyridine from their observed Rydberg series in the region 600-2000 A, J. Chem. Phys., 1961, 34, 334. [all data]

Wilkinson, 1956
Wilkinson, P.G., Absorption spectra and ionization potentials of benzene and benzene-d6, J. Chem. Phys., 1956, 24, 917. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Hustrulid, Kusch, et al., 1938
Hustrulid, A.; Kusch, P.; Tate, J.T., The dissociation of benzene (C6H6), pyridine (C5H5N) and cyclohexane (C6H12) by electron impact, Phys. Rev., 1938, 54, 1037. [all data]

Price and Wood, 1935
Price, W.C.; Wood, R.W., The far ultraviolet absorption spectra and ionization potentials of C6H6 and C6D6, J. Chem. Phys., 1935, 3, 439. [all data]

Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K., Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials, J. Am. Chem. Soc., 1984, 106, 3968. [all data]

Kovac, Mohraz, et al., 1980
Kovac, B.; Mohraz, M.; Heilbronner, E.; Boekelheide, V.; Hopf, H., Photoelectron spectra of the cyclophanes, J. Am. Chem. Soc., 1980, 102, 4314. [all data]

Kaim, Tesmann, et al., 1980
Kaim, W.; Tesmann, H.; Bock, H., Me3C-, Me3Si-, Me3Ge-, Me3Sn- und Me3Pb-substituierte benzol- und naphthalin-derivate und ihre radikalanionen, Chem. Ber., 1980, 113, 3221. [all data]

Sell and Kupperman, 1978
Sell, J.A.; Kupperman, A., Angular distributions in the photoelectron spectra of benzene and its monohalogenated derivatives, Chem. Phys., 1978, 33, 367. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G., Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode, Croat. Chem. Acta, 1978, 51, 43. [all data]

Schmidt, 1977
Schmidt, W., Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series, J. Chem. Phys., 1977, 66, 828. [all data]

Gower, Kane-Maguire, et al., 1977
Gower, M.; Kane-Maguire, L.A.P.; Maier, J.P.; Sweigart, D.A., Ultraviolet photoelectron spectra of cyclohepta-1,3,5-triene and mesitylene tricarbonyl complexes of the group 6A metals, J. Chem. Soc. Dalton Trans., 1977, 316. [all data]

Bock, Kaim, et al., 1977
Bock, H.; Kaim, W.; Rohwer, H.E., Radical ions XI*. One-electron oxidation of alkylsilyl benzenes in the gas phase and in solution, J. Organomet. Chem., 1977, 135, 14. [all data]

Clar and Schmidt, 1976
Clar, E.; Schmidt, W., Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons, Tetrahedron, 1976, 32, 2563. [all data]

Kobayashi and Nagakura, 1975
Kobayashi, T.; Nagakura, S., Angular distribution for the photoelectron spectra of benzene and hexafluorobenzene, J. Electron Spectrosc. Relat. Phenom., 1975, 7, 187. [all data]

Bischof, Dewar, et al., 1974
Bischof, P.K.; Dewar, M.J.S.; Goodman, D.W.; Jones, T.B., Photoelectron spectra of molecules. VI. Hyperconjugation versus pπ-dπ bonding in group IVb compounds, J. Organomet. Chem., 1974, 82, 89. [all data]

Schafer and Schweig, 1972
Schafer, W.; Schweig, A., Zur Konjugation in aromatischen Aminen und Phosphanen, Angew. Chem., 1972, 84, 898. [all data]

Klessinger, 1972
Klessinger, M., Ionization potentials of substituted benzenes, Angew. Chem. Int. Ed. Engl., 1972, 11, 525. [all data]

Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J., Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten, Chem. Ber., 1972, 105, 3850. [all data]

Carlson and Anderson, 1971
Carlson, T.A.; Anderson, C.P., Angular distribution of the photoelectron spectrum for benzene, Chem. Phys. Lett., 1971, 10, 561. [all data]

Bock and Fuss, 1971
Bock, H.; Fuss, W., Arguments concerning the orbital sequence in borazin, Angew. Chem. Int. Ed. Engl., 1971, 10, 182. [all data]

Gleiter, Heilbronner, et al., 1970
Gleiter, R.; Heilbronner, E.; Hornung, V., Lone pair interaction in pyridazine, pyrimidine, and pyrazine, Angew. Chem. Int. Ed. Engl., 1970, 9, 901. [all data]

Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S., Excess-kinetic-energy ions in organic mass spectra, J. Chem. Phys., 1964, 40, 2114. [all data]

Lifshitz and Reuben, 1969
Lifshitz, C.; Reuben, B.G., Ion-molecule reactions in aromatic systems. I. Secondary ions and reaction rates in benzene, J. Chem. Phys., 1969, 50, 951. [all data]

Natalis and Franklin, 1965
Natalis, P.; Franklin, J.L., Ionization and dissociation of diphenyl and condensed ring aromatics by electron impact. I. Biphenyl, diphenylacetylene, and phenanthrene, J. Phys. Chem., 1965, 69, 2935. [all data]

Kuhlewind, Kiermeier, et al., 1986
Kuhlewind, H.; Kiermeier, A.; Neusser, H.J., Multiphoton ionization in a reflectron time-of-flight mass spectrometer: Individual rates of competing dissociation channels in energy-selected benzene cations [Data derived from reported threshold energies taking value of 9.244 eV for IE[Benzene]], J. Chem. Phys., 1986, 85, 4427. [all data]

Eland, Frey, et al., 1976
Eland, J.H.D.; Frey, R.; Schulte, H.; Brehm, B., New results on the fragmentation of the benzene ion, Int. J. Mass Spectrom. Ion Phys., 1976, 21, 209. [all data]

Rosenstock, Larkins, et al., 1973
Rosenstock, H.M.; Larkins, J.T.; Walker, J.A., Interpretation of photoionization thresholds: Quasiequilibrium theory and the fragmentation of benzene, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 309. [all data]

Rosenstock, McCulloh, et al., 1977
Rosenstock, H.M.; McCulloh, K.E.; Lossing, F.P., On the mechanisms of C6H6 ionization fragmentation, Int. J. Mass Spectrom. Ion Phys., 1977, 25, 327. [all data]

Hickling and Jennings, 1970
Hickling, R.D.; Jennings, K.R., Kinetic shifts and metastable transitions, Org. Mass Spectrom., 1970, 3, 1499. [all data]

Bentley, Johnstone, et al., 1973
Bentley, T.W.; Johnstone, R.A.W.; McMaster, B.N., Appearance potentials of metastable and normal ions and the kinetic shift, J. Chem. Soc., Chem. Commun., 1973, 510. [all data]

Klippenstein, Faulk, et al., 1993
Klippenstein, S.J.; Faulk, J.D.; Dunbar, R.C., A combined theoretical and experimental study of the dissociation of benzene cation, J. Chem. Phys., 1993, 98, 243. [all data]

Gross, 1972
Gross, M.L., Ion cyclotron resonance spectrometry. A means of evaluating 'kinetic shifts', Org. Mass Spectrom., 1972, 6, 827. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Ho, Yang, et al., 1997
Ho, Y.-P.; Yang, Y.-C.; Klippenstein, S.J.; Dunbar, R.C., Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics, J. Phys. Chem. A, 1997, 101, 18, 3338, https://doi.org/10.1021/jp9637284 . [all data]

Dunbar, Klippenstein, et al., 1996
Dunbar, R.C.; Klippenstein, S.J.; Hrusak, J.; Stockigt, D.; Schwarz, H., Binding Energy of Al(C6H6)+ from the Analysis of Radiative Association Kinetics, J. Am. Chem. Soc., 1996, 118, 22, 5277, https://doi.org/10.1021/ja953235x . [all data]

Schroeder, Hrusak, et al., 1995
Schroeder, D.; Hrusak, J.; Hertwig, R.H.; Koch, W.; Schwerdtfeger, P.; Schwarz, H., Experimental and Theoretical Studies of Gold(I) Complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6), Organometallics, 1995, 14, 1, 312, https://doi.org/10.1021/om00001a045 . [all data]

Willey, Yeh, et al., 1992
Willey, K.F.; Yeh, C.S.; Robbins, D.L.; Duncan, M.A., Charge-transfer in the photodissociation of metal ion-benzene complexes, J. Phys. Chem., 1992, 96, 23, 9106, https://doi.org/10.1021/j100202a007 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Beck and Hecht, 1991
Beck, S.M.; Hecht, J.H., Photofragmentation of Mass - Selected (C6H6)n+ Clusters: Measurement of Monomer - Cluster Binding Energy for n = 7 - 15, J. Chem. Phys., 1991, 96, 3, 1975, https://doi.org/10.1063/1.462099 . [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Liebman, Romm, et al., 1991
Liebman, J.F.; Romm, M.J.; Meot-Ner (Mautner), M.; Cybulski, S.M.; Scheiner, S., Isotropy in ionic interactions. 2. How spherical is the ammonium ion? Comparison of the gas-phase clustering energies and condensed-phase thermochemistry of K+ and NH4+, J. Phys. Chem., 1991, 95, 3, 1112, https://doi.org/10.1021/j100156a018 . [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]

Gapeev and Dunbar, 2000
Gapeev, A.; Dunbar, R.C., Binding of Alkaline Earth Halide Ions MX+ to Benzene and Mesitylene, J. Am. Soc. Mass Spectrom., 2000, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2 . [all data]

Judai, Hirano, et al., 1997
Judai, K.; Hirano, M.; Kawamata, H.; Yabushita, S.; Nakajima, A.; Kaya, K., Formation of Vanadium-Arene Complex Anions and Their Photoelectron Spectroscopy, Chem. Phys. Lett., 1997, 270, 1-2, 23, https://doi.org/10.1016/S0009-2614(97)00336-9 . [all data]

Romand and Vodar, 1951
Romand, J.; Vodar, B., Spectres d'absorption du benzene a l'etat vapeur et a l'etat condense dans l'ultraviolet lointain, Compt. Rend., 1951, 233, 930-932. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Ádámová, Orinák, et al., 2005
Ádámová, M.; Orinák, A.; Halás, L., Retention indices as identification tool in pyrolysis-capillary gas chromatography, J. Chromatogr. A, 2005, 1087, 1-2, 131-141, https://doi.org/10.1016/j.chroma.2005.01.003 . [all data]

Wang, Liu, et al., 2005
Wang, Y.; Liu, J.; Li, N.; Shi, G.; Jiang, G.; Ma, W., Preliminary study of the retention behavior for different compounds using cryogenic chromatography at different initial temperatures, Microchem. J., 2005, 81, 2, 184-190, https://doi.org/10.1016/j.microc.2005.02.003 . [all data]

Kurbatova, Finkelstein, et al., 2004
Kurbatova, S.V.; Finkelstein, E.E.; Kolosova, E.A.; Kartashev, A.V.; Rashkin, S.V., Structural analogy method in studies of adamantanes, J. Struct. Chem., 2004, 45, 1, 144-150, https://doi.org/10.1023/B:JORY.0000041513.82837.4e . [all data]

Pérez-Parajón, Santiuste, et al., 2004
Pérez-Parajón, J.M.; Santiuste, J.M.; Takács, J.M., Sensitivity of the methylbenzenes and chlorobenzenes retention index to column temperature, stationary phase polarity, and number and chemical nature of substituents, J. Chromatogr. A, 2004, 1048, 2, 223-232, https://doi.org/10.1016/j.chroma.2004.07.028 . [all data]

Soják, 2004
Soják, L., Separation and identification of isomeric hydrocarbons by capillary gas chromatography and hyphenated spectrometric techniques, Petroleum Coal, 2004, 46, 3, 1-35. [all data]

Ciaznska-Halarewicz and Kowalska, 2003
Ciaznska-Halarewicz, K.; Kowalska, T., A study of the dependence of the Kováts retention index on the temperature of analysis on stationary phases of different polarity, Acta Chromatogr., 2003, 13, 69-80. [all data]

Gurevich and Roshchina, 2003
Gurevich, K.B.; Roshchina, T.M., G as chromatography study of silica modified with polyfluoroalkyl groups, J. Chromatogr. A, 2003, 1008, 97-103. [all data]

Santiuste, Harangi, et al., 2003
Santiuste, J.M.; Harangi, J.; Takács, J.M., Mosaic increments for predicting the gas chromatographic retention data of the chlorobenzenes, J. Chromatogr. A, 2003, 1002, 1-2, 155-168, https://doi.org/10.1016/S0021-9673(03)00736-2 . [all data]

Santiuste J.M. and Takacs J.M., 2003
Santiuste J.M.; Takacs J.M., Relationships between retention data of benzene and chlorobenzenes with their physico-chemical properties and topological indices, Chromatographia, 2003, 58, 87-96. [all data]

Berezkin, Korolev, et al., 2002
Berezkin, V.G.; Korolev, A.A.; Malyukova, I.V.; Popova, T.P.; Shiryaeva, V.E.; Khotimskii, V.S., Poly[1-(trimethylsilyl)-1-propine] as chromatographic adsorbent and prospects of its application in packed and capillary columns, J. Chromatogr. A, 2002, 960, 1-2, 151-158, https://doi.org/10.1016/S0021-9673(02)00333-3 . [all data]

Wick, Siepmann, et al., 2002
Wick, C.D.; Siepmann, I.; Klotz, W.L.; Schure, M.R., Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography. Experiment and molecular simulation, J. Chromatogr. A, 2002, 954, 1-2, 181-190, https://doi.org/10.1016/S0021-9673(02)00171-1 . [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Garay, 2000
Garay, F., Application of a flow-tunable, serially coupled gas chromatographic capillary column system for the analysis of complex mixtures, Chromatographia Sup., 2000, 51, 1, s108-s120, https://doi.org/10.1007/BF02492792 . [all data]

Zhuravleva, 2000
Zhuravleva, I.L., Evaluation of the polarity and boiling points of nitrogen-containing heterocyclic compounds by gas chromatography, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 325-328, https://doi.org/10.1007/BF02494682 . [all data]

Castello, Vezzani, et al., 1999
Castello, G.; Vezzani, S.; Gardella, L., Influence of temperature on the polarity of porous polymer beads stationary phases for gas chromatography, J. Chromatogr. A, 1999, 837, 1-2, 153-170, https://doi.org/10.1016/S0021-9673(99)00058-8 . [all data]

Zhu, Zhang, et al., 1999
Zhu, X.; Zhang, L.; Chen, J.; Wang, L.; Che, X., The application quantitative structure-retention relationship of GC to aid MS qualitative analysis, Chin. J. Chromatogr., 1999, 17, 4, 351-353. [all data]

Beens, Tijssen, et al., 1998
Beens, J.; Tijssen, R.; Blomberg, J., Prediction of comprehensive two-dimensional gas chromatographic separations. A theoretical and practical exercise, J. Chromatogr. A, 1998, 822, 2, 233-251, https://doi.org/10.1016/S0021-9673(98)00649-9 . [all data]

Dewulf, Van Langenhove, et al., 1997
Dewulf, J.; Van Langenhove, H.; Everaert, M., Solid-phase microextraction of volatile organic compounds estimation of the sorption equilibrium from the Kováts index, effect of salinity and humic acids and the study of the kinetics by the development of an agitated/static layer model, J. Chromatogr. A, 1997, 761, 1-2, 205-217, https://doi.org/10.1016/S0021-9673(96)00810-2 . [all data]

Skrbic, 1997
Skrbic, B.D., Unified retention concept -- statistical treatment of Kováts retention index, J. Chromatogr. A, 1997, 764, 2, 257-264, https://doi.org/10.1016/S0021-9673(96)00955-7 . [all data]

Terenina, Zhuravieva, et al., 1997
Terenina, M.B.; Zhuravieva, I.L.; Golovnya, R.V., Peculiar features of sorption of positional isomers of formyl-, acetyl-, and aminopyridines in capillary gas-liquid chromatography, Russ. Chem. Bull. (Engl. Transl.), 1997, 46, 1, 86-89, https://doi.org/10.1007/BF02495353 . [all data]

Righezza, Hassani, et al., 1996
Righezza, M.; Hassani, A.; Meklati, B.Y.; Chrétien, J.R., Quantitative structure-retention relationships (QSRR) of congeneric aromatics series studied on phenyl OV phases in gas chromatography, J. Chromatogr. A, 1996, 723, 1, 77-91, https://doi.org/10.1016/0021-9673(95)00816-0 . [all data]

Estel, Mohnke, et al., 1995
Estel, D.; Mohnke; Biermans; Rotzsche, The analysis of C4-C11 hydrocarbons in naphtha and reformate with a new apolar fused silica column, J. Hi. Res. Chromatogr., 1995, 18, 7, 403-412, https://doi.org/10.1002/jhrc.1240180703 . [all data]

Castello, Vezzani, et al., 1994
Castello, G.; Vezzani, S.; Moretti, P., The selectivity and polarity of carbon layer open tubular capillary columns modified with a polar liquid phase, J. Hi. Res. Chromatogr., 1994, 17, 1, 31-36, https://doi.org/10.1002/jhrc.1240170108 . [all data]

Cha and Lee, 1994
Cha, K.-W.; Lee, D.-J., Prediction of retention indices of various compounds in gas-liquid chromatography, J. Korean Chem. Soc., 1994, 38, 2, 108-120, retrieved from http://journal.kcsnet.or.kr/publi/dh/dh94n2/108.pdf. [all data]

Krupcik, Skacani, et al., 1994
Krupcik, J.; Skacani, I.; Benicka, E.; Sandra, P., Dependence of gas chromatographic retention data of hydrocarbons on the film thickness of the polydimethylsiloxane stationary phase, Collect. Czech. Chem. Commun., 1994, 59, 11, 2390-2396, https://doi.org/10.1135/cccc19942390 . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Hassani and Meklati, 1992
Hassani, A.; Meklati, B.Y., Gas chromatographic behaviour of monosubstituted benzenes, benzaldehydes and acetophenones on OV polymethylphenyl-silicone stationary phases, Chromatographia, 1992, 33, 5/6, 267-271, https://doi.org/10.1007/BF02276193 . [all data]

Hongwei and Zhide, 1992
Hongwei, Z.; Zhide, H., Utilization of total solubility parameter for calculating retention indices of alkylbenzenes, Chromatographia, 1992, 33, 11/12, 575-580, https://doi.org/10.1007/BF02262251 . [all data]

Kowalski, 1992
Kowalski, W.J., Free radical crosslinking of the gas chromatographic stationary phase containing europium chelates, Chromatographia, 1992, 34, 5-8, 266-268, https://doi.org/10.1007/BF02268356 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Zhang, Li, et al., 1992
Zhang, M.J.; Li, S.D.; Chen, B.J., Compositional studies of high-temperature coal tar by GC/FTIR analysis of light oil fractions, Chromatographia, 1992, 33, 3/4, 138-146, https://doi.org/10.1007/BF02275894 . [all data]

Engewald and Maurer, 1990
Engewald, W.; Maurer, T., Enhanced possibilities for identification by the use of series-coupled capillary gas chromatographic columns. I. General exposition and application of the retention index concept, J. Chromatogr., 1990, 520, 3-13, https://doi.org/10.1016/0021-9673(90)85078-A . [all data]

Dimov and Mekenyan, 1989
Dimov, N.; Mekenyan, Ov., Quantitative Relationships Between the Structure of Alkylbenzenes and Their Gas Chromatographic Retention on Stationary Phasses with Different Polarity, J. Chromatogr., 1989, 471, 227-236, https://doi.org/10.1016/S0021-9673(00)94170-0 . [all data]

Guan, Kiraly, et al., 1989
Guan, Y.; Kiraly, J.; Rijks, J.A., Interactive retention index database for compound identification in temperature-programmed capillary gas chromatography, J. Chromatogr., 1989, 472, 129-143, https://doi.org/10.1016/S0021-9673(00)94101-3 . [all data]

Safina, Poznyak, et al., 1989
Safina, L.R.; Poznyak, T.I.; Lisitsyn, D.M.; Kiseleva, E.V.; Kovalev, G.I., Selective gas-chromatographic determination of trace unsaturated and aromatic-hydrocarbons in complex-mixtures, J. Appl. Chem. USSR (Engl. Transl.), 1989, 44, 5, 749-754. [all data]

Bangjie, Yijian, et al., 1988
Bangjie, C.; Yijian, G.; Shaoyi, P., Calculation of retention indices at an assigned temperature from temperature programmed data, Chromatographia, 1988, 25, 6, 539-542, https://doi.org/10.1007/BF02324830 . [all data]

Laub and Purnell, 1988
Laub, R.J.; Purnell, J.H., Specific retention volumes, retention indices, and family-plot regressions of aliphatic, alicyclic, and aromatic hydrocarbon solutes with OV-101 poly (dimethylsiloxane) stationary phase, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1988, 11, 9, 649-660, https://doi.org/10.1002/jhrc.1240110908 . [all data]

Lunskii and Paizanskaya, 1988
Lunskii, M.Kh.; Paizanskaya, I.L., Identification of hydrocarbons C1-C9 of petrol fractions of oils and condensates in the use of capillary columns with dinonylphthalate, Zh. Anal. Khim., 1988, 43, 127-135. [all data]

Samusenko and Golovnya, 1988
Samusenko, A.L.; Golovnya, R.V., Prediction of the retention indices of methyl pyridines and pyrazines in capillary gas chromatography based on the non-linear additivity of the sorption energy, Chromatographia, 1988, 25, 6, 531-535, https://doi.org/10.1007/BF02324828 . [all data]

de Zeeuw, de Nijs, et al., 1988
de Zeeuw, J.; de Nijs, R.C.M.; Buyten, J.C.; Peene, J.A.; Mohne, M., PoraPLOT Q: A porous layer open tubular column coated with styrene-divinylbenzene copolymer, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1988, 11, 2, 162-167, https://doi.org/10.1002/jhrc.1240110204 . [all data]

Engewald, Topalova, et al., 1987
Engewald, W.; Topalova, I.; Petsev, N.; Dimitrov, Chr., Structure-Retention Correlations of Hydrocarbons in GLC and GSC. Alkenylbenzenes, Chromatographia, 1987, 23, 8, 561-565, https://doi.org/10.1007/BF02324864 . [all data]

Evans and Haken, 1987
Evans, M.B.; Haken, J.K., Dispersion and selectivity indices of the halogenated derivatives of cyclohexane, benzene and anisole, J. Chromatogr., 1987, 389, 240-244, https://doi.org/10.1016/S0021-9673(01)94428-0 . [all data]

Fernández-Sánchez, Fernández-Torres, et al., 1987
Fernández-Sánchez, E.; Fernández-Torres, A.; García-Domínguez, J.A.; García-Muñoz, J.; Menéndez, V.; Molera, M.J.; Santiuste, J.M.; Pertierra-Rimada, E., Mixed stationary phases in gas-liquid chromatography. Partition coefficients and retention indices in OV-101-OV-25, OV-101-Carbowax 20M and OV-225-SP-2340 mixtures, J. Chromatogr., 1987, 410, 13-29, https://doi.org/10.1016/S0021-9673(00)90031-1 . [all data]

Fernández-Sánchez, García-Domínguez, et al., 1987
Fernández-Sánchez, E.; García-Domínguez, J.A.; García-Muñoz, J.; Menéndez, V.; Molera, M.J., Prediction of gas chromatographic retention indices on binary mixed stationary phases, An. Quim., 1987, 83, 56-58. [all data]

Kersten and Poole, 1987
Kersten, B.R.; Poole, C.F., Influence of concurrent retention mechanisms on the determination of stationary phase selectivity in gas chromatography, J. Chromatogr., 1987, 399, 1-31, https://doi.org/10.1016/S0021-9673(00)96108-9 . [all data]

Nabivach and Vasiliev, 1987
Nabivach, V.M.; Vasiliev, E.E.E., Correlation dependencies of GC retention indices from physical chemical properties and structures of aromatic hydrocarbons, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 1987, 30, 72-75. [all data]

Boneva and Dimov, 1986
Boneva, S.; Dimov, N., Unified retention index of hydrocarbons separated on dimethylsilicone OV-101, Chromatographia, 1986, 21, 12, 697-700, https://doi.org/10.1007/BF02313682 . [all data]

Haken and Vernon, 1986
Haken, J.K.; Vernon, F., Gas chromatography of halogenated derivatives of cyclohexane, benzene and anisole, J. Chromatogr., 1986, 361, 57-61, https://doi.org/10.1016/S0021-9673(01)86893-X . [all data]

Oszczapowicz, Osek, et al., 1985
Oszczapowicz, J.; Osek, J.; Ciszkowski, K.; Krawczyk, W.; Ostrowski, M., Retention Indices of Dimethylbenzamidines and Benzylideneamines on a Non-Polar Column, J. Chromatogr., 1985, 330, 79-85, https://doi.org/10.1016/S0021-9673(01)81964-6 . [all data]

Rudenko, Mal'tsev, et al., 1985
Rudenko, G.I.; Mal'tsev, V.V.; Studenichnik, V.N.; Ustinov, E.P., Gas chromatographic analysis of volatile substances evolved into atmosphere from polymer materials, Zh. Anal. Khim., 1985, 40, 6, 1119-1127. [all data]

Oszczapowicz, Osek, et al., 1984
Oszczapowicz, J.; Osek, J.; Dolecka, E., Retention indices of dimethylformamidines, dimethylacetamidines and tetramethylguanidines on a non-polar column, J. Chromatogr., 1984, 315, 95-100, https://doi.org/10.1016/S0021-9673(01)90727-7 . [all data]

Stolyarov and Kartsova, 1984
Stolyarov, B.V.; Kartsova, L.A., Comparative experimental estimation of polarity and selectivity of stationary phases in gas chromatography by means of Forschneider-McReynolds constants and on the basis of thermodynamic characteristics, Zh. Anal. Khim., 1984, 39, 5, 883-889. [all data]

Tiess, 1984
Tiess, D., Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30, Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]

Valko, Papp, et al., 1984
Valko, K.; Papp, O.; Darvas, F., Selection of Gas Chromatographic Stationary Phase Pairs for Characterization of the 1-Octanol-Water Partition Coefficient, J. Chromatogr., 1984, 301, 355-364, https://doi.org/10.1016/S0021-9673(01)89210-4 . [all data]

Boneva, Papazova, et al., 1983
Boneva, St.; Papazova, D.; Dimov, N., Retention Indices of aromatic hydrocarbons on glass and metal capillary columns with stationary phase OV-101, Jahrb. Chem. Tech. Hochschule Burgas, 1983, 18, 143-148. [all data]

Castello and D'Amato, 1983
Castello, G.; D'Amato, G., Classification of the Polarity of porous polymer bead stationary phases by comparison with squalane and apolane standard liquid phases, J. Chromatogr., 1983, 269, 153-160, https://doi.org/10.1016/S0021-9673(01)90798-8 . [all data]

Chien, Furio, et al., 1983
Chien, C.-F.; Furio, D.L.; Kopecni, M.M.; Laub, R.J., Specific Retention Volumes and Retention Indices of Selected Hydrocarbon Solutes with OV-101 and SP-2100 Polydimethylsiloxane Solvents, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1983, 6, 10, 577-580, https://doi.org/10.1002/jhrc.1240061013 . [all data]

Chien, Furio, et al., 1983, 2
Chien, C.-F.; Furio, D.L.; Kopecni, M.M.; Laub, R.J., Specific retention volumes and retention indices of selected hydrocarbon solutes with OV-3, OV-7, OV-11, OV-17, OV-22, and OV-25 polymethylphenylsiloxane solvents, J. Hi. Res. Chromatogr., 1983, 6, 12, 669-679, https://doi.org/10.1002/jhrc.1240061207 . [all data]

Kugucheva and Mashinsky, 1983
Kugucheva, E.E.; Mashinsky, V.I., Retention Indices of Aromatic Hydrocarbons on Capillary Columns with Squalan and Polyphenyl Ether, Zh. Anal. Khim. (Rus), 1983, 38, 11, 2023-2026. [all data]

Lubeck and Sutton, 1983
Lubeck, A.J.; Sutton, DL., Kovats retention indices of selected hydrocarbons through C10 on bonded phase fused silica capillaries, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1983, 6, 6, 328-332, https://doi.org/10.1002/jhrc.1240060612 . [all data]

Tóth, 1983
Tóth, T., Use of capillary gas chromatography in collecting retention and chemical information for the analysis of complex petrochemical mixtures, J. Chromatogr., 1983, 279, 157-165, https://doi.org/10.1016/S0021-9673(01)93614-3 . [all data]

Vernon and Suratman, 1983
Vernon, F.; Suratman, J.B., Errors in the measurement of retention indices on packed columns, Chromatographia, 1983, 17, 11, 597-599, https://doi.org/10.1007/BF02261942 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Anders, Scheller, et al., 1982
Anders, G.; Scheller, M.; Schuhler, C.; Struppe, H.G., Zur Vorausberechnung von Bruttoretentioszeiten bei temperaturprogramierter Gaschromatographie mit Hilfe isotherm bestimmter Retentionsindices und einer Anpassung an experimentelle Retentionszeiten, Chromatographia, 1982, 15, 1, 43-47, https://doi.org/10.1007/BF02269039 . [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Gerasimenko and Nabivach, 1982
Gerasimenko, V.A.; Nabivach, V.M., Relationship between molecular structure and gas chromatographic retention of alkylbenzenes C8-C1 2 on polydimethylsiloxane, Zh. Anal. Khim., 1982, 37, 110-116. [all data]

Jaworski, 1982
Jaworski, M., Wybrane przyklady stosowania systemu indeksów retencji, Przem. Chem., 1982, 61, 9, 334-338. [all data]

Johansen and Ettre, 1982
Johansen, N.G.; Ettre, L.S., Retention index values of hydrocarbons on open-tubular columns coated with methylsilicone liquid phases, Chromatographia, 1982, 15, 10, 625-630, https://doi.org/10.1007/BF02279488 . [all data]

Macák, Nabivach, et al., 1982
Macák, J.; Nabivach, V.; Buryan, P.; Sindler, S., Dependence of retention indices of alkylbenzenes on their molecular structure, J. Chromatogr., 1982, 234, 2, 285-302, https://doi.org/10.1016/S0021-9673(00)81867-1 . [all data]

Chien, Kopecni, et al., 1981
Chien, C.-F.; Kopecni, M.M.; Laub, R.J., Specific Retention Volumes and Retention Indices of Selected Hydrocarbon Solutes with OV-1 and SE-30 Polydimethylsiloxane Solvents, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1981, 4, 10, 539-543, https://doi.org/10.1002/jhrc.1240041017 . [all data]

Gerasimenko, Kirilenko, et al., 1981
Gerasimenko, V.A.; Kirilenko, A.V.; Nabivach, V.M., Capillary gas chromatography of aromatic compounds found in coal tar fractions, J. Chromatogr., 1981, 208, 1, 9-16, https://doi.org/10.1016/S0021-9673(00)87953-4 . [all data]

Mitra, 1981
Mitra, G.D., Conversion of linear retention indices into logarithmic retention indices, J. Chromatogr., 1981, 211, 2, 239-242, https://doi.org/10.1016/S0021-9673(00)88039-5 . [all data]

Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A., On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor, J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40 . [all data]

Albaigés and Guardino, 1980
Albaigés, J.; Guardino, X., Gas chromatographic-mass spectrometric identification of alkylcyclohexanes and cyclohexenes, Chromatographia, 1980, 13, 12, 755-762, https://doi.org/10.1007/BF02265555 . [all data]

Morishita, Okano, et al., 1980
Morishita, F.; Okano, T.; Kojima, T., Retention indices of monocyclic monoterpene hydrocarbons, Bunseki Kagaku, 1980, 29, 1, 48-53, https://doi.org/10.2116/bunsekikagaku.29.48 . [all data]

Nabivach and Kirilenko, 1980
Nabivach, V.M.; Kirilenko, A.V., Relationship between the gas chromatographic behaviour and the molecular structure of hydrocarbon samples and various stationary phases. Part II. Correlation between the retention index, physicochemical properties and molecular structure, Chromatographia, 1980, 13, 2, 93-100, https://doi.org/10.1007/BF02263060 . [all data]

Bajus, Veselý, et al., 1979
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A., Steam cracking of hydrocarbons. 2. Pyrolysis of methylcyclohexane, Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 2, 135-142, https://doi.org/10.1021/i360070a012 . [all data]

Bajus, Veselý, et al., 1979, 2
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A., Steam cracking of hydrocarbons. 1. Pyrolysis of heptane, Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 1, 30-37, https://doi.org/10.1021/i360069a007 . [all data]

Castello and D'Amato, 1979
Castello, G.; D'Amato, G., Use of Linear and Branched-Chain Paraffinic Liquid Phases as Non-Polar Reference Materials in Gas Chromatography, J. Chromatogr., 1979, 175, 1, 27-35, https://doi.org/10.1016/S0021-9673(00)86400-6 . [all data]

Gröbler and Bálizs, 1979
Gröbler, A.; Bálizs, G., Investigations on mixed gas chromatographic stationary phases. Part I. Dependence of the retention index on the composition of the stationary phase, J. Chromatogr. Sci., 1979, 17, 11, 631-635, https://doi.org/10.1093/chromsci/17.11.631 . [all data]

Nabivach and Kirilenko, 1979
Nabivach, V.M.; Kirilenko, A.V., The use of retention indices for identifying the components of crude benzene, Solid Fuel Chem. (Engl. Transl.), 1979, 13, 3, 82-87. [all data]

Drozd, Novák, et al., 1978
Drozd, J.; Novák, J.; Rijks, J.A., Quantitative and qualitative head-space gas analysis of parts per billion amounds of hydrocarbons in water. A study of model systems by capillary-column gas chromatography with splitless sample injection, J. Chromatogr., 1978, 158, 471-482, https://doi.org/10.1016/S0021-9673(00)89989-6 . [all data]

Nabivach, Bur'yan, et al., 1978
Nabivach, V.M.; Bur'yan, P.; Matsak, I., Retention indices of aromatic hydrocarbons on a squalane capillary column, Zh. Anal. Khim., 1978, 33, 7, 1108-1113. [all data]

Welsch, Engewald, et al., 1978
Welsch, Th.; Engewald, W.; Berger, P., IX. Das gas-chromatographische Retentionsverhalten isomerer Octine and Octadiine, Chromatographia, 1978, 11, 1, 5-9, https://doi.org/10.1007/BF02262945 . [all data]

Golovnya and Misharina, 1977
Golovnya, R.V.; Misharina, T.A., Characterization of the selectivity of stationary phases from the partial molar free energies of solution of standards, Chromatographia, 1977, 10, 11, 658-660, https://doi.org/10.1007/BF02268893 . [all data]

Engewald and Wennrich, 1976
Engewald, W.; Wennrich, L., Molekülstruktur und Retentionsverhalten. VIII. Zum Retentionsverhalten höherer Alkylbenzole bei der Gas-Verteilungs-Chromatographie, Chromatographia, 1976, 9, 11, 540-547, https://doi.org/10.1007/BF02275960 . [all data]

Lulova, Leont'eva, et al., 1976
Lulova, N.I.; Leont'eva, S.A.; Timofeeva, A.N., Gas-chromatographic method of determination of individual hydrocarbons in catalytic cracking gasolines in Proceedings of All-Union Research Institute on Oil Processes. Vol.18, All-Union Research Institute on Oil Processes, Moscow, 1976, 30-53. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Ryba, 1976
Ryba, M., Unlösliche Restfilme er stationären Flüssigkeit in gas-chromatographischen Glaskapillaren, Chromatographia, 1976, 9, 3, 105-112, https://doi.org/10.1007/BF02330376 . [all data]

Soják and Rijks, 1976
Soják, L.; Rijks, J.A., Capillary gas chromatography of alkylbenzenes. I. Some problems encountered with the precision of the retention indcies of alkylbenzenes, J. Chromatogr., 1976, 119, 505-521, https://doi.org/10.1016/S0021-9673(00)86812-0 . [all data]

Vylegzhanina and Keiser, 1976
Vylegzhanina, G.F.; Keiser, L.S., Determination of the heats of solution of the insecticide gardona and its metabolites in the stationary phase and their Kovats retention indices, Zh. Anal. Khim., 1976, 31, 1, 171-173. [all data]

Vernon and Edwards, 1975
Vernon, F.; Edwards, G.T., Gas-liquid chromatography on fluorinated stationary phases. I. Hydrocarbons and fluorocarbons, J. Chromatogr., 1975, 110, 1, 73-80, https://doi.org/10.1016/S0021-9673(00)91212-3 . [all data]

Ashes and Haken, 1974
Ashes, J.R.; Haken, J.K., Gas chromatography of homologous esters. VI. Structure-retention increments of aliphatic esters, J. Chromatogr., 1974, 101, 1, 103-123, https://doi.org/10.1016/S0021-9673(01)94737-5 . [all data]

Engewald, Epsch, et al., 1974
Engewald, W.; Epsch, K.; Graefe, J.; Welsch, Th., Molekülstruktur und retentionsverhalten. II. Retentionsverhalten cycloaliphatischer kohlenwasser-stoffe bei der gas-adsorptions- und gas-verteilungschromatographie, J. Chromatogr., 1974, 91, 623-631, https://doi.org/10.1016/S0021-9673(01)97943-9 . [all data]

Rijks and Cramers, 1974
Rijks, J.A.; Cramers, C.A., High precision capillary gas chromatography of hydrocarbons, Chromatographia, 1974, 7, 3, 99-106, https://doi.org/10.1007/BF02269819 . [all data]

Svob, Deur-Siftar, et al., 1974
Svob, V.; Deur-Siftar, D.; Cramers, C.A., Mechanisms of the thermal degradation of alkylbenzenes, J. Chromatogr., 1974, 91, 659-675, https://doi.org/10.1016/S0021-9673(01)97946-4 . [all data]

Svob and Deur-Siftar, 1974
Svob, V.; Deur-Siftar, D., Kovats Retention Indices in the Identification of Alkylbenzene Degradation Products, J. Chromatogr., 1974, 91, 677-689, https://doi.org/10.1016/S0021-9673(01)97947-6 . [all data]

Gäumann and Bonzo, 1973
Gäumann, T.; Bonzo, R., The gas-chromatographic retention indices of deuterated compounds, Helv. Chim. Acta, 1973, 56, 3, 1165-1176, https://doi.org/10.1002/hlca.19730560340 . [all data]

Pacáková, Hoch, et al., 1973
Pacáková, V.; Hoch, K.; Smolková, E., The Effect of Instrumentation on the Precision of Retention Indexes, Chromatographia, 1973, 6, 7, 320-324, https://doi.org/10.1007/BF02269334 . [all data]

Schomburg and Dielmann, 1973
Schomburg, G.; Dielmann, G., Identification by means of retention parameters, J. Chromatogr. Sci., 1973, 11, 3, 151-159, https://doi.org/10.1093/chromsci/11.3.151 . [all data]

Agrawal, Tesarík, et al., 1972
Agrawal, B.B.; Tesarík, K.; Janák, J., Gas chromatographic characterization of sulphur compounds in the 93-162° gasoline cut from Romashkino crude oil using Kováts retention indices, J. Chromatogr., 1972, 65, 1, 207-215, https://doi.org/10.1016/S0021-9673(00)86933-2 . [all data]

Sidorov, Petrova, et al., 1972
Sidorov, R.I.; Petrova, V.I.; Ivanova, M.P., Qualitative analysis of wide-boiling fraction C5-C10 with capillary chromatography in Processes in chromatographic columns. Vol.17, 1972, 14-25. [all data]

Takács, Tálas, et al., 1972
Takács, J.; Tálas, Zs.; Bernáth, I.; Czakó, Gy.; Fischer, A., Contribution to the theory of the retention index system. IV. Retention index and molecular structure. Calculation of retention indices of olefins, cyclic hydrocarbons and homologues of benzene hydrocarbons on the basis of their molecular structures, J. Chromatogr., 1972, 67, 2, 203-212, https://doi.org/10.1016/S0021-9673(01)91222-1 . [all data]

Dimov and Schopov, 1971
Dimov, N.; Schopov, D., Empirische korrektion der physikalisch-chemischen retentionsindexe von kohlenwasserstoffen auf squalan, J. Chromatogr., 1971, 63, 223-228, https://doi.org/10.1016/S0021-9673(01)85634-X . [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]

Vernon, 1971
Vernon, F., An investigation into hydrogen bonding in gas-liquid chromatography, J. Chromatogr., 1971, 63, 249-257, https://doi.org/10.1016/S0021-9673(01)85637-5 . [all data]

Wagaman and Smith, 1971
Wagaman, K.L.; Smith, T.G., Use of hydrocarbons as carrier gases in GLC, J. Chromatogr. Sci., 1971, 9, 4, 241-244, https://doi.org/10.1093/chromsci/9.4.241 . [all data]

Wallaert, 1971
Wallaert, B., Détermination des indices de Kovats sur colonne capillaire polaire, Bull. Soc. Chim. Fr., 1971, 1107-1109. [all data]

Soják and Bucinská, 1970
Soják, L.; Bucinská, A., Open tubular column gas chromatography of dehydrogenation products of C6-C10 n-alkanes. Separation and identification of mixtures of C6-C10 straight-chain alkanes, alkenes and aromatics, J. Chromatogr., 1970, 51, 75-82, https://doi.org/10.1016/S0021-9673(01)96841-4 . [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Bonastre and Grenier, 1967
Bonastre, J.; Grenier, P., Contribution à l'étude de la polarité des phases stationnaires en chromatographie gas-liquide. I. Calcul des coefficients d'activité relatifs et des indices de rétention de quelques hydrocarbures aromatiques, Bull. Soc. Chim. Fr., 1967, 4, 1395-1405. [all data]

Evans, 1966
Evans, M.B., Retention indices of solutes on squalane, dinonyl phthalate, and polyethylene glycol 400, J. Gas Chromatogr., 1966, 4, 1, 1-3, https://doi.org/10.1093/chromsci/4.1.1 . [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Buchin, Salmon, et al., 2002
Buchin, S.; Salmon, J.-C.; Carnat, A.-P.; Berger, T.; Bugaud, C.; Bosset, J.O., Identification de composés monoterpéniques, sesquiterpéniques et benzéniques dans un lait d'alpage très riche en ces substances, Mitt. Lebensmittelunters. Hyg., 2002, 93, 199-216. [all data]

Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F., Volatile components of chickpea (Cicer arietinum L.) seed, J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018 . [all data]

Hayes and Pitzer, 1982
Hayes, P.C., Jr.; Pitzer, E.W., Characterizing petroleum- and shale-derived jet fuel distillates via temperature-programmed Kováts indices, J. Chromatogr., 1982, 253, 179-198, https://doi.org/10.1016/S0021-9673(01)88376-X . [all data]

Louis, 1971
Louis, R., Kovats-index-tafeln zur gaschromatographischen analyse von kohlenwasserstoffgemischen, Erdoel Kohle Erdgas Petrochem., 1971, 24, 2, 88-94. [all data]

SGE, 2005
SGE, Guide to GC column selection, 2005, retrieved from http://www.sge.com/htm/support/productselection/prodselgc.asp. [all data]

Wongpornchai, Sriseadka, et al., 2003
Wongpornchai, S.; Sriseadka, T.; Choonvisase, S., Identification and quantitation of the rice aroma compound, 2-acetyl-1-pyrroline, in bread flowers (Vallaris glabra Ktze), J. Agric. Food Chem., 2003, 51, 2, 457-462, https://doi.org/10.1021/jf025856x . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Jalali-Heravi and Garkani-Nejad, 1993
Jalali-Heravi, M.; Garkani-Nejad, Z., Prediction of gas chromatographic retention indices of some benzene derivatives, J. Chromatogr., 1993, 648, 2, 389-393, https://doi.org/10.1016/0021-9673(93)80421-4 . [all data]

Castello, Timossi, et al., 1988
Castello, G.; Timossi, A.; Gerbino, T.C., Gas Chromatographic Separation of Halogenated Compounds on Non-Polar and Polar Wide Bore Capillary Columns, J. Chromatogr., 1988, 454, 129-143, https://doi.org/10.1016/S0021-9673(00)88608-2 . [all data]

Papazova and Pankova, 1975
Papazova, D.I.; Pankova, M.C., Identification of individual aromatic hydrocarbons in kerosene fraction (b.p. 150-250 °), J. Chromatogr., 1975, 105, 2, 411-414, https://doi.org/10.1016/S0021-9673(01)82276-7 . [all data]

Moffat, Stead, et al., 1974
Moffat, A.C.; Stead, A.H.; Smalldon, K.W., Optimum use of paper, thin-layer and gas-liquid chromatography for the identification of basic drugs. III. Gas-liquid chromatography, J. Chromatogr., 1974, 90, 1, 19-33, https://doi.org/10.1016/S0021-9673(01)94770-3 . [all data]

Egazaryants and Maximov, 1998
Egazaryants, S.V.; Maximov, A.L., Analysis of Gasoline Fractions by Capillary GC in 20th International Symposium on Capillary Chromatography, 1998, 1-6. [all data]

Orav, Kuningas, et al., 1994
Orav, A.; Kuningas, K.; Kailas, T.; Koplimets, E.; Rang, S., Effect of adsorption on the retention values in capillary columns coated with OV-225 and PEG 20M, J. Chromatogr. A, 1994, 659, 1, 143-150, https://doi.org/10.1016/0021-9673(94)85016-X . [all data]

Castello, Vezzani, et al., 1991
Castello, G.; Vezzani, S.; Gerbino, T., Gas chromatographic separation and automatic identification of complex mixtures of organic solvents in indrustrial wates, J. Chromatogr., 1991, 585, 2, 273-280, https://doi.org/10.1016/0021-9673(91)85088-W . [all data]

Podmaniczky, Szepesy, et al., 1985
Podmaniczky, L.; Szepesy, L.; Lakszner, K.; Schomburg, G., Relationship between thermodynamic characteristics and isothermal retention indices, Chromatographia, 1985, 20, 10, 623-628, https://doi.org/10.1007/BF02263223 . [all data]

Vernon and Suratman, 1983, 2
Vernon, F.; Suratman, J.B., The retention index system applied to alkylbenzenes and monosubstituted derivatives, Chromatographia, 1983, 17, 11, 600-604, https://doi.org/10.1007/BF02261943 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Ellis and Still, 1979
Ellis, T.S.; Still, R.H., Thermal degradation of polymers. XXI. Vacuum pyrolysis of poly(m-N,N-dimethylaminostyrene); the products volatile at pyrolysis temperature, liquid at room temperature, J. Appl. Polym. Sci., 1979, 23, 10, 2837-2854, https://doi.org/10.1002/app.1979.070231002 . [all data]

Ellis and Still, 1979, 2
Ellis, T.S.; Still, R.H., Thermal degradation of polymers. XXIII. Vacuum pyrolysis of poly(p-N,N-dimethylaminostyrene); the products volatile at pyrolysis temperature, liquid or gaseous at room temperature, J. Appl. Polym. Sci., 1979, 23, 10, 2871-2880, https://doi.org/10.1002/app.1979.070231004 . [all data]

Döring, Estel, et al., 1974
Döring, C.E.; Estel, D.; Fischer, R., Kapillar-gaschromatographische Charakterisierung von C10-bis C12-Aromaten, J. Prakt. Chem., 1974, 316, 1, 1-12, https://doi.org/10.1002/prac.19743160102 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Tibor and Anna, 1971
Tibor, T.; Anna, B., Gázkromatográfiás retenció és a kémiai szerkezet, I., Magy. Kem. Foly., 1971, 77, 576-587. [all data]

Umano and Shibamoto, 1987
Umano, K.; Shibamoto, T., Analysis of headspace volatiles from overheated beef fat, J. Agric. Food Chem., 1987, 35, 1, 14-18, https://doi.org/10.1021/jf00073a004 . [all data]

Slizhov and Gavrilenko, 2001
Slizhov, Yu.G.; Gavrilenko, M.A., Effect of thermal treatment of poly(ethylene glycol) modified with europium acetylacetonate on its chromatographic properties, Russ. J. Phys. Chem. (Engl. Transl.), 2001, 75, 6, 1012-1013. [all data]

Engel and Ratel, 2007
Engel, E.; Ratel, J., Correction of the data generated by mass spectrometry analyses of biological tissues: Application to food authentication, J. Chromatogr. A, 2007, 1154, 1-2, 331-341, https://doi.org/10.1016/j.chroma.2007.02.012 . [all data]

Elmore, Cooper, et al., 2005
Elmore, J.S.; Cooper, S.L.; Enser, M.; Mottram, D.S.; Sinclair, L.A.; Wilkinson, R.G.; Wood, J.D., Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb, Meat Sci., 2005, 69, 2, 233-242, https://doi.org/10.1016/j.meatsci.2004.07.002 . [all data]

Insausti, Goñi, et al., 2005
Insausti, K.; Goñi, V.; Petri, E.; Gorraiz, C.; Beriain, M.J., Effect of weight at slaughter on the volatile compounds of cooked beef from Spanish cattle breeds, Meat Sci., 2005, 70, 1, 83-90, https://doi.org/10.1016/j.meatsci.2004.12.003 . [all data]

Hierro, de la Hoz, et al., 2004
Hierro, E.; de la Hoz, L.; Ordóñez, J.A., Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species, Food Chem., 2004, 85, 4, 649-657, https://doi.org/10.1016/j.foodchem.2003.07.001 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Isidorov, Vinogorova, et al., 2003
Isidorov, V.A.; Vinogorova, V.T.; Rafalowski, K., HS-SPME analysis of volatile organic compounds of coniferous needle litter, Atmos. Environ., 2003, 37, 33, 4645-4650, https://doi.org/10.1016/j.atmosenv.2003.07.005 . [all data]

LECO Corporation, 2003
LECO Corporation, Determination of hydrocarbon components in petroleum naphthas, 2003, retrieved from http://www.leco.org/customersupport/apps/separationscience/-190.pdf. [all data]

Song, Lai, et al., 2003
Song, C.; Lai, W.-C.; Madhusudan Reddy, K.; Wei, B., Chapter 7. Temperature-programmed retention indices for GC and GC-MS of hydrocarbon fuels and simulated distillation GC of heavy oils in Analytical advances for hydrocarbon research, Hsu,C.S., ed(s)., Kluwer Academic/Plenum Publishers, New York, 2003, 147-193. [all data]

Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere, Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003 . [all data]

Dallüge, van Stee, et al., 2002
Dallüge, J.; van Stee, L.L.P.; Xu, X.; Williams, J.; Beens, J.; Vreuls, R.J.J.; Brinkman, U.A.Th., Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry. Cigarette smoke, J. Chromatogr. A, 2002, 974, 1-2, 169-184, https://doi.org/10.1016/S0021-9673(02)01384-5 . [all data]

Yin, Liu, et al., 2001
Yin, C.; Liu, W.; Li, Z.; Pan, Z.; Lin, T.; Zhang, M., Chemometrics to chemical modeling: structural coding in hydrocarbons and retention indices of gas chromatography, J. Sep. Sci., 2001, 24, 3, 213-220, https://doi.org/10.1002/1615-9314(20010301)24:3<213::AID-JSSC213>3.0.CO;2-4 . [all data]

Yassaa, Meklati, et al., 1999
Yassaa, N.; Meklati, B.Y.; Cecinato, A., Analysis of volatile organic compounds in the ambient air of Algiers by gas chromatography with a β-cyclodextrin capillary column, J. Chromatogr. A, 1999, 846, 1-2, 287-293, https://doi.org/10.1016/S0021-9673(99)00327-1 . [all data]

Madruga and Mottram, 1998
Madruga, M.S.; Mottram, D.S., The effect of pH on the formation of volatile compounds produced by heating a model system containing 5'-imp and cysteine, J. Braz. Chem. Soc., 1998, 9, 3, 261-271, https://doi.org/10.1590/S0103-50531998000300010 . [all data]

Kivi-Etelätalo, Kostiainen, et al., 1997
Kivi-Etelätalo, E.; Kostiainen, O.; Kokko, M., Analysis of volatile organic compounds in air using retention indices together with a simple thermal desorption and cold trap method, J. Chromatogr. A, 1997, 787, 1-2, 205-214, https://doi.org/10.1016/S0021-9673(97)00663-8 . [all data]

Martos, Saraullo, et al., 1997
Martos, P.A.; Saraullo, A.; Pawliszyn, J., Estimation of air/coating distribution coefficients for solid phase microextraction using retention indexes from linear temperature-programmed capillary gas chromatography. Application to the sampling and analysis of total petroleum hydrocarbons in air, Anal. Chem., 1997, 69, 3, 402-408, https://doi.org/10.1021/ac960633p . [all data]

DeMilo, Lee, et al., 1996
DeMilo, A.B.; Lee, C.-J.; Moreno, D.S.; Martinez, A.J., Identification of volatiles derived from Citrobacter freundii fermentation of a trypticase soy broth, J. Agric. Food Chem., 1996, 44, 2, 607-612, https://doi.org/10.1021/jf950525o . [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P., Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii, J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212 . [all data]

Lai and Song, 1995
Lai, W.-C.; Song, C., Temperature-programmed retention indices for g.c. and g.c.-m.s. analysis of coal- and petroleum-derived liquid fuels, Fuel, 1995, 74, 10, 1436-1451, https://doi.org/10.1016/0016-2361(95)00108-H . [all data]

Subramaniam, Bochniak, et al., 1994
Subramaniam, B.; Bochniak, D.; Snavely, K., Fischer-Tropsch synthesis in supercritical reaction media, Lawrence Department of Chemical and Petroleum Engineering (DOE/PC/92532--T7), United States Department of Energy, Pittsburgh, PA, 1994, 8, retrieved from http://www.NTIS.gov. [all data]

Yu, Lin, et al., 1994
Yu, T.-H.; Lin, L.-Y.; Ho, C.-T., Volatile compounds of blanched, fried blanched, and baked blanched garlic slices, J. Agric. Food Chem., 1994, 42, 6, 1342-1347, https://doi.org/10.1021/jf00042a018 . [all data]

Olson, Sinkevitch, et al., 1992
Olson, K.L.; Sinkevitch, R.M.; Sloane, T.M., Speciation and Quantitation of Hydrocarbons in Gasoline Engine Exhaust, J. Chromatogr. Sci., 1992, 30, 12, 500-508, https://doi.org/10.1093/chromsci/30.12.500 . [all data]

Peng, Hua, et al., 1992
Peng, C.T.; Hua, R.L.; Maltby, D., Prediction of retention indexes. IV. Chain branching in alkylbenzene isomers with C10-13 alkyl chains identified in a scintillator solvent, J. Chromatogr., 1992, 589, 1-2, 231-239, https://doi.org/10.1016/0021-9673(92)80027-R . [all data]

White, Douglas, et al., 1992
White, C.M.; Douglas, L.J.; Hackett, J.P.; Anderson, R.R., Characterization of synthetic gasoline from the chloromethane-zeolite reaction, Energy Fuels, 1992, 6, 1, 76-82, https://doi.org/10.1021/ef00031a012 . [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Morinaga, Hara, et al., 1990
Morinaga, M.; Hara, K.; Kageura, M.; Heida, Y.; Takamoto, M.; Kashimura, S., A simple, rapid and simultaneous analysis of complex volatile hydrocarbon mixtures in blood using gas chromatography/mass spectrometry with a wide-bore capillary column, Z. Rechtsmed., 1990, 103, 8, 567-572, https://doi.org/10.1007/BF01261420 . [all data]

Bangjie, Xijian, et al., 1987
Bangjie, C.; Xijian, G.; Shaoyi, P., Calculation of retention indices in temperature-programmed gas chromatography, Chromatographia, 1987, 23, 12, 888-892, https://doi.org/10.1007/BF02261466 . [all data]

Haynes and Pitzer, 1985
Haynes, P.C., Jr.; Pitzer, E.W., Disengaging solutes in shale- and petroleum-derived jet fuels by altering GC programmed temperature rates, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1985, 8, 5, 230-242, https://doi.org/10.1002/jhrc.1240080504 . [all data]

Buchman, Cao, et al., 1984
Buchman, O.; Cao, G.-Y.; Peng, C.T., Structure assignment by retention index in gas-liquid radiochromatography of substituted cyclohexenes, J. Chromatogr., 1984, 312, 75-90, https://doi.org/10.1016/S0021-9673(01)92765-7 . [all data]

Knoppel, de Bortoli, et al., 1983
Knoppel, H.; de Bortoli, M.; Peil, A.; Vissers, H., Reproducibility of Temperature-Programmed Gas Chromatographic Retention Indices with Non-Polar Glass Capillary Columns, J. Chromatogr., 1983, 279, 483-492, https://doi.org/10.1016/S0021-9673(01)93649-0 . [all data]

Knoppel, de Bortoli, et al., 1982
Knoppel, H.; de Bortoli, M.; Peil, A.; Schauenburg, H.; Vissers, H., The determination of linear PTGC retention indices for use in environmental organics analysis, Comm. Eur. Communities, Rep. EUR, 1982, 99-109. [all data]

Hayes and Pitzer, 1981
Hayes, P.C., Jr.; Pitzer, E.W., Kovats indices as a tool in characterizing hydrocarbon fuels in temperature programmed glass capillary gas chromatography. Part 1. Qualitative identification, Inhouse rpt. for Air Force Wright Aeronautical Labs., Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio, 1981, 75. [all data]

Nixon, Wong, et al., 1979
Nixon, L.N.; Wong, E.; Johnson, C.B.; Birch, E.J., Nonacidic constituents of volatiles from cooked mutton, J. Agric. Food Chem., 1979, 27, 2, 355-359, https://doi.org/10.1021/jf60222a044 . [all data]

Schreyen, Dirinck, et al., 1976
Schreyen, L.; Dirinck, P.; van Wassenhove, F.; Schamp, N., Analysis of leek volatiles by headspace condensation, J. Agric. Food Chem., 1976, 24, 6, 1147-1152, https://doi.org/10.1021/jf60208a023 . [all data]

Duckham, Dodson, et al., 2001
Duckham, S.C.; Dodson, A.T.; Bakker, J.; Ames, J.M., Volatile flavour components of baked potato flesh. A comparison of eleven potato cultivars, Nahrung/Food, 2001, 45, 5, 317-323, https://doi.org/10.1002/1521-3803(20011001)45:5<317::AID-FOOD317>3.0.CO;2-4 . [all data]

Peng, 2000
Peng, C.T., Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index, J. Chromatogr. A, 2000, 903, 1-2, 117-143, https://doi.org/10.1016/S0021-9673(00)00901-8 . [all data]

Hassoun, Pilling, et al., 1999
Hassoun, S.; Pilling, M.J.; Bartle, K.D., A catalogue of urban hydrocarbons for the city of Leeds: atmospheric monitoring of volatile organic compounds by thermal desorption-gas chromatography, J. Environ. Monitor., 1999, 1, 5, 453-458, https://doi.org/10.1039/a904879k . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Alasalvar, Taylor, et al., 2005
Alasalvar, C.; Taylor, K.D.A.; Shahidi, F., Comparison of volatiles of cultured and wild sea bream (Sparus aurata) during storage in ice by dynamic headspace analysis/gas chromatography-mass spectrometry, J. Agric. Food Chem., 2005, 53, 7, 2616-2622, https://doi.org/10.1021/jf0483826 . [all data]

Elmore, Nisyrios, et al., 2005
Elmore, J.S.; Nisyrios, I.; Mottram, D.S., Analysis of the headspace aroma compounds of walnuts (Juglans regia L.), Flavour Fragr. J., 2005, 20, 5, 501-506, https://doi.org/10.1002/ffj.1477 . [all data]

Liu, Yang, et al., 2001
Liu, T.-T.; Yang, T.-S.; Wu, C.-M., Changes of volatiles in soy sauce-stewed pork during cold storage and reheating, J. Sci. Food Agric., 2001, 81, 15, 1547-1552, https://doi.org/10.1002/jsfa.978 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Shimoda, Peralta, et al., 1996
Shimoda, M.; Peralta, R.R.; Osajima, Y., Headspace gas analysis of fish sauce, J. Agric. Food Chem., 1996, 44, 11, 3601-3605, https://doi.org/10.1021/jf960345u . [all data]

Sumitani, Suekane, et al., 1994
Sumitani, H.; Suekane, S.; Nakatani, A.; Tatsuka, K., Changes in composition of volatile compounds in high pressure treated peach, J. Agric. Food Chem., 1994, 42, 3, 785-790, https://doi.org/10.1021/jf00039a037 . [all data]

Matiella and Hsieh, 1990
Matiella, J.E.; Hsieh, T.C.-Y., Analysis of crabmeat volatile compounds, J. Food Sci., 1990, 55, 4, 962-966, https://doi.org/10.1111/j.1365-2621.1990.tb01575.x . [all data]

Baltes and Mevissen, 1988
Baltes, W.; Mevissen, L., Model reactions on roast aroma formation. VI. Volatile reaction products from the reaction of phenylalanine with glucose during cooking and roasting, Z. Lebensm. Unters. Forsch., 1988, 187, 3, 209-214, https://doi.org/10.1007/BF01043341 . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Tello, Lebron-Aguilar, et al., 2009
Tello, A.M.; Lebron-Aguilar, R.; Quintanilla-Lopez, J.E.; Santiuste, J.M., Isothermal retention indices on poly93-cyanopropylmethyl)siloxane stationary phases, J. Chromatogr. A, 2009, 1216, 10, 1630-1639, https://doi.org/10.1016/j.chroma.2008.10.025 . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Chen and Feng, 2006
Chen, Y.; Feng, C.-I., Regerating the spent metal-contaminated cracking catalyst by ozalic acid, J. Shanxi Univ. (Nat. Sci. Ed.), 2006, 29, 4, 414-420. [all data]

Li and Deng, 1998
Li, H.; Deng, C., Qualitative analysis of light components of gasoline cracking using Kovats retention indices, J. Instrumental Analysis, 1998, 17, 1, 67-69. [all data]

Tian, 1993
Tian, S., Analysis of the tower bottom oil of dimethylbenzene rectifying tower and C9 aromatic hydrocarbon fraction by capillary gas chromatography, Chin. J. Chromatogr., 1993, 11, 4, 202-206. [all data]

Wang, Deng, et al., 1992
Wang, H.; Deng, Z.; Song, L.; Jiang, W., Analysis of volatile organic pollutants with Curie point desorption gas chromatographic method. 2. Quantitative analysis., Environ. Pollut. Control (Chinese), 1992, 14, 5, 35-38. [all data]

Wu and Lu, 1984
Wu, J.; Lu, W., Kovats indices of C4-C10 hydrocarbons in apolar quartz capillary OV-101, Chin. J. Chromatogr., 1984, 1, 1, 11-17. [all data]

Bermejo, Moinelo, et al., 1980
Bermejo, J.; Moinelo, S.R.; Suarez Canga, C., Calculo de indices de retencion a patir de DI y de la polaridad de la fase, Calculo de indices de retencion a patir de DI y de la polaridad de la fase, Instituto Nacional del Carbon y sus Derivados Francisco Pintado Fe (INCAR), La Corredoria, Oviedo, Espana, 1980, 13. [all data]

Sojak and Vigdergauz, 1978
Sojak, L.; Vigdergauz, M.S., Comparison of interpolation methods for the interpretation of retention data in gas chromatography, J. Chromatogr., 1978, 148, 1, 159-167, https://doi.org/10.1016/S0021-9673(00)99332-4 . [all data]

Kavan, 1973
Kavan, I., Analysis of odorants, Sbornik Praci UVP, 1973, 26, 128-144. [all data]

Vigdergauz and Martynov, 1971
Vigdergauz, M.S.; Martynov, A.A., Some applications of the gas chromatographic linear retention indices, Chromatographia, 1971, 4, 10, 463-467, https://doi.org/10.1007/BF02268816 . [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

Cremer and Nonn, 1964
Cremer, E.; Nonn, H., Kennzahlen zur Identifizierung chromatographisch getrennter Komponenten, Monatsh. Chem., 1964, 3, 3, 910-921, https://doi.org/10.1007/BF00908804 . [all data]

Ferrand, 1962
Ferrand, R., Gas phase chromatography using retention indices for the analysis of tars and their hydrogenation products, Journees internationales d'etude des methodes de separation immediate at de chromatographie; Org. sur l'initiative du IX., 1962, 132-140. [all data]

MHA, 9999
MHA, Directorate of ForensicScience., Forensic Toxicology, 9999. [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Tsuge, Ohtan, et al., 2011
Tsuge, S.; Ohtan, H.; Watanabe, C., Pyrolysis - GC/MS Data Book of Synthetic Polymers, Elsevier, 2011, 420. [all data]

Harrison and Priest, 2009
Harrison, B.M.; Priest, F.G., Composition of peaks used in the preparation of malt for Scotch Whisky production - influence of geographical source and extraction depth, J. Agric. Food Chem., 2009, 57, 6, 2385-2391, https://doi.org/10.1021/jf803556y . [all data]

Zhang, Ding, et al., 2009
Zhang, X.; Ding, L.; Sun, Z.; Song, L.; Sun, T., Study on quantitative structure-retention relationships for hydrocarbons in FCC gasoline, Chromatographia, 2009, 70, 3/4, 511-518, https://doi.org/10.1365/s10337-009-1174-0 . [all data]

Vasta, Ratel, et al., 2007
Vasta, V.; Ratel, J.; Engel, E., Mass Spectrometry Analysis of Volatile Compounds in Raw Meat for the Authentication of the Feeding Background of Farm Animals, J. Agric. Food Chem., 2007, 55, 12, 4630-4639, https://doi.org/10.1021/jf063432n . [all data]

Zenkevich, Eliseenkov, et al., 2006
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N., Application of Retention Indices in GC-MS Identification of Halogenated Organic Compounds, Mass Spectromery (Rus.), 2006, 3, 2, 131-140. [all data]

Pino, Marbot, et al., 2005
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C., Volatile constituents of genipap (Genipa americana L.) fruit from Cuba, Flavour Fragr. J., 2005, 20, 6, 583-586, https://doi.org/10.1002/ffj.1491 . [all data]

Zenkevich, Makarov, et al., 2005
Zenkevich, I.G.; Makarov, A.A.; Eliseenkov, E.V., The XXIX Symposium Chromatographic Methods of Investigating the Organic Compounds. Book of Abstracts, Retention indices of some fluorinated arenes C7-C9 on polar inorganic sorbents. Unusual behavior of Silipor 600, Institute of Chemistry, Silesian University, Katowice, Poland, 2005, 43. [all data]

Isidorov and Jdanova, 2002
Isidorov, V.; Jdanova, M., Volatile organic compounds from leaves litter, Chemosphere, 2002, 48, 9, 975-979, https://doi.org/10.1016/S0045-6535(02)00074-7 . [all data]

Poligné, Collignan, et al., 2001
Poligné, I.; Collignan, A.; Trystram, G., Characterization of traditional processing of pork meat into boucané, Meat Sci., 2001, 59, 4, 377-389, https://doi.org/10.1016/S0309-1740(01)00090-0 . [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Shoenmakers, Oomen, et al., 2000
Shoenmakers, P.J.; Oomen, J.L.M.M.; Blomberg, J.; Genuit, W.; van Velzen, G., Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures, J. Chromatogr. A, 2000, 892, 1-2, 29-46, https://doi.org/10.1016/S0021-9673(00)00744-5 . [all data]

Baraldi, Rapparini, et al., 1999
Baraldi, R.; Rapparini, F.; Rossi, F.; Latella, A.; Ciccioli, P., Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees, Phys. Chem. Earth, 1999, 24, 6, 729-732, https://doi.org/10.1016/S1464-1909(99)00073-8 . [all data]

Jung, Wichmann, et al., 1999
Jung, A.; Wichmann, K.-H.; Kolb, M., VOC emission of polymeric packaging materials, LaborPraxis, 1999, 23, 9, 20-22. [all data]

Orav, Kailas, et al., 1999
Orav, A.; Kailas, T.; Muurisepp, M.; Kann, J., Composition of the oil from waste tires. 1. Fraction boiling at yp to 160 0C, Proc. Estonian Acad. Sci. Chem., 1999, 48, 1, 30-39. [all data]

Barrefors, Björkqvist, et al., 1996
Barrefors, G.; Björkqvist, S.; Ramnäs, O.; Petersson, G., Gas chromatographic separation of volatile furans from birchwood smoke, J. Chromatogr. A, 1996, 753, 1, 151-155, https://doi.org/10.1016/S0021-9673(96)00534-1 . [all data]

Huang, Liang, et al., 1996
Huang, C.; Liang, H.; Han, S., The analysis of organic compounds in waste water by gas extraction/thermal desorption/gas chromatography-mass spectrometry, Chin. J. Chromatogr., 1996, 14, 6, 421-424. [all data]

Wang and Fingas, 1995
Wang, Z.; Fingas, M., Differentiation of the source of spilled oil and monitoring of the oil weathering process using gas chromatography-mass spectrometry, J. Chromatogr. A, 1995, 712, 2, 321-343, https://doi.org/10.1016/0021-9673(95)00546-Y . [all data]

Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A., Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation, J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205 . [all data]

Guan, Zheng, et al., 1992
Guan, Y.; Zheng, P.; Zhou, L., Prediction, optimization of separation, and identification of unknown compounds in capillary gas chromatography, J. Hi. Res. Chromatogr., 1992, 15, 1, 18-23, https://doi.org/10.1002/jhrc.1240150106 . [all data]

Hartgers, Damste, et al., 1992
Hartgers, W.A.; Damste, J.S.S.; de Leeuw, J.W., Identification of C2-C4 alkylated benzenes in flash pyrolysates of kerogens, coals and asphaltenes, J. Chromatogr., 1992, 606, 2, 211-220, https://doi.org/10.1016/0021-9673(92)87027-6 . [all data]

Zenkevich and Ventura, 1991
Zenkevich, I.G.; Ventura, K., Gas Chromatographic Identification of Volatile Products of Thermal Degradation of Bitumen, Zh. Prikl. Khim. (Rus.), 1991, 9, 1974-1979. [all data]

Binder, Benson, et al., 1990
Binder, R.G.; Benson, M.E.; Flath, R.A., Volatile Components of Safflower, J. Agric. Food Chem., 1990, 38, 5, 1245-1248, https://doi.org/10.1021/jf00095a020 . [all data]

Binder, Turner, et al., 1990
Binder, R.G.; Turner, C.E.; Flath, R.A., Volatile components of purple starthistle, J. Agric. Food Chem., 1990, 38, 4, 1053-1055, https://doi.org/10.1021/jf00094a030 . [all data]

Spadone, Takeoka, et al., 1990
Spadone, J.-C.; Takeoka, G.; Liardon, R., Analytical Investigation of Rio Off-Flavor in Green Coffee, J. Agric. Food Chem., 1990, 38, 1, 226-233, https://doi.org/10.1021/jf00091a050 . [all data]

Binder, Flath, et al., 1989
Binder, R.G.; Flath, R.A.; Mon, T.R., Volatile components of bittermelon, J. Agric. Food Chem., 1989, 37, 2, 418-420, https://doi.org/10.1021/jf00086a032 . [all data]

Binder and Flath, 1989
Binder, R.G.; Flath, R.A., Volatile components of pineapple guava, J. Agric. Food Chem., 1989, 37, 3, 734-736, https://doi.org/10.1021/jf00087a034 . [all data]

Durand, Boscher, et al., 1987
Durand, J.P.; Boscher, Y.; Petroff, N.; Berthelin, M., Automatic Gas Chromatographic Determination of Gasoline Components. Application to Octane Number Determination, J. Chromatogr., 1987, 395, 229-240, https://doi.org/10.1016/S0021-9673(01)94113-5 . [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R., Comparison of headspace volatiles from winged beans and soybeans, J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015 . [all data]

Heydanek and McGorrin, 1981
Heydanek, M.G.; McGorrin, R.J., Gas chromatography-mass spectroscopy identification of volatiles from rancid oat groats, J. Agric. Food Chem., 1981, 29, 5, 1093-1095, https://doi.org/10.1021/jf00107a051 . [all data]

Heydanek and McGorrin, 1981, 2
Heydanek, M.G.; McGorrin, R.J., Gas chromatography-mass spectroscopy investigations on the flavor chemistry of oat groats, J. Agric. Food Chem., 1981, 29, 5, 950-954, https://doi.org/10.1021/jf00107a016 . [all data]

Dahlmann, Köser, et al., 1979
Dahlmann, G.; Köser, H.J.K.; Oelert, H.H., Multiple korrelation von retentionsindizes, Chromatographia, 1979, 12, 10, 665-671, https://doi.org/10.1007/BF02302943 . [all data]

Schreyen, Dirinck, et al., 1979
Schreyen, L.; Dirinck, P.; Sandra, P.; Schamp, N., Flavor analysis of quince, J. Agric. Food Chem., 1979, 27, 4, 872-876, https://doi.org/10.1021/jf60224a058 . [all data]

Donetzhuber, Johansson, et al., 1976
Donetzhuber, A.; Johansson, K.; Sandstroem, C., Gas phase characterization of wood, pulp, and paper, Appl. Polymer Symp., 1976, 28, 889-901. [all data]

Yusuf and Bewaji, 2011
Yusuf, O.K.; Bewaji, C.O., Evaluation of essential oils composition of methanolic Allium sativum extract on Trypanosoma brucei infected rats, Res. Pharmaceutical Biotechnol., 2011, 3, 2, 17-21. [all data]

Yusuf and Bewaji, 2011, 2
Yusuf, O.K.; Bewaji, C.O., GC-MS of volatile components of fermented wheat germ extract, J. Cereals Oilseeds, 2011, 2, 3, 38-42. [all data]

Staples and Zeiger, 2008
Staples, E.; Zeiger, K., On-Site Measurements of VOCs and Odors from Metal Casting Operations Using an Ultra-Fast Gas Chromatograph, 2008, retrieved from http://www.estcal.com/TechPapers/Industrial/FoundryOdors.doc. [all data]

Liu, Xu, et al., 2007
Liu, Y.; Xu, X.-L.; Zhou, G.-H., Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques, Int. J. Food Sci. Technol., 2007, 42, 5, 543-550, https://doi.org/10.1111/j.1365-2621.2006.01264.x . [all data]

Ebrahimi and Hadjmohammadi, 2006
Ebrahimi, P.; Hadjmohammadi, M.R., Simultaneous modeling of the Kovats retention indices on phenyl OV stationary phases with different polarity using MLR and ANN, QSAR Comb. Sci., 2006, 25, 10, 836-845, https://doi.org/10.1002/qsar.200530145 . [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Finkelstein, Kurbatova, et al., 2002
Finkelstein, E.E.; Kurbatova, S.V.; Kolosova, E.A., Study of biological activity of structure analogies of adamantane, Proc. Samara State Univ., 2002, 26, 4, 121-128. [all data]

Poligne, Collignan, et al., 2002
Poligne, I.; Collignan, A.; Trystram, G., Effects of salting, drying, cooking, and smoking operations on volatile compound formation and collor patterns in pork, Food Eng. Physical Properties, 2002, 67, 8, 2976-2986. [all data]

Cooke, Hassoun, et al., 2001
Cooke, K.M.; Hassoun, S.; Sanders, S.M.; Pilling, M.J., Identification and quantification of volatile organic compounds found in a eucalyptus forest during FIELDVOC'94 in Portugal, Chemosphere Global Change Science, 2001, 3, 3, 249-257, https://doi.org/10.1016/S1465-9972(01)00008-3 . [all data]

Luo and Agnew, 2001
Luo, J.; Agnew, M.P., Gas characteristics before and after biofiltration treating odorous emissions from animal rendering processes, Environ. Technol., 2001, 22, 9, 1091-1103, https://doi.org/10.1080/09593332208618220 . [all data]

Zhu and Wang, 2001
Zhu, X.; Wang, W., The relationship between partition coefficients of hydrocarbons and their retention indices, Acta Scientific Circumstantiae, 2001, 21, 5, 631-633. [all data]

Spieksma, 1999
Spieksma, W., Determination of vapor liquid equilibrium from the Kovats retention index on dimethylsilicone using the Wilson mixing tool, J. Hi. Res. Chromatogr., 1999, 22, 10, 565-588, https://doi.org/10.1002/(SICI)1521-4168(19991001)22:10<565::AID-JHRC565>3.0.CO;2-2 . [all data]

Zenkevich, 1998
Zenkevich, I.G., Non-Traditional Criteria for Gas-Chromatographic and Chromato-Mass-Spectrometric Identification of Organic Compounds, Zh. Anal. Khim., 1998, 53, 8, 828-835. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Peng, 1996
Peng, C.T., Gas chromatographic identification of aromatic hydrocarbons in Liquid Scintillation Spectrometry, Cook, G.T.; Harkness, D.D.; MacKenzie, A.B.; Miller, B.F.; Scott, E.M., ed(s)., 1996, 221-232. [all data]

Xiuhua, Zhang, et al., 1996
Xiuhua, Zh.; Zhang, L.; Che, X., Prediction of the Kovats retention indexes of polysubstituted alkylbenzenes, Chin. J. Chromatogr., 1996, 14, 4, 244-248. [all data]

Zenkevich, 1996
Zenkevich, I.G., Informational Maitenance of Gas Chromatographic Identification of Organic Compounds in Ecoanalytical Investigations, Z. Anal. Chem., 1996, 51, 11, 1140-1148. [all data]

Sorimachi, Tanabe, et al., 1995
Sorimachi, J.; Tanabe, A.; Mitobe, H.; Kuniaki, K.; Masaaki, S., Programmed temperature retention indices for volatile organic compounds on headspace GC/MS analysis, Niigata-ken Eisei Kogai Kenkyusho Nenpo, 1995, 11, 75-79. [all data]

Xu, Chu, et al., 1995
Xu, X.; Chu, S.; Song, N., Application of chromatographic studies of air pollution in China, J. Chromatogr. A, 1995, 710, 1, 21-37, https://doi.org/10.1016/0021-9673(95)00173-K . [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Schuberth, 1994
Schuberth, J., Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection, J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0 . [all data]

Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M., Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry, J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F . [all data]

Lou, Liu, et al., 1993
Lou, X.; Liu, X.; Zhou, L., Chiral recognition of enantiomeric amides on a diamide chiral stationary phase by gas chromatography, J. Chromatogr., 1993, 634, 2, 345-349, https://doi.org/10.1016/0021-9673(93)83024-M . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Takeoka, Flath, et al., 1988
Takeoka, G.R.; Flath, R.A.; Güntert, M.; Jennings, W., Nectarine volatiles: vacuum steam distillation versus headspace sampling, J. Agric. Food Chem., 1988, 36, 3, 553-560, https://doi.org/10.1021/jf00081a037 . [all data]

P'yanova, Zvereva, et al., 1987
P'yanova, V.P.; Zvereva, M.N.; Tsypysheva, LG.; Portnova, T.V.; Kruglov, E.A., Investigating the products of thiophane synthesis, Abstr. IX All-Union Conference on Gas Chromatography, Kuibyshev State University, Kuibyshev, 1987, 308. [all data]

van Langenhove and Schamp, 1986
van Langenhove, H.; Schamp, N., Identification of Volatiles in the Head Space of Acid-Treated Phosphate Rock by Gas Chromatography-Mass Spectromety, J. Chromatogr., 1986, 351, 65-75, https://doi.org/10.1016/S0021-9673(01)83473-7 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Robinson and Odell, 1971, 2
Robinson, P.G.; Odell, A.L., Comparison of isothermal and non-linear temperature programmed gas chromatography. The temperature dependence of the retention indices of a number of hydrocarbons on squalane and SE-30, J. Chromatogr., 1971, 57, 11-17, https://doi.org/10.1016/0021-9673(71)80002-X . [all data]

Sun, Siepmann, et al., 2006
Sun, L.; Siepmann, J.I.; Klotz, W.L.; Schure, M.R., retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment, J. Chromatogr. A, 2006, 1126, 1-2, 373-380, https://doi.org/10.1016/j.chroma.2006.05.084 . [all data]

Nesterov, Nesterova, et al., 2000
Nesterov, I.A.; Nesterova, T.N.; Pimerzin, A.A.; Tsvetkov, V.S., Thermodynamics of alkylbenzene sorption and evaporation. IV. Enthalpies of evaporation and thermodynamics chracteristics of sorption by stationary phases OV-101 and PEG-40M, Izvestia vysshikh uchebnykh zavedenii. Khimia i khimicheskaia tekhnologia (Chemistry and chemical technology), 2000, 43, 4, 39-45. [all data]

Sutter, Peterson, et al., 1997
Sutter, J.M.; Peterson, T.A.; Jurs, P.C., Prediction of gas chromatographic retention indices of alkylbenzenes, Anal. Chim. Acta., 1997, 342, 2-3, 113-122, https://doi.org/10.1016/S0003-2670(96)00578-8 . [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Ganeko, Shoda, et al., 2008
Ganeko, N.; Shoda, M.; Hirohara, I.; Bhadra, A.; Ishida, T.; Matsuda, H.; Takamura, H.; Matoba, T., Analysis of volatile flavor compounds of sardine (Sardinops melanostica) by solid phase microextraction, J. Food Sci., 2008, 73, 1, s83-s88, https://doi.org/10.1111/j.1750-3841.2007.00608.x . [all data]

Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H., Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system, J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p . [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Kasali, Winterhalter, et al., 2002
Kasali, A.A.; Winterhalter, P.; Adio, A.M.; Knapp, H.; Bonnlander, B., Chromenes in Ageratum conyzoides L., Flavour Fragr. J., 2002, 17, 4, 247-250, https://doi.org/10.1002/ffj.1099 . [all data]

Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S., Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix, Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8 . [all data]

Horiuchi, Umano, et al., 1998
Horiuchi, M.; Umano, K.; Shibamoto, T., Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide, J. Agric. Food Chem., 1998, 46, 12, 5232-5237, https://doi.org/10.1021/jf980482m . [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Herain, MRAVEC, et al., 1991
Herain, J.; MRAVEC, D.; SCHNIERER, A., identification of the components of the reaction mixtures from transalkylation of the waste fraction of diisopropylbenzenes by capillary GC and GC-MS, Chem. Listy, 1991, 85, 5, 535-538. [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Vekiari, Orepoulou, et al., 2010
Vekiari, S.A.; Orepoulou, V.; Kourkoutas, Y.; Kamoun, N.; Msallem, M.; Psimouli, V.; Arapoglou, D., Characterization and seasonal variations of the quality of virgin olive oil of the Thoumbolia and Koroneiki varieties from Southern Greece, Grasas y Aceites, 2010, 61, 3, 221-231, https://doi.org/10.3989/gya.108709 . [all data]

Berard, Bianchi, et al., 2007
Berard, J.; Bianchi, F.; Careri, M.; Chatel, A.; Mangia, A.; Musci, M., Characterization of the volatile fraction and of free fatty acids of Fontina Valle d'Aosta, a protected designation of origin Italian cheese, Food Chem., 2007, 105, 1, 293-300, https://doi.org/10.1016/j.foodchem.2006.11.041 . [all data]

Narain, Galvao, et al., 2007
Narain, N.; Galvao, M. deS.; Ferreira, D.DaS.; Navarro, D.M.A.F., Flavor biogeneration in Mangaba (Hancornia speciosa Gomes) fruit, BioEng. Campinas, 2007, 1, 1, 25-31. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References