Nitrogen

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar191.609 ± 0.004J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar191.61J/mol*KReviewChase, 1998Data last reviewed in March, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 100. to 500.500. to 2000.2000. to 6000.
A 28.9864119.5058335.51872
B 1.85397819.887051.128728
C -9.647459-8.598535-0.196103
D 16.635371.3697840.014662
E 0.0001170.527601-4.553760
F -8.671914-4.935202-18.97091
G 226.4168212.3900224.9810
H 0.00.00.0
ReferenceChase, 1998Chase, 1998Chase, 1998
Comment Data last reviewed in March, 1977; New parameter fit January 2009 Data last reviewed in March, 1977; New parameter fit January 2009 Data last reviewed in March, 1977; New parameter fit January 2009

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Nitric oxide anion + Nitrogen = (Nitric oxide anion • Nitrogen)

By formula: NO- + N2 = (NO- • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr20.kJ/molDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr18.kJ/molHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr22.kJ/molHPMSTurner and Conway, 1976gas phase; M
Δr19.kJ/molDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr57.7J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr55.6J/mol*KHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr79.1J/mol*KHPMSTurner and Conway, 1976gas phase; M
Δr65.7J/mol*KDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; M

Nitrogen cation + Nitrogen = (Nitrogen cation • Nitrogen)

By formula: N2+ + N2 = (N2+ • N2)

Quantity Value Units Method Reference Comment
Δr102. to 102.kJ/molRNGN/ARange of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr67.8J/mol*KPHPMSTeng and Conway, 1973gas phase; M
Δr81.6J/mol*KPHPMSPayzant and Kebarle, 1970gas phase; M
Δr46.J/mol*KDTVarney, 1968gas phase; Entropy change is questionable; M
Δr-4.J/mol*KDTVarney, 1959gas phase; Entropy change is questionable; M

Oxygen cation + Nitrogen = (Oxygen cation • Nitrogen)

By formula: O2+ + N2 = (O2+ • N2)

Quantity Value Units Method Reference Comment
Δr21. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr22.kJ/molHPMSSpeller and Fitaire, 1983gas phase; M
Δr24.kJ/molPHPMSJanik and Conway, 1967gas phase; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr66.1J/mol*KHPMSSpeller and Fitaire, 1983gas phase; M
Δr79.1J/mol*KPHPMSJanik and Conway, 1967gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.0296.FAHoward, Bierbaum, et al., 1972gas phase; M

(HN2+ • 4Nitrogen) + Nitrogen = (HN2+ • 5Nitrogen)

By formula: (HN2+ • 4N2) + N2 = (HN2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr12. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr13.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KN/AHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
5.992.PHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

(Oxygen anion • 7Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 8Nitrogen • Oxygen)

By formula: (O2- • 7N2 • O2) + N2 = (O2- • 8N2 • O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Δr6.40kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr75.3J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

(Oxygen cation • 2Nitrogen) + Nitrogen = (Oxygen cation • 3Nitrogen)

By formula: (O2+ • 2N2) + N2 = (O2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr18. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr15.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr50.6J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Oxygen cation • Nitrogen) + Nitrogen = (Oxygen cation • 2Nitrogen)

By formula: (O2+ • N2) + N2 = (O2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr18.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr57.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Nitric oxide anion • Nitrogen) + Nitrogen = (Nitric oxide anion • 2Nitrogen)

By formula: (NO- • N2) + N2 = (NO- • 2N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr16.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr52.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

C3N2NiO3 (solution) = C3NiO3 (solution) + Nitrogen (solution)

By formula: C3N2NiO3 (solution) = C3NiO3 (solution) + N2 (solution)

Quantity Value Units Method Reference Comment
Δr42. ± 4.kJ/molKinSTurner, Simpson, et al., 1983solvent: Liquid krypton; The reaction enthalpy relies on the experimental value for the activation enthalpy, 42. ± 4. kJ/mol, and on the assumption that the activation enthalpy for product recombination is negligible Turner, Simpson, et al., 1983.; MS

N+ + Nitrogen = (N+ • Nitrogen)

By formula: N+ + N2 = (N+ • N2)

Quantity Value Units Method Reference Comment
Δr249.kJ/molN/ANational Bureau of Standards, 1968gas phase; from ΔrH(f); M
Δr250.kJ/molEISaporoschenko, 1965gas phase; M
Δr250.kJ/molEIFranklin, Dibeler, et al., 1958gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
361. (+7.5,-0.) CIDHaynes, Freysinger, et al., 1995gas phase; guided ion beam CID; M

Copper ion (1+) + Nitrogen = (Copper ion (1+) • Nitrogen)

By formula: Cu+ + N2 = (Cu+ • N2)

Quantity Value Units Method Reference Comment
Δr26.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr67.J/mol*KHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr5.9kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M

(HN2+ • 2Nitrogen) + Nitrogen = (HN2+ • 3Nitrogen)

By formula: (HN2+ • 2N2) + N2 = (HN2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr16.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr84.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HN2+ • 3Nitrogen) + Nitrogen = (HN2+ • 4Nitrogen)

By formula: (HN2+ • 3N2) + N2 = (HN2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr15.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HN2+ • Nitrogen) + Nitrogen = (HN2+ • 2Nitrogen)

By formula: (HN2+ • N2) + N2 = (HN2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr15. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr17.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr75.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

Sodium ion (1+) + Nitrogen = (Sodium ion (1+) • Nitrogen)

By formula: Na+ + N2 = (Na+ • N2)

Quantity Value Units Method Reference Comment
Δr33.kJ/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8J/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
9.2310.FAPerry, Rowe, et al., 1980gas phase; M
8.4310.DTBeyer and Keller, 1971gas phase; low E/N; M

HN2+ + Nitrogen = (HN2+ • Nitrogen)

By formula: HN2+ + N2 = (HN2+ • N2)

Quantity Value Units Method Reference Comment
Δr66.9kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr60.7kJ/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr85.4J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M

C39H66N2O3P2W (solution) + Hydrogen (g) = C39H68O3P2W (solution) + Nitrogen (g)

By formula: C39H66N2O3P2W (solution) + H2 (g) = C39H68O3P2W (solution) + N2 (g)

Quantity Value Units Method Reference Comment
Δr18.4 ± 1.7kJ/molEqSGonzalez and Hoff, 1989solvent: Tetrahydrofuran; Temperature range: 288-308 K; MS

C39H66MoO3P3 (solution) + Nitrogen (g) = C39H66MoN2O3P2 (solution)

By formula: C39H66MoO3P3 (solution) + N2 (g) = C39H66MoN2O3P2 (solution)

Quantity Value Units Method Reference Comment
Δr-37.7 ± 2.5kJ/molEqSGonzalez and Hoff, 1989solvent: Tetrahydrofuran; Temperature range: 294-308 K; MS

(Hydronium cation • 2Nitrogen • 3Water) + Nitrogen = (Hydronium cation • 3Nitrogen • 3Water)

By formula: (H3O+ • 2N2 • 3H2O) + N2 = (H3O+ • 3N2 • 3H2O)

Quantity Value Units Method Reference Comment
Δr5.0kJ/molDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr27.J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M

(Oxygen cation • 4Nitrogen) + Nitrogen = (Oxygen cation • 5Nitrogen)

By formula: (O2+ • 4N2) + N2 = (O2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.184.HPMSSpeller and Fitaire, 1983gas phase; M

(Nitric oxide anion • 2Nitrogen) + Nitrogen = (Nitric oxide anion • 3Nitrogen)

By formula: (NO- • 2N2) + N2 = (NO- • 3N2)

Quantity Value Units Method Reference Comment
Δr16. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr70.3J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 3Nitrogen) + Nitrogen = (Nitric oxide anion • 4Nitrogen)

By formula: (NO- • 3N2) + N2 = (NO- • 4N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Oxygen cation • 3Nitrogen) + Nitrogen = (Oxygen cation • 4Nitrogen)

By formula: (O2+ • 3N2) + N2 = (O2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.204.HPMSSpeller and Fitaire, 1983gas phase; M

(Hydronium cation • 3Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 4Nitrogen • 2Water)

By formula: (H3O+ • 3N2 • 2H2O) + N2 = (H3O+ • 4N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr10.kJ/molDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr50.J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M

(Nitric oxide anion • 9Nitrogen) + Nitrogen = (Nitric oxide anion • 10Nitrogen)

By formula: (NO- • 9N2) + N2 = (NO- • 10N2)

Quantity Value Units Method Reference Comment
Δr7.03kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr79.J/mol*KN/AHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M

(HN2+ • 10Nitrogen) + Nitrogen = (HN2+ • 11Nitrogen)

By formula: (HN2+ • 10N2) + N2 = (HN2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr7.20kJ/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

O3- + Nitrogen = (O3- • Nitrogen)

By formula: O3- + N2 = (O3- • N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.84kJ/molTDAsHiraoka, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr-11.7 ± 2.1kJ/molTDAsHiraoka, 1988gas phase; B

(C2H5+ • Nitrogen) + Nitrogen = (C2H5+ • 2Nitrogen)

By formula: (C2H5+ • N2) + N2 = (C2H5+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19.kJ/molHPMSSpeller, 1983gas phase; deuterated, Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr45.6J/mol*KHPMSSpeller, 1983gas phase; deuterated, Entropy change is questionable; M

(Nitrogen cation • Nitrogen) + Nitrogen = (Nitrogen cation • 2Nitrogen)

By formula: (N2+ • N2) + N2 = (N2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr11.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr5.9kJ/molPILinn, Ono, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr62.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • Oxygen) + Nitrogen = (Oxygen cation • Nitrogen • Oxygen)

By formula: (O2+ • O2) + N2 = (O2+ • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr42.3J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Sodium ion (1+) • Nitrogen) + Nitrogen = (Sodium ion (1+) • 2Nitrogen)

By formula: (Na+ • N2) + N2 = (Na+ • 2N2)

Quantity Value Units Method Reference Comment
Δr22.kJ/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr70.3J/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-1.310.FAPerry, Rowe, et al., 1980gas phase; M

(CH2N+ • 2Nitrogen) + Nitrogen = (CH2N+ • 3Nitrogen)

By formula: (CH2N+ • 2N2) + N2 = (CH2N+ • 3N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr54.8J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

(CH2N+ • 3Nitrogen) + Nitrogen = (CH2N+ • 4Nitrogen)

By formula: (CH2N+ • 3N2) + N2 = (CH2N+ • 4N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr57.7J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

(CH2N+ • 4Nitrogen) + Nitrogen = (CH2N+ • 5Nitrogen)

By formula: (CH2N+ • 4N2) + N2 = (CH2N+ • 5N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr63.6J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

2,5-Pyrrolidinedione, 1-bromo- + 0.5Hydrazine = Hydrogen bromide + Succinimide + 0.5Nitrogen

By formula: C4H4BrNO2 + 0.5H4N2 = HBr + C4H5NO2 + 0.5N2

Quantity Value Units Method Reference Comment
Δr-260.3 ± 0.46kJ/molCmHoward and Skinner, 1966solid phase; solvent: Aqueous solution; Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -261.7 ± 0.46 kJ/mol; ALS

Oxygen anion + Nitrogen = (Oxygen anion • Nitrogen)

By formula: O2- + N2 = (O2- • N2)

Quantity Value Units Method Reference Comment
Δr25. ± 4.2kJ/molN/APosey and Johnson, 1988gas phase; B
Δr<56.90kJ/molIMRBAdams and Bohme, 1970gas phase; N2..O2- + O2 -> O4-; B

C12H34P4Ru (solution) + Nitrogen (solution) = C12H32N2P4Ru (solution) + Hydrogen (solution)

By formula: C12H34P4Ru (solution) + N2 (solution) = C12H32N2P4Ru (solution) + H2 (solution)

Quantity Value Units Method Reference Comment
Δr16.3kJ/molPACBelt, Scaiano, et al., 1993solvent: Cyclohexane; The reaction enthalpy relies on 0.85 for the quantum yield of H2 dissociation.; MS

(Hydronium cation • 2Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 3Nitrogen • 2Water)

By formula: (H3O+ • 2N2 • 2H2O) + N2 = (H3O+ • 3N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr38. ± 11.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr119.J/mol*KDTGheno and Fitaire, 1987gas phase; M

Vanadium, tetracarbonyl(η5-2,4-cyclopentadien-1-yl)- (solution) + Nitrogen (solution) = C8H5N2O3V (solution) + Carbon monoxide (solution)

By formula: C9H5O4V (solution) + N2 (solution) = C8H5N2O3V (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27. ± 4.kJ/molPACJohnson, Popov, et al., 1991solvent: Heptane; The reaction enthalpy relies on 0.80 for the quantum yield of CO dissociation.; MS

(Oxygen anion • 2Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 3Nitrogen • Oxygen)

By formula: (O2- • 2N2 • O2) + N2 = (O2- • 3N2 • O2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 3Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 4Nitrogen • Oxygen)

By formula: (O2- • 3N2 • O2) + N2 = (O2- • 4N2 • O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 4Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 5Nitrogen • Oxygen)

By formula: (O2- • 4N2 • O2) + N2 = (O2- • 5N2 • O2)

Quantity Value Units Method Reference Comment
Δr8.1 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 5Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 6Nitrogen • Oxygen)

By formula: (O2- • 5N2 • O2) + N2 = (O2- • 6N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 6Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 7Nitrogen • Oxygen)

By formula: (O2- • 6N2 • O2) + N2 = (O2- • 7N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.1 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 2Nitrogen • Oxygen)

By formula: (O2- • N2 • O2) + N2 = (O2- • 2N2 • O2)

Quantity Value Units Method Reference Comment
Δr11.7 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988gas phase; M

(Hydronium cation • 2Nitrogen • Water) + Nitrogen = (Hydronium cation • 3Nitrogen • Water)

By formula: (H3O+ • 2N2 • H2O) + N2 = (H3O+ • 3N2 • H2O)

Quantity Value Units Method Reference Comment
Δr33. ± 8.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 2Nitrogen • 2Water)

By formula: (H3O+ • N2 • 2H2O) + N2 = (H3O+ • 2N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr22.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr69.5J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • Nitrogen • 3Water) + Nitrogen = (Hydronium cation • 2Nitrogen • 3Water)

By formula: (H3O+ • N2 • 3H2O) + N2 = (H3O+ • 2N2 • 3H2O)

Quantity Value Units Method Reference Comment
Δr18.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Oxygen cation • 10Nitrogen) + Nitrogen = (Oxygen cation • 11Nitrogen)

By formula: (O2+ • 10N2) + N2 = (O2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 10Nitrogen) + Nitrogen = (Nitrogen cation • 11Nitrogen)

By formula: (N2+ • 10N2) + N2 = (N2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to N2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)15.581 ± 0.008eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)493.8kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity464.5kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
15.581 ± 0.008STrickl, Cromwell, et al., 1989LL
15.7 ± 0.1EIStephen, Mark, et al., 1984LBLHLM
15.6 ± 0.1EIGrade, Wienecke, et al., 1983LBLHLM
15.60PEKimura, Katsumata, et al., 1981LLK
10.1 ± 0.6EIArmentrout, Tarr, et al., 1981LLK
15.58EIArmentrout, Tarr, et al., 1981LLK
15.5808EVALHuber and Herzberg, 1979LLK
15.58 ± 0.02EISahini, Constantin, et al., 1978LLK
15.5PIRabalais, Debies, et al., 1974LLK
15.58PELee and Rabalais, 1974LLK
15.61PENatalis, 1973LLK
15.58 ± 0.01PEHotop and Niehaus, 1970RDSH
15.56CICermak, 1968RDSH
15.58PICook and Metzger, 1964RDSH
15.5803SOgawa and Tanaka, 1962RDSH
15.5802SWorley, 1943RDSH
15.5812 ± 0.0002SWorley and Jenkins, 1938RDSH
15.58PEPotts and Williams, 1974Vertical value; LLK
15.60PEKatrib, Debies, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
N+24.34N(4So)EILocht, Schopman, et al., 1975LLK
N+24.3NEISmyth, Schiavone, et al., 1973LLK
N+24.4 ± 0.25NEICrowe and McConkey, 1973LLK
N+24.32 ± 0.03NEIHierl and Franklin, 1967RDSH
N+48. ± 2.N+EIHierl and Franklin, 1967RDSH
N+24.32 ± 0.02NEIFrost and McDowell, 1956RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Ar+ + Nitrogen = (Ar+ • Nitrogen)

By formula: Ar+ + N2 = (Ar+ • N2)

Quantity Value Units Method Reference Comment
Δr164.kJ/molFAShul, Passarella, et al., 1987gas phase; switching reaction(Ar+)Ar, ΔrH>; Dehmer and Pratt, 1982; M

Trifluoromethyl cation + Nitrogen = (Trifluoromethyl cation • Nitrogen)

By formula: CF3+ + N2 = (CF3+ • N2)

Quantity Value Units Method Reference Comment
Δr29.kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • Nitrogen) + Nitrogen = (Trifluoromethyl cation • 2Nitrogen)

By formula: (CF3+ • N2) + N2 = (CF3+ • 2N2)

Quantity Value Units Method Reference Comment
Δr21.kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 2Nitrogen) + Nitrogen = (Trifluoromethyl cation • 3Nitrogen)

By formula: (CF3+ • 2N2) + N2 = (CF3+ • 3N2)

Quantity Value Units Method Reference Comment
Δr8.4kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr54.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 3Nitrogen) + Nitrogen = (Trifluoromethyl cation • 4Nitrogen)

By formula: (CF3+ • 3N2) + N2 = (CF3+ • 4N2)

Quantity Value Units Method Reference Comment
Δr7.5kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr59.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 4Nitrogen) + Nitrogen = (Trifluoromethyl cation • 5Nitrogen)

By formula: (CF3+ • 4N2) + N2 = (CF3+ • 5N2)

Quantity Value Units Method Reference Comment
Δr6.3kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr50.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

CH2N+ + Nitrogen = (CH2N+ • Nitrogen)

By formula: CH2N+ + N2 = (CH2N+ • N2)

Quantity Value Units Method Reference Comment
Δr32.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr92.9J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; M

(CH2N+ • Nitrogen) + Nitrogen = (CH2N+ • 2Nitrogen)

By formula: (CH2N+ • N2) + N2 = (CH2N+ • 2N2)

Quantity Value Units Method Reference Comment
Δr21.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr83.3J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; M

(CH2N+ • 2Nitrogen) + Nitrogen = (CH2N+ • 3Nitrogen)

By formula: (CH2N+ • 2N2) + N2 = (CH2N+ • 3N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr54.8J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

(CH2N+ • 3Nitrogen) + Nitrogen = (CH2N+ • 4Nitrogen)

By formula: (CH2N+ • 3N2) + N2 = (CH2N+ • 4N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr57.7J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

(CH2N+ • 4Nitrogen) + Nitrogen = (CH2N+ • 5Nitrogen)

By formula: (CH2N+ • 4N2) + N2 = (CH2N+ • 5N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr63.6J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

Methyl cation + Nitrogen = (Methyl cation • Nitrogen)

By formula: CH3+ + N2 = (CH3+ • N2)

Quantity Value Units Method Reference Comment
Δr203.kJ/molPDissFoster, Williamson, et al., 1974gas phase; M

CH5+ + Nitrogen = (CH5+ • Nitrogen)

By formula: CH5+ + N2 = (CH5+ • N2)

Quantity Value Units Method Reference Comment
Δr28.kJ/molHPMSSpeller, 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KHPMSSpeller, 1983gas phase; M

C2H5+ + Nitrogen = (C2H5+ • Nitrogen)

By formula: C2H5+ + N2 = (C2H5+ • N2)

Quantity Value Units Method Reference Comment
Δr29.kJ/molHPMSSpeller, 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KHPMSSpeller, 1983gas phase; M

(C2H5+ • Nitrogen) + Nitrogen = (C2H5+ • 2Nitrogen)

By formula: (C2H5+ • N2) + N2 = (C2H5+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19.kJ/molHPMSSpeller, 1983gas phase; deuterated, Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr45.6J/mol*KHPMSSpeller, 1983gas phase; deuterated, Entropy change is questionable; M

Calcium ion (1+) + Nitrogen = (Calcium ion (1+) • Nitrogen)

By formula: Ca+ + N2 = (Ca+ • N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.296.FASpears and Fehsenfeld, 1972gas phase; M

Copper ion (1+) + Nitrogen = (Copper ion (1+) • Nitrogen)

By formula: Cu+ + N2 = (Cu+ • N2)

Quantity Value Units Method Reference Comment
Δr26.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr67.J/mol*KHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr5.9kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M

(Copper ion (1+) • Nitrogen) + Nitrogen = (Copper ion (1+) • 2Nitrogen)

By formula: (Cu+ • N2) + N2 = (Cu+ • 2N2)

Quantity Value Units Method Reference Comment
Δr12.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desorption, equilibrium?; M

(Copper ion (1+) • 2Nitrogen) + Nitrogen = (Copper ion (1+) • 3Nitrogen)

By formula: (Cu+ • 2N2) + N2 = (Cu+ • 3N2)

Quantity Value Units Method Reference Comment
Δr10.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desorption; M

Iron ion (1+) + Nitrogen = (Iron ion (1+) • Nitrogen)

By formula: Fe+ + N2 = (Fe+ • N2)

Quantity Value Units Method Reference Comment
Δr54.0 ± 5.9kJ/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • Nitrogen) + Nitrogen = (Iron ion (1+) • 2Nitrogen)

By formula: (Fe+ • N2) + N2 = (Fe+ • 2N2)

Quantity Value Units Method Reference Comment
Δr82.8 ± 9.2kJ/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • 2Nitrogen) + Nitrogen = (Iron ion (1+) • 3Nitrogen)

By formula: (Fe+ • 2N2) + N2 = (Fe+ • 3N2)

Quantity Value Units Method Reference Comment
Δr45. ± 3.kJ/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • 3Nitrogen) + Nitrogen = (Iron ion (1+) • 4Nitrogen)

By formula: (Fe+ • 3N2) + N2 = (Fe+ • 4N2)

Quantity Value Units Method Reference Comment
Δr54.0 ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • 4Nitrogen) + Nitrogen = (Iron ion (1+) • 5Nitrogen)

By formula: (Fe+ • 4N2) + N2 = (Fe+ • 5N2)

Quantity Value Units Method Reference Comment
Δr61.9 ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD

HN2+ + Nitrogen = (HN2+ • Nitrogen)

By formula: HN2+ + N2 = (HN2+ • N2)

Quantity Value Units Method Reference Comment
Δr66.9kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr60.7kJ/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr85.4J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M

(HN2+ • Nitrogen) + Nitrogen = (HN2+ • 2Nitrogen)

By formula: (HN2+ • N2) + N2 = (HN2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr15. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr17.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr75.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HN2+ • 2Nitrogen) + Nitrogen = (HN2+ • 3Nitrogen)

By formula: (HN2+ • 2N2) + N2 = (HN2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr16.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr84.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HN2+ • 3Nitrogen) + Nitrogen = (HN2+ • 4Nitrogen)

By formula: (HN2+ • 3N2) + N2 = (HN2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr15.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HN2+ • 4Nitrogen) + Nitrogen = (HN2+ • 5Nitrogen)

By formula: (HN2+ • 4N2) + N2 = (HN2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr12. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr13.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KN/AHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
5.992.PHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

(HN2+ • 5Nitrogen) + Nitrogen = (HN2+ • 6Nitrogen)

By formula: (HN2+ • 5N2) + N2 = (HN2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 6Nitrogen) + Nitrogen = (HN2+ • 7Nitrogen)

By formula: (HN2+ • 6N2) + N2 = (HN2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 7Nitrogen) + Nitrogen = (HN2+ • 8Nitrogen)

By formula: (HN2+ • 7N2) + N2 = (HN2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 8Nitrogen) + Nitrogen = (HN2+ • 9Nitrogen)

By formula: (HN2+ • 8N2) + N2 = (HN2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 9Nitrogen) + Nitrogen = (HN2+ • 10Nitrogen)

By formula: (HN2+ • 9N2) + N2 = (HN2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 10Nitrogen) + Nitrogen = (HN2+ • 11Nitrogen)

By formula: (HN2+ • 10N2) + N2 = (HN2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr7.20kJ/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(Hydronium cation • Water) + Nitrogen = (Hydronium cation • Nitrogen • Water)

By formula: (H3O+ • H2O) + N2 = (H3O+ • N2 • H2O)

Quantity Value Units Method Reference Comment
Δr22.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr58.2J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • 2Water) + Nitrogen = (Hydronium cation • Nitrogen • 2Water)

By formula: (H3O+ • 2H2O) + N2 = (H3O+ • N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr21.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr59.8J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • Nitrogen • Water) + Nitrogen = (Hydronium cation • 2Nitrogen • Water)

By formula: (H3O+ • N2 • H2O) + N2 = (H3O+ • 2N2 • H2O)

Quantity Value Units Method Reference Comment
Δr21.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr54.8J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 2Nitrogen • 2Water)

By formula: (H3O+ • N2 • 2H2O) + N2 = (H3O+ • 2N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr22.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr69.5J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • Nitrogen • 3Water) + Nitrogen = (Hydronium cation • 2Nitrogen • 3Water)

By formula: (H3O+ • N2 • 3H2O) + N2 = (H3O+ • 2N2 • 3H2O)

Quantity Value Units Method Reference Comment
Δr18.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • 2Nitrogen • Water) + Nitrogen = (Hydronium cation • 3Nitrogen • Water)

By formula: (H3O+ • 2N2 • H2O) + N2 = (H3O+ • 3N2 • H2O)

Quantity Value Units Method Reference Comment
Δr33. ± 8.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • 2Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 3Nitrogen • 2Water)

By formula: (H3O+ • 2N2 • 2H2O) + N2 = (H3O+ • 3N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr38. ± 11.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr119.J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • 2Nitrogen • 3Water) + Nitrogen = (Hydronium cation • 3Nitrogen • 3Water)

By formula: (H3O+ • 2N2 • 3H2O) + N2 = (H3O+ • 3N2 • 3H2O)

Quantity Value Units Method Reference Comment
Δr5.0kJ/molDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr27.J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M

(Hydronium cation • 3Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 4Nitrogen • 2Water)

By formula: (H3O+ • 3N2 • 2H2O) + N2 = (H3O+ • 4N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr10.kJ/molDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr50.J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M

NH4+ + Nitrogen = (NH4+ • Nitrogen)

By formula: H4N+ + N2 = (H4N+ • N2)

Quantity Value Units Method Reference Comment
Δr50. ± 20.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KDTGheno and Fitaire, 1987gas phase; M

Potassium ion (1+) + Nitrogen = (Potassium ion (1+) • Nitrogen)

By formula: K+ + N2 = (K+ • N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.2310.DTBeyer and Keller, 1971gas phase; low E/N; M

Lithium ion (1+) + Nitrogen = (Lithium ion (1+) • Nitrogen)

By formula: Li+ + N2 = (Li+ • N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.318.DTGatland, Colonna-Romano, et al., 1975gas phase; low E/N; M

(Lithium ion (1+) • Nitrogen) + Nitrogen = (Lithium ion (1+) • 2Nitrogen)

By formula: (Li+ • N2) + N2 = (Li+ • 2N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.318.DTGatland, Colonna-Romano, et al., 1975gas phase; low E/N; M

N+ + Nitrogen = (N+ • Nitrogen)

By formula: N+ + N2 = (N+ • N2)

Quantity Value Units Method Reference Comment
Δr249.kJ/molN/ANational Bureau of Standards, 1968gas phase; from ΔrH(f); M
Δr250.kJ/molEISaporoschenko, 1965gas phase; M
Δr250.kJ/molEIFranklin, Dibeler, et al., 1958gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
361. (+7.5,-0.) CIDHaynes, Freysinger, et al., 1995gas phase; guided ion beam CID; M

Nitric oxide anion + Nitrogen = (Nitric oxide anion • Nitrogen)

By formula: NO- + N2 = (NO- • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr20.kJ/molDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr18.kJ/molHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr22.kJ/molHPMSTurner and Conway, 1976gas phase; M
Δr19.kJ/molDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr57.7J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr55.6J/mol*KHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr79.1J/mol*KHPMSTurner and Conway, 1976gas phase; M
Δr65.7J/mol*KDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; M

(Nitric oxide anion • Nitrogen) + Nitrogen = (Nitric oxide anion • 2Nitrogen)

By formula: (NO- • N2) + N2 = (NO- • 2N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr16.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr52.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Nitric oxide anion • 2Nitrogen) + Nitrogen = (Nitric oxide anion • 3Nitrogen)

By formula: (NO- • 2N2) + N2 = (NO- • 3N2)

Quantity Value Units Method Reference Comment
Δr16. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr70.3J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 3Nitrogen) + Nitrogen = (Nitric oxide anion • 4Nitrogen)

By formula: (NO- • 3N2) + N2 = (NO- • 4N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 4Nitrogen) + Nitrogen = (Nitric oxide anion • 5Nitrogen)

By formula: (NO- • 4N2) + N2 = (NO- • 5N2)

Quantity Value Units Method Reference Comment
Δr13. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 5Nitrogen) + Nitrogen = (Nitric oxide anion • 6Nitrogen)

By formula: (NO- • 5N2) + N2 = (NO- • 6N2)

Quantity Value Units Method Reference Comment
Δr13. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 6Nitrogen) + Nitrogen = (Nitric oxide anion • 7Nitrogen)

By formula: (NO- • 6N2) + N2 = (NO- • 7N2)

Quantity Value Units Method Reference Comment
Δr12. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 7Nitrogen) + Nitrogen = (Nitric oxide anion • 8Nitrogen)

By formula: (NO- • 7N2) + N2 = (NO- • 8N2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr97.5J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 8Nitrogen) + Nitrogen = (Nitric oxide anion • 9Nitrogen)

By formula: (NO- • 8N2) + N2 = (NO- • 9N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 9Nitrogen) + Nitrogen = (Nitric oxide anion • 10Nitrogen)

By formula: (NO- • 9N2) + N2 = (NO- • 10N2)

Quantity Value Units Method Reference Comment
Δr7.03kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr79.J/mol*KN/AHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M

NO2+ + Nitrogen = (NO2+ • Nitrogen)

By formula: NO2+ + N2 = (NO2+ • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • Nitrogen) + Nitrogen = (NO2+ • 2Nitrogen)

By formula: (NO2+ • N2) + N2 = (NO2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 2Nitrogen) + Nitrogen = (NO2+ • 3Nitrogen)

By formula: (NO2+ • 2N2) + N2 = (NO2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr18. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 3Nitrogen) + Nitrogen = (NO2+ • 4Nitrogen)

By formula: (NO2+ • 3N2) + N2 = (NO2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr16. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 4Nitrogen) + Nitrogen = (NO2+ • 5Nitrogen)

By formula: (NO2+ • 4N2) + N2 = (NO2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 5Nitrogen) + Nitrogen = (NO2+ • 6Nitrogen)

By formula: (NO2+ • 5N2) + N2 = (NO2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 6Nitrogen) + Nitrogen = (NO2+ • 7Nitrogen)

By formula: (NO2+ • 6N2) + N2 = (NO2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 7Nitrogen) + Nitrogen = (NO2+ • 8Nitrogen)

By formula: (NO2+ • 7N2) + N2 = (NO2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 8Nitrogen) + Nitrogen = (NO2+ • 9Nitrogen)

By formula: (NO2+ • 8N2) + N2 = (NO2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 9Nitrogen) + Nitrogen = (NO2+ • 10Nitrogen)

By formula: (NO2+ • 9N2) + N2 = (NO2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr86.2J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 10Nitrogen) + Nitrogen = (NO2+ • 11Nitrogen)

By formula: (NO2+ • 10N2) + N2 = (NO2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 11Nitrogen) + Nitrogen = (NO2+ • 12Nitrogen)

By formula: (NO2+ • 11N2) + N2 = (NO2+ • 12N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Nitrogen cation + Nitrogen = (Nitrogen cation • Nitrogen)

By formula: N2+ + N2 = (N2+ • N2)

Quantity Value Units Method Reference Comment
Δr102. to 102.kJ/molRNGN/ARange of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr67.8J/mol*KPHPMSTeng and Conway, 1973gas phase; M
Δr81.6J/mol*KPHPMSPayzant and Kebarle, 1970gas phase; M
Δr46.J/mol*KDTVarney, 1968gas phase; Entropy change is questionable; M
Δr-4.J/mol*KDTVarney, 1959gas phase; Entropy change is questionable; M

(Nitrogen cation • Nitrogen) + Nitrogen = (Nitrogen cation • 2Nitrogen)

By formula: (N2+ • N2) + N2 = (N2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr11.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr5.9kJ/molPILinn, Ono, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr62.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 2Nitrogen) + Nitrogen = (Nitrogen cation • 3Nitrogen)

By formula: (N2+ • 2N2) + N2 = (N2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr66.1J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 3Nitrogen) + Nitrogen = (Nitrogen cation • 4Nitrogen)

By formula: (N2+ • 3N2) + N2 = (N2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr10.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr69.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 4Nitrogen) + Nitrogen = (Nitrogen cation • 5Nitrogen)

By formula: (N2+ • 4N2) + N2 = (N2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 5Nitrogen) + Nitrogen = (Nitrogen cation • 6Nitrogen)

By formula: (N2+ • 5N2) + N2 = (N2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 6Nitrogen) + Nitrogen = (Nitrogen cation • 7Nitrogen)

By formula: (N2+ • 6N2) + N2 = (N2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr85.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 7Nitrogen) + Nitrogen = (Nitrogen cation • 8Nitrogen)

By formula: (N2+ • 7N2) + N2 = (N2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr7.8 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 8Nitrogen) + Nitrogen = (Nitrogen cation • 9Nitrogen)

By formula: (N2+ • 8N2) + N2 = (N2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7.4 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 9Nitrogen) + Nitrogen = (Nitrogen cation • 10Nitrogen)

By formula: (N2+ • 9N2) + N2 = (N2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7.4 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 10Nitrogen) + Nitrogen = (Nitrogen cation • 11Nitrogen)

By formula: (N2+ • 10N2) + N2 = (N2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

N3+ + Nitrogen = (N3+ • Nitrogen)

By formula: N3+ + N2 = (N3+ • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • Nitrogen) + Nitrogen = (N3+ • 2Nitrogen)

By formula: (N3+ • N2) + N2 = (N3+ • 2N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 2Nitrogen) + Nitrogen = (N3+ • 3Nitrogen)

By formula: (N3+ • 2N2) + N2 = (N3+ • 3N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 3Nitrogen) + Nitrogen = (N3+ • 4Nitrogen)

By formula: (N3+ • 3N2) + N2 = (N3+ • 4N2)

Quantity Value Units Method Reference Comment
Δr15. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 4Nitrogen) + Nitrogen = (N3+ • 5Nitrogen)

By formula: (N3+ • 4N2) + N2 = (N3+ • 5N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 5Nitrogen) + Nitrogen = (N3+ • 6Nitrogen)

By formula: (N3+ • 5N2) + N2 = (N3+ • 6N2)

Quantity Value Units Method Reference Comment
Δr10. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 6Nitrogen) + Nitrogen = (N3+ • 7Nitrogen)

By formula: (N3+ • 6N2) + N2 = (N3+ • 7N2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 7Nitrogen) + Nitrogen = (N3+ • 8Nitrogen)

By formula: (N3+ • 7N2) + N2 = (N3+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr69.9J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 8Nitrogen) + Nitrogen = (N3+ • 9Nitrogen)

By formula: (N3+ • 8N2) + N2 = (N3+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr68.2J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 9Nitrogen) + Nitrogen = (N3+ • 10Nitrogen)

By formula: (N3+ • 9N2) + N2 = (N3+ • 10N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 10Nitrogen) + Nitrogen = (N3+ • 11Nitrogen)

By formula: (N3+ • 10N2) + N2 = (N3+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr70.7J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

Sodium ion (1+) + Nitrogen = (Sodium ion (1+) • Nitrogen)

By formula: Na+ + N2 = (Na+ • N2)

Quantity Value Units Method Reference Comment
Δr33.kJ/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8J/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
9.2310.FAPerry, Rowe, et al., 1980gas phase; M
8.4310.DTBeyer and Keller, 1971gas phase; low E/N; M

(Sodium ion (1+) • Nitrogen) + Nitrogen = (Sodium ion (1+) • 2Nitrogen)

By formula: (Na+ • N2) + N2 = (Na+ • 2N2)

Quantity Value Units Method Reference Comment
Δr22.kJ/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr70.3J/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-1.310.FAPerry, Rowe, et al., 1980gas phase; M

Nickel ion (1+) + Nitrogen = (Nickel ion (1+) • Nitrogen)

By formula: Ni+ + N2 = (Ni+ • N2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
111. (+10.,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • Nitrogen) + Nitrogen = (Nickel ion (1+) • 2Nitrogen)

By formula: (Ni+ • N2) + N2 = (Ni+ • 2N2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
111. (+10.,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • 2Nitrogen) + Nitrogen = (Nickel ion (1+) • 3Nitrogen)

By formula: (Ni+ • 2N2) + N2 = (Ni+ • 3N2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
56. (+4.,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • 3Nitrogen) + Nitrogen = (Nickel ion (1+) • 4Nitrogen)

By formula: (Ni+ • 3N2) + N2 = (Ni+ • 4N2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
42.3 (+9.6,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

Oxygen cation + Nitrogen = (Oxygen cation • Nitrogen)

By formula: O2+ + N2 = (O2+ • N2)

Quantity Value Units Method Reference Comment
Δr21. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr22.kJ/molHPMSSpeller and Fitaire, 1983gas phase; M
Δr24.kJ/molPHPMSJanik and Conway, 1967gas phase; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr66.1J/mol*KHPMSSpeller and Fitaire, 1983gas phase; M
Δr79.1J/mol*KPHPMSJanik and Conway, 1967gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.0296.FAHoward, Bierbaum, et al., 1972gas phase; M

(Oxygen cation • Nitrogen) + Nitrogen = (Oxygen cation • 2Nitrogen)

By formula: (O2+ • N2) + N2 = (O2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr18.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr57.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Oxygen cation • 2Nitrogen) + Nitrogen = (Oxygen cation • 3Nitrogen)

By formula: (O2+ • 2N2) + N2 = (O2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr18. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr15.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr50.6J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Oxygen cation • 3Nitrogen) + Nitrogen = (Oxygen cation • 4Nitrogen)

By formula: (O2+ • 3N2) + N2 = (O2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.204.HPMSSpeller and Fitaire, 1983gas phase; M

(Oxygen cation • 4Nitrogen) + Nitrogen = (Oxygen cation • 5Nitrogen)

By formula: (O2+ • 4N2) + N2 = (O2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.184.HPMSSpeller and Fitaire, 1983gas phase; M

(Oxygen cation • 5Nitrogen) + Nitrogen = (Oxygen cation • 6Nitrogen)

By formula: (O2+ • 5N2) + N2 = (O2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 6Nitrogen) + Nitrogen = (Oxygen cation • 7Nitrogen)

By formula: (O2+ • 6N2) + N2 = (O2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 7Nitrogen) + Nitrogen = (Oxygen cation • 8Nitrogen)

By formula: (O2+ • 7N2) + N2 = (O2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8.8 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 8Nitrogen) + Nitrogen = (Oxygen cation • 9Nitrogen)

By formula: (O2+ • 8N2) + N2 = (O2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7.9 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 9Nitrogen) + Nitrogen = (Oxygen cation • 10Nitrogen)

By formula: (O2+ • 9N2) + N2 = (O2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7.0 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr87.0J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 10Nitrogen) + Nitrogen = (Oxygen cation • 11Nitrogen)

By formula: (O2+ • 10N2) + N2 = (O2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • Nitrogen • Oxygen) + Nitrogen = (Oxygen cation • 2Nitrogen • Oxygen)

By formula: (O2+ • N2 • O2) + N2 = (O2+ • 2N2 • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.230.HPMSSpeller and Fitaire, 1983gas phase; M

(Oxygen cation • Oxygen) + Nitrogen = (Oxygen cation • Nitrogen • Oxygen)

By formula: (O2+ • O2) + N2 = (O2+ • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr42.3J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

Oxygen anion + Nitrogen = (Oxygen anion • Nitrogen)

By formula: O2- + N2 = (O2- • N2)

Quantity Value Units Method Reference Comment
Δr25. ± 4.2kJ/molN/APosey and Johnson, 1988gas phase; B
Δr<56.90kJ/molIMRBAdams and Bohme, 1970gas phase; N2..O2- + O2 -> O4-; B

(Oxygen anion • Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 2Nitrogen • Oxygen)

By formula: (O2- • N2 • O2) + N2 = (O2- • 2N2 • O2)

Quantity Value Units Method Reference Comment
Δr11.7 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 2Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 3Nitrogen • Oxygen)

By formula: (O2- • 2N2 • O2) + N2 = (O2- • 3N2 • O2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 3Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 4Nitrogen • Oxygen)

By formula: (O2- • 3N2 • O2) + N2 = (O2- • 4N2 • O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 4Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 5Nitrogen • Oxygen)

By formula: (O2- • 4N2 • O2) + N2 = (O2- • 5N2 • O2)

Quantity Value Units Method Reference Comment
Δr8.1 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 5Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 6Nitrogen • Oxygen)

By formula: (O2- • 5N2 • O2) + N2 = (O2- • 6N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 6Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 7Nitrogen • Oxygen)

By formula: (O2- • 6N2 • O2) + N2 = (O2- • 7N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.1 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 7Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 8Nitrogen • Oxygen)

By formula: (O2- • 7N2 • O2) + N2 = (O2- • 8N2 • O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Δr6.40kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr75.3J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

(Oxygen anion • Oxygen) + Nitrogen = (Oxygen anion • Nitrogen • Oxygen)

By formula: (O2- • O2) + N2 = (O2- • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka, 1988gas phase; M

O3- + Nitrogen = (O3- • Nitrogen)

By formula: O3- + N2 = (O3- • N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.84kJ/molTDAsHiraoka, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr-11.7 ± 2.1kJ/molTDAsHiraoka, 1988gas phase; B

(O3- • Nitrogen) + Nitrogen = (O3- • 2Nitrogen)

By formula: (O3- • N2) + N2 = (O3- • 2N2)

Quantity Value Units Method Reference Comment
Δr11.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 2Nitrogen) + Nitrogen = (O3- • 3Nitrogen)

By formula: (O3- • 2N2) + N2 = (O3- • 3N2)

Quantity Value Units Method Reference Comment
Δr10.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 3Nitrogen) + Nitrogen = (O3- • 4Nitrogen)

By formula: (O3- • 3N2) + N2 = (O3- • 4N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 4Nitrogen) + Nitrogen = (O3- • 5Nitrogen)

By formula: (O3- • 4N2) + N2 = (O3- • 5N2)

Quantity Value Units Method Reference Comment
Δr8.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 5Nitrogen) + Nitrogen = (O3- • 6Nitrogen)

By formula: (O3- • 5N2) + N2 = (O3- • 6N2)

Quantity Value Units Method Reference Comment
Δr8.2 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 6Nitrogen) + Nitrogen = (O3- • 7Nitrogen)

By formula: (O3- • 6N2) + N2 = (O3- • 7N2)

Quantity Value Units Method Reference Comment
Δr7.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 7Nitrogen) + Nitrogen = (O3- • 8Nitrogen)

By formula: (O3- • 7N2) + N2 = (O3- • 8N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr73.2J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 8Nitrogen) + Nitrogen = (O3- • 9Nitrogen)

By formula: (O3- • 8N2) + N2 = (O3- • 9N2)

Quantity Value Units Method Reference Comment
Δr6. ± 2.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr70.7J/mol*KPHPMSHiraoka, 1988gas phase; M

O4- + Nitrogen + Oxygen = N2O4-

By formula: O4- + N2 + O2 = N2O4-

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.84kJ/molTDAsHiraoka, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr-8.8 ± 2.1kJ/molTDAsHiraoka, 1988gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61309

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through February, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 14N2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
For a very detailed and critical review of the spectrum of nitrogen and its ions see the recent publication by Lofthus and Krupenie Lofthus and Krupenie, 1977. An Atlas of the VUV absorption spectrum 1060 - 1520 Å and table of absorption lines Tilford, Wilkinson, et al., 1966. Tables of band head wavelengths Wallace, 1962 Pearse and Gaydon, 1963 Lofthus and Krupenie, 1977. Photoionization and absorption cross sections Huffman, Tanaka, et al., 1963 Cook and Metzger, 1964 Carter, 1972. Potential functions Gilmore, 1965 Benesch, Vanderslice, et al., 1965 Gartner and Thrush, 1975 Lofthus and Krupenie, 1977.
Several Rydberg series (excitation of 1sN) with limit (K edge) at 409.5 eV.
Nakamura, Sasanuma, et al., 1969; Werme, Grennberg, et al., 1973; Vinogradov, Shlarbaum, et al., 1974; Vinogradov, Zimkina, et al., 1974
x" (1Σu+) 1           x" ← X 405.59 $eV
Nakamura, Sasanuma, et al., 1969; Werme, Grennberg, et al., 1973; Vinogradov, Shlarbaum, et al., 1974; Vinogradov, Zimkina, et al., 1974
x' (1Πu) 2           x'↔ X 400.84 $eV
Nakamura, Sasanuma, et al., 1969; Werme, Grennberg, et al., 1973; Vinogradov, Shlarbaum, et al., 1974; Vinogradov, Zimkina, et al., 1974
Photoionization and dissociative photoionization processes corresponding to various excited states of N2+. 3
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
v 1Πg 4           v ← X 253000
Lee, Wong, et al., 1975
u5 (183640) (2100) (15) 5        u5←X (183510)
Codling, 1966; Lee, Carlson, et al., 1973
u4 (178565) (2070) (15) 5        u4 ← X (178420)
Codling, 1966; Lee, Carlson, et al., 1973
HopfieldHopfields Rydberg series converging to B 2 Σu+(v=0) of N2+:
...2σuu4g2nsσ ν = 151233 - R/(m+0.141 - 0.199/m)2, m=3...11 (apparent emission series)6
Hopfield, 1930; missing citation; missing citation
...2σuu4g2ndσ ν = 151233 - R/(m+0.070 - 0.041/m)2, m=3...20 (absorption series)7 8 9
Hopfield, 1930; missing citation; missing citation
WorleyWorley's ("third") Rydberg series joining on to o3, o4, o5 and converging to A 2Πu1/2(v=0) of N2+:
...2σu2u3g2nsσ ν = 134721 - R/(n - 1.06)2, n = 3...16.10 11 12 13
Worley, 1943; missing citation; missing citation
OgawaOgawa and Tanaka's Rydberg series joining on to O4, O5 and converging to A 2Πu3/2(v=0) of N2+:
...2σu2u3g2nsσ ν = 134644 - R/(n*)2, n* = 2.84, 3.85, 4.86, ..., 14.91.10 11 12 13
missing citation; missing citation
Several dissociation continua in the region 100000 - 160000 cm-1.
Comes and Weber, 1969; Cook, Ogawa, et al., 1973
Several unidentified bands in the region 126100 - 131550 cm-1.
Ogawa, 1964
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
s 133355 14 1885 H (12) 15        s ← X 133119 H
Ogawa, 1964
133316 14 H ( ) 15        s ← X 133080 H
Ogawa, 1964
r 132878 14 1903 H (15) 16        r ← X R 132650 H
Ogawa, 1964
q 132136 14 1900 H (18) 17        q ← X 18 131906 H
Ogawa, 1964
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
p 129136 14 1869 H (10) 19        p ← X R 128892 H
Ogawa, 1964
o5 1Πu (127868) (1935) 20 (19)        o5 ← X R 127655 HQ
missing citation; missing citation
O5 (3Πu) 127445 1925 HQ 18.4        O5 ← X R 127227 HQ
missing citation; missing citation
c'n and cn Rydberg series converging to X 2Σg+(v=0) of N2+:
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
c'n 1Σu+ 21           c'n ← X 
Carroll and Yoshino, 1967; missing citation; Johns and Lepard, 1975
cn 1Πu 22           cn ← a" 
missing citation
cn 1Πu 26           cn ← X 23 24 25 
Worley and Jenkins, 1938; missing citation; missing citation; missing citation
o4 1Πu 122419 [1824.1] H   [1.7338] 27   [4E-6]  [1.1784] o4 ← X R 122155.4 Z
Ogawa and Tanaka, 1962; Yoshino, Tanaka, et al., 1975
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
O4 (3Πu) 121263 1982 H 27.0        O4←X R 121071.1 H
Ogawa and Tanaka, 1962
c'5 1Σu+ (115876) [2221.8] Z 28  [1.345] 29      c'5←X R 115849.8 Z
Carroll and Collins, 1970; missing citation
c4 1Πu 115635.9 2220.3 Z 19.4  [1.9261] 30 0.015  [6.3E-6] 30  1.116 c4 ← a" 16725.12 Z
missing citation
c4 1Πu 31           c4←X R 115565.53 Z
missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
z 1Δg (115435) (1700)   1.761 0.0153    1.169 z → w V 43411.2 32 Z
Lofthus, 1957
y 1Πg 114305.2 33 1906.43 33 37.51 33  1.739 33 34 0.017 33  (5.8E-6)  1.177 y → w V 42467.5 35 Z
missing citation; Carroll and Subbaram, 1975
           y → a' V 46426.7 35 Z
missing citation; Carroll and Subbaram, 1975
k 1Πg (113808) 36 [2182.32] 33   1.959 33 0.031 33  (5.9E-6)  1.109 k → w V 41932.4 35 Z
missing citation
           k → a' V 45891.7 35 Z
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
x 1Σg- 113438.0 1910.0 Z 20.7  1.750 37 0.0225  (6E-6)  1.173 x → a' V 45472.8 Z
Gaydon, 1944; missing citation; Rajan, 1974
d' 1Σu- or 1Δu [112500] 38          d' → a 42373 H
Herman-Montagne, 1945; Gaydon and Herman, 1946; Dressler, 1969
o3 1Πu 105869 39 1987.4 39 16.3 39  1.7339 39 0.0088 39  (5.3E-6)  1.1784 o3→a V 36731
Janin and Crozet, 1946; Janin, 1950
           o3 ← X 40 R 105683
Worley, 1943; Yoshino, Tanaka, et al., 1975
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
H 3Φu (105720) 924.21 Z 12.29 -0.173 1.0873 0.0191  [7.0E-6] 41  1.4881 (H → ?) 42 12407.2 H
Herman, 1951; Carroll and Sayers, 1953
           H → G 43 V 17897.08 44 Z
Gaydon, 1944, 2; Herman-Montagne, 1945; Grun, 1954; missing citation
c'4 1Σu+ 104519 45 2201.78 45 25.199 45  1.9612 45 0.0436 45    1.1080 c'4 → a VR 35371.2 Z
missing citation
           c'4 ↔ X 46 R 104323.3 47 Z
Tilford and Wilkinson, 1964; Carroll and Yoshino, 1967; Carroll and Collins, 1969; Dressler, 1969; Carroll and Collins, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
c3 1Πu 104476 2192.20 48 14.70 48  1.9320 48 0.0395 48    1.1163 c3 → a RV (35187.0) (Z
Janin, 1950
           c3 ↔ X 49 R 104138.2 50 Z
Carroll and Collins, 1969; Dressler, 1969
b' 1Σu+ 104498 51 760.08 51 4.418 51 0.1093 1.1549 51 52 0.007387 51 -7.50E-5   1.4439 b' → a R 53
Lofthus, 1957
           b' ↔ X 49 R 103673.8 54 Z
Wilkinson and Houk, 1956; Carroll and Collins, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D 3Σu+ [104746.6] 55    [1.961]   [20E-6]  [1.1080] D → B 56 V 44264.1 57 Z
Gero and Schmid, 1940
b 1Πu (101675) [634.8] 58   [1.4483] 59 60 -0.00362  [29E-6] 61  1.2841 62 b → a R (31865.7) Z
Gaydon, 1944; Herman-Montagne, 1945; Lofthus, 1957; Rajan, 1974
           b ↔ X 49 R 100816.9 Z
Carroll and Collins, 1969; Yoshino, Tanaka, et al., 1975
a" 1Σg+ [100016.0]    [1.9133] 63   [6.2E-6] 63  [1.1218] a" ← X 64 98840.30 63 Z
Lutz, 1969
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C' 3Πu 98351 65 791 33.5  [1.04976] 66  [10.9E-6] 67  [1.5146] C' ↔ B R 38255.5 68 Z
missing citation; missing citation; missing citation
E 3Σg+ (95858) [2185] H   [1.927.3]   [6.0E-6]  [1.1177] E → B V (36467.9) Z
Freund, 1969
           E → A V 46019.72 Z
missing citation
           E ← X 69 
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C" 5Πu (93500) 70           
C 3Πu 89136.88 71 2047.178 Z 28.4450 72  1.82473 73 0.01868 74    1,14869 C → B 75 76 V 29671.0 Z
Coster, Brons, et al., 1933; Dieke and Heath, 1959; missing citation; missing citation; missing citation
           C ← X 77 R 88977.89 Z
Tanaka, 1955; Tanaka, Ogawa, et al., 1964; missing citation
G 3Δg (87900) 78 [742.49] Z (11.85) H  0.9280 0.0161  [5.0E-6]  1.6107  
Carroll, Collins, et al., 1972
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A' 5Σg+ (78800) 79 (650) 79 80        (1.55) 81  
w 1Δu 72097.4 1559.26 82 H 11.63  1.498 83 0.0166    1.268 w → a 84 R 2747.29 Z
McFarlane, 1966
           w ← X 77 85 R 71698.4 86 Z
Tanaka, Ogawa, et al., 1964; Chutjian, Cartwright, et al., 1973
a 1Πg 69283.06 1694.208 Z 13.9491 87 7.935E-3 1.6169 88 0.01793 -2.93E-5 (5.89E-6)  1.2203 a → a' 84 V 1212.28 Z
McFarlane, 1965; McFarlane, 1966, 2
           a ↔ X 89 90 R 68951.20 Z
missing citation; Miller, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a' 1Σu- 68152.66 1530.254 Z 12.0747 91 .04129 1.4799 0.01657 2.41E-5 (5.55E-6)  1.2755 a' ↔ X 92 R 67739.31 Z
missing citation; missing citation; Campbell and Thrush, 1969; Golde, 1975; Chutjian, Cartwright, et al., 1973
B' 3Σu- 66272.47 1516.88 Z 12.181 93 .04186 1.4733 94 0.01666 95 9E-6 (5.56E-6)  1.2784 B' → B R (6545.5) Z
Carroll and Rubalcava, 1960; Dieke and Heath, 1960; Gartner and Thrush, 1975
           B'↔X 96 R 65852.35 Z
missing citation; Wilkinson, 1960; missing citation; Golde and Thrush, 1972; Chutjian, Cartwright, et al., 1973
W 3Δu 59808 (1501.4) Z 11.6        W ↔ B RV 73
Wu and Benesch, 1968; Saum and Benesch, 1970; Benesch and Saum, 1971; Covey, Saum, et al., 1973
           W ← X 97 R 59380
missing citation; Chutjian, Cartwright, et al., 1973
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B 3Πg 59619.35 98 1733.39 Z 14.122 99 -0.0569 1.63745 100 0.01791 101 7.7E-5 [5.9E-6]  1.21260 B ↔ A 102 103 V 9552.03 Z
Dieke and Heath, 1959; Lofthus and Krupenie, 1977
           B ← X 104 R 59306.81 Z
Wilkinson, 1962
A 3Σu+ 50203.63 1460.64 Z 13.872 105 .0103 1.4546 106 0.0180 107 -8.8E-5 [6.15E-6]  1.2866 A↔X 108 104 R 49754.78 Z
Dieke and Heath, 1959; Miller, 1965; Miller, 1966
X 1Σg+ 0 2358.57 Z 14.324 109 -2.26E-3 1.998241 110 0.017318 110  [5.76E-6]  1.097685 111  
- pressure induced
Crawford, Welsh, et al., 1949; Bosomworth and Gush, 1965; Reddy and Cho, 1965; Shapiro and Gush, 1966; de Remigis, Welsh, et al., 1971; Sheng and Ewing, 1971; Buontempo, Cunsolo, et al., 1975
- el. field induced
Courtois and Jouve, 1975
Raman Spectra 112
Stoicheff, 1954; Butcher, Willetts, et al., 1971; Bendtsen, 1974
Mol. beam magn. reson. 113

Notes

1X-ray absorption (3sσ ← 1sN).
2X-ray absorption and emission (1πg ↔ 1sN), broad peak. 119
3Absorption cross sections 140000-500000 cm-1 Lee, Carlson, et al., 1973, Watson, Lang, et al., 1973.
4From high-energy electron impact spectroscopy.
5First two members of Codling's Rydberg series. 120
6Longward of the apparent emission "lines" are close-lying fairly sharp absorption "lines" Ogawa and Tanaka, 1962. Both features belong to the same Fano shape produced by the interaction of the series of Rydberg levels with the continuum joining on to the A 2Π (or, less likely, X 2Σ) limit.
7Similar series with v'=1.
8The first three members at 138330, 144090, 146690 cm-1 are very broad (presumably because of preionization), the higher members are sharper and shaded to the red. No rotational structure has been resolved. Preionization also observed by electron spectroscopy Hicks, Comer, et al., 1973, Wilden, Hicks, et al., 1976.
9Oscillator strengths from absorption coefficients: f(m=3,4,..) = 0.0131, 0.0053, ... Cook and Ogawa, 1970.
10Similar series for v'=l [observed to n=45 (2Π1/2) and n*=40.2 (2Π3/2)] and for v'=2...7 Yoshino, Ogawa, et al., 1976.
11Corresponding series in 15N2 Ogawa, 1964.
12Preionization observed in photoionization studies Cook and Ogawa, 1965, Comes and Weber, 1969, Carter and Berkowitz, 1973.
13Preionization in absorption series having v'=1...4 was observed in active nitrogen using the photoionization technique Cook and McNeal, 1972.
14These designations should not be confused with the older designations of component states of b 1Πu and b' 1Σu+.
15Ogawa's "new progression 4" 12
16Ogawa's "new progression 3" 12 122
17Ogawa's "new progression 2" 12 122
18Linelike, not shaded.
19Ogawa's "new progression 1" 12 122
20Vibrational intervals decrease irregularly: v=0 was shown [by electron spectroscopy Wilden, Hicks, et al., 1976] to be preionized.
21...1πu4gnpσ 123 -Carroll and Yoshino's series joining on to c'4, c'5.
22...1πu4gnpπ 123Ledbetters series c4, c5, c6.
23Similar series with v'=1.
24Corresponding series in 15N2 Ogawa, 1964.
25See 13.
26- Worley and Jenkin's series joining on to c3, c4: ν = 125666.8124 - R/(m + 0.3697 - 0.3459/m + 0.532/m2 - 0.960/m4)2, m(=n-1) = 2...31.
27Only v=0 [perturbed by c'6(v=1)] is sharp: bands with v'= 1,2,3 are diffuse owing to predissociation or preionization (levels with v > 2 are above the first ionization potential).
28ΔG(3/2) = 2119.7, see 29.
29Strong homogeneous perturbations with the higher vibrational levels (v ≥ 18) of b' 1Σu+ Carroll and Yoshino, 1972. The B0 value is an effective value at low J: Beff(v=1) = 1.285, Beff(v=2)= 1.173. In addition, there are heterogeneous interactions with the close- lying levels of c4 1Πu. For deperturbed constants see Leoni and Dressler, 1972, Leoni, 1972.
30Constants for Π- Ledbetter, 1972; B0(Π+) = 1.906. αe from Carroll and Yoshino, 1972.
31[A progression of six bands (v"=1-6) arises from c4(v'=0) → a, Herman-Montagne, 1945 ]
32Reevaluated from the origin of the 0-2 band. Lofthus, 1957 gives 43667.0 which was undoubtedly calculated with the constants of the a rather than of the w state.
33Strong homogeneous interaction between k 1Πg and y 1Πg. The constants given are the deperturbed values from Carroll and Subbaram, 1975 and refer to Π-, the only component observed in k 1Πg.
34Predissociation of the Π+ component above J=10 of v=0. Λ-type doubling and predissociation discussed in Mulliken, 1976.
35Not deperturbed.
36From the deperturbed T00 = 113723.58.
370nly v'=0,1,2 observed. Predissociation (weakening of emission) at v'=2, J"≈l5 corresponding to the limit 2D+2D Lofthus, 1960; actual breaking off occurs at J'=25. See also Mulliken, 1976.
38Only v'=0 observed
39Deperturbed constants Yoshino, Tanaka, et al., 1975. Homogeneous interactions with levels (v > 6) of b 1Πu and heterogeneous perturbations by b' 1Σu+.
400scil1ator strengths Carter, 1972.
41D1(E-6 cm-1)= 4.5 Carroll, Collins, et al., 1972, D2(E-6 cm-1)= 6.0 Carroll, Collins, et al., 1972, D3(E-6 cm-1)= 5.0 Carroll, Collins, et al., 1972. See, however, Veseth, 1973.
42Fragment of near infrared spectrum, ΔG"(1/2) ≈ 712.
43Franck-Condon factors and r-centroids Mohamed and Khanna, 1974.
44From a more detailed theoretical treatment Veseth, 1973 derives v00 = 17902.400 Veseth, 1973.
45Deperturbed constants Leoni and Dressler, 1972, Leoni, 1972; ωeye= +0.7874. Strong perturbations produced by interaction with b' 1Σu+; before these perturbations were recognized Dressler, 1969, Lefebvre-Brion, 1969 the vibrational levels were attributed to independent states called p', r', k, s', h, h', h", h'". The observed vibrational intervals (from band origins) and rotational constants for v = 0,1,2,3... are: ΔG(v+1/2) = 2046.2, 2175.5, 2112.2, 2111.7 ...; Bv = 1.929, 1.711, 1.436, 1.594 ...
46Radiative lifetime τ(v'=0) = 0.9 ns Hesser and Dressler, 1966, Hesser, 1968: oscillator strengths Lawrence, Mickey, et al., 1968, Carter, 1972.
47Observed v00, not deperturbed.
48deperturbed constants Leoni and Dressler, 1972, Leoni, 1972. Strong perturbations produced by interaction with b 1Πu: the observed vibrational intervals (from band heads) and rotational constants for v=0,1,2,.., are: ΔG(v+1/2) = 2401, 2146, 2103, 2042; Bv(Π-) = 1.516, 1.755, 1.813 [see Carroll and Collins, 1969, Leoni, 1972].
49Oscillator strengths Lawrence, Mickey, et al., 1968, Carter, 1972.
50missing note
51Deperturbed constants Leoni and Dressler, 1972, Leoni, 1972; Strong perturbations on account of interactions with c'4, c'5 1Σu+. Before these perturbations were recognized Carroll and Collins, 1969, Dressler, 1969, Hopfield, 1930O6a, Carroll and Collins, 1970 several of the vibrational levels were assumed to be independent states called b', g, f, r, s, t, u by Worley, 1943. The observed vibrational intervals (from band origins) and rotational constants for v= 0,1,2,3, ... are: ΔG(v+1/2) = 744.9, 732.9, 717.6, 777.7, ... ; Bv = 1.1515, 1.15, 1.142, 1.152, .... The highest observed level is v=28. Intensity perturbations in the electron energy loss spectrum Geiger and Schroder, 1969.
52The b'←X absorption bands show diffuseness indicating predissociation for v'=20, 21, 22 Carroll and Collins, 1970. Emission bands have only been observed to v'=9. For v'= 5 and above J'=12 an intensity anomaly suggesting inverse predissociation has been observed in emission Tilford and Wilkinson, 1964, 2: it corresponds to the limit 4S + 2P. Selective emission from v'=0,2,7 in discharges in Ar and Kr with traces of N2 Tanaka and Nakamura, 1967.
53Only the 7-0 band was observed at v0 = 40000.7 Lofthus, 1957.
540bserved band origin, not deperturbed.
55Only v=0 is observed
56Lifetime τ(v=0) = 14.1 ns Kurzweg, Egbert, et al., 1973. Franck Condon factors Hebert and Nicholls, 1969.
57Extrapolated from Q2(3) of the 0-1 band.
58ΔG(3/2,5/2,...) = 700.0, 711.9, 685.2, 1151.4, 646.2, ... Carroll and Collins, 1969 [ Carroll and Collins, 1969, from band origins]. Leoni and Dressler, 1972, Leoni, 1972 give the deperturbed constants ωe = 461.01 Leoni and Dressler, 1972, Leoni, 1972, ωexe = -132.257 Leoni and Dressler, 1972, Leoni, 1972, ωeye = -35.005 Leoni and Dressler, 1972, Leoni, 1972, ωeze = +5.822 Leoni and Dressler, 1972, Leoni, 1972, ...; see 59.
59Bv(v=1, 2, 3...) = 1.4086, 1.3872, 1.38l5, 1.42l3 ... Carroll and Collins, 1969: Leoni and Dressler, 1972, l52a give the deperturbed constants Be = 1.4601 Leoni and Dressler, 1972, Leoni, 1972, αe= 0.02624 Leoni and Dressler, 1972, Leoni, 1972, ... Strong perturbations on account of interaction with the c3 1Πu and o3 1Πu Rydberg states. Before these perturbations were recognized Carroll and Collins, 1969, Dressler, 1969 several of the vibrational levels were assumed to be independent electronic states called i, j, b, l, m, p, q Worley, 1943. Intensity perturbations in the electron energy loss spectrum Meyer, Skerbele, et al., 1965, Geiger and Schroder, 1969.
60The lines of absorption bands with v'= 0,2,3,4 are broadened on account of predissociation (especially v'=3); corresponding emission bands have not been observed. The state causing the predissociation is probably C' 3Πu Carroll and Collins, 1969; see, however, Leoni and Dressler, 1971 who find that an additional diffuse level, very likely the still missing O3 3Πu(v=0) level at ~103000 cm-1, is required to explain the broadening of v'= 3.
61Effective (perturbed) D0 value.
62From the deperturbed Be (see 59)
63From Rydberg series having a" as lower state Ledbetter, 1972.
64First thought to be observed as quadrupole absorption Dressler and Lutz, 1967, later recognized as pressure-induced dipole transition represented by a broad diffuse absorption band at ~99005 cm-1 Lutz, 1969: note the large pressure shift of +165 cm-1. The electron energy loss spectrum Lassettre, Skerbele, et al., 1966 shows a peak at 12.25 eV. Another 1Σg+ state, non-Rydberg in character, is predicted to intersect a" not far from its minimum Michels, 1970.
65A0 = 2.10 Ledbetter and Dressler, 1976, recalculated by Ledbetter and Dressler, 1976 from the data of Carroll, 1963 who obtained 1.15: A1 = 2.73 Ledbetter and Dressler, 1976, deperturbed value Ledbetter and Dressler, 1976.
66B1(observed) = 1.2056, B1(deperturbed) = 1.026. Strong mixing of C'(v=1) with C(v=5). Deperturbed constants and RKR potential functions are given by Ledbetter and Dressler, 1976 who have analyzed in detail the C'(v=1)←B(v=5) band for 14N2, 14N15N and 15N2. The perturbing level C(v=5) was recently observed by Ledbetter, 1977 in absorption from B(v=6).
67H0 = 8.3E-10.
68v00 = 38296.75 in Carroll, 1963 refers to the F1 component.
69Resonance-like electron impact excitation function centered at 12.2 eV with a half-width of 0.4 eV Borst, 1972. Lifetime of the E state 190 μs Borst and Zipf, 1971.
70Arising from 4S + 2D; according to Carroll and Mulliken, 1965 responsible for the main predissociation in C 3Πu.
71A = 39.2 Budo, 1935.
72ωeye= +2.08833. ωeze = -0.5350.
73Breaking-off on account of predissociation Buttenbender and Herzberg, 1935 in v' = 1, 2, 3, 4 above N' = 65, 55, 43, 28, respectively, yielding an accurate dissociation limit at 97938 cm-1 (4S + 2D). A second predissociation in high-pressure discharges (when the first predissociation disappears) has been found in v'=2 and 3 above N'= 80 and 67, respectively Hori and Endo, 1941. According to Carroll and Mulliken, 1965 the first predissociation is caused by C" 5Πu, the second by C' 3Πu. Predissociation in 15N2 Frackowiak, 1964. Intensity perturbations Coster, Brons, et al., 1933, Gero, 1935, Coster and Brons, 1935.
74αv= -0.00228(v+1/2)2 + 0.000733(v+1/2)3 - 0.000l5(v+1/2)4.
75Lifetimes for v = 0,1,2 vary between 35 and 41 ns Johnson and Fowler, 1970, Imhof and Read, 1971, Dotchin and Chupp, 1973, Chen and Anderson, 1975, Osherovich and Gorshkov, 1976. For f values of C-B see Nicholls, 1963, Reis, 1964.
76The head of the 0-0 band produces laser oscillation: high resolution measurements of the laser lines Parks, Rao, et al., 1968, see also Kasuya and Lide, 1967. An anomalous intensity alternation has been observed by Bleekrode, 1968, see also Fishburne, Lazdinis, et al., 1967. C(v=5) ← B(v=6) band in absorption Ledbetter, 1977. 14N15N and 15N2 isotope shifts Shvangiradze, Oganezov, et al., 1960. RKR Franck-Condon factors Zare, Larsson, et al., 1965, Benesch, Vanderslice, et al., 1966, dependence on rotation Shumaker, 1969. Integrated band intensities Tyte, 1962. Dependence of the electronic transition moment on r Shemansky and Broadfoot, 1971, Jain, 1972: absolute transition probabilities Shemansky and Broadfoot, 1971.
77RKR Franck-Condon factors Zare, Larsson, et al., 1965, Benesch, Vanderslice, et al., 1966, 2, Lofthus and Krupenie, 1977.
78A0 = -0.21, A1 = -0.25. All constants for this state are from H→G Carroll, Collins, et al., 1972: for a more detailed theoretical treatment and somewhat different constants see Veseth, 1973.
79From the predissociations in a and B Carroll, 1962: see also Oldenberg, 1957, Mulliken, 1962. The dissociation energy of this state is estimated to be between 850 and 1100 cm-1. According to Bayes and Kistiakowsky, 1960 the 5Σg+ state plays an important role in the mechanism of the Lewis-Rayleigh afterglow of nitrogen.
80For more recent results of an ab initio calculation see Krauss and Neumann, 1976.
81missing note
82Vibrational constants from the absorption spectrum Tanaka, Ogawa, et al., 1964, good agreement with band origin data for k→w Carroll and Subbaram, 1975.
83Rotational constants from y→w Lofthus and Mulliken, 1957.
84Appears in stimulated emission.
85The w←X Tanaka bands appear diffuse even under high resolution Tilford, Vanderslice, et al., 1979 indicating that this is a pressure-induced transition which has apparently no measurable spontaneous transition probability Tilford and Benesch, 1976. Observed in solid N2 by Roncin, Damany, et al., 1967.
86From v00(a-X)+v00(w-a) McFarlane, 1966. The value from the w←X absorption spectrum is 71740.3 (head) indicating a pressure shift of ≈ +40 cm-1; compare with a"← X.
87ωeze= +0.000291 Vanderslice, Tilford, et al., 1965: Lofthus and Krupenie, 1977 give very slightly different numbers.
88Λ-type doubling, |q0| = 0.00010 McFarlane, 1966. Breaking-off at low pressure above v=6, J=13 for both Λ components because of predissociation Douglas and Herzberg, 1951. The state causing the predissociation is 5Σg+ from 4S + 4S.
89The lifetime is about 100 μs but depends strongly on v. Non-exponential decay because of radiative interactions with a' 1Σu- and w 1Δu Freund, 1972. See also Ching, Cook, et al., 1967, Pilling, Bass, et al., 1971 who give f values.
90This transition has both a magnetic dipole and an electric quadrupole component Wilkinson and Mulliken, 1957, Vanderslice, Wilkinson, et al., 1965, see also Pilling, Bass, et al., 1971. Observed in absorption in solid N2 by Roncin, Damany, et al., 1967. RKR Franck-Condon factors Zare, Larsson, et al., 1965, Benesch, Vanderslice, et al., 1966, 2, Lofthus and Krupenie, 1977. From intensity measurements and the Franck-Condon factors of Zare, Larsson, et al., 1965 it is concluded by McEwen and Nicholls, 1966 that the electronic transition moment can be considered as constant for most bands of this system. Comparison with intensities in the electron energy loss spectrum Lassettre, Meyer, et al., 1965.
91ωeze = -0.000290 Tilford, Wilkinson, et al., 1965: Lofthus and Krupenie, 1977 give very slightly different numbers.
92Franck-Condon factors: f00(a'-X) = 8.4E-11 Benesch, Vanderslice, et al., 1966, 2, Lofthus and Krupenie, 1977, corresponding to a lifetime of τ= 0.013 s Tilford and Benesch, 1976.
93ωeze = -0.000732 Lofthus and Krupenie, 1977.
94Spin splitting constants (v=5): λ = +0.66 Tilford, Vanderslice, et al., 1965, γ = -0.0030 Tilford, Vanderslice, et al., 1965.
95 Lofthus and Krupenie, 1977.
96RKR Franck-Condon factors Benesch, Vanderslice, et al., 1966, 2, Lofthus and Krupenie, 1977. Rotational intensity distribution Kovacs, 1970.
97Franck-Condon factors Saum and Benesch, 1970, 2.
98Ae = 42.24 Bullock and Hause, 1971.
99ωeze = +0.00361 Lofthus and Krupenie, 1977: slightly different constants are given by Artym, 1966, Bullock and Hause, 1971.
100Predissociation above v=12,N=33 Van Der Ziel, 1934, Polak, Slovetskii, et al., 1972. The state causing the predissociation is probably A' 5Σg+. Inverse predissociation A' 5Σg+→B 3Πg seems to be responsible for some of the phenomena in active nitrogen [see Becker, Fink, et al., 1972 and references quoted there]. The levels v'= 12,11,10 are preferably excited in the Lewis-Rayleigh afterglow: for excitation of other levels in the afterglow see Ung, 1976.
101 Lofthus and Krupenie, 1977: slightly different constants in Bullock and Hause, 1971.
102Lifetime τ(v=0...12)= 5.0 μs Chen and Anderson, 1975, 2: see also Jeunehomme, 1966. For B-A absorption f values (f ~0.0025) see Wurster, 1962, Dronov, Sobolev, et al., 1966, Cunio and Jansson, 1968.
103Stimulated emission for some of the lines of the 4-2, 3-1, 2-0, 2-1, 1-0, 0-0, 0-1 bands has been observed Kasuya and Lide, 1967. RKR Franck-Condon factors Zare, Larsson, et al., 1965, Benesch, Vanderslice, et al., 1966, dependence on rotation Shumaker, 1969. Dependence of the electronic transition moment on r Shemansky and Broadfoot, 1971, Jain, 1972: absolute transition probabilities Kupriyanova, Kolesnikov, et al., 1969, Shemansky and Broadfoot, 1971.
104Franck-Condon factors Benesch, Vanderslice, et al., 1966, 2, Lofthus and Krupenie, 1977. Rotational intensity distribution in the Vegard-Kaplan bands Miller, 1970, 2.
105ωeze= -0.00197 Lofthus and Krupenie, 1977; slightly different constants in Artym, 1966, Bullock and Hause, 1971.
106Spin-splitting constants (v=0): λ(v=0) = -1.33 Miller, 1965, γ(v=0) = -0.003 Miller, 1965; see also Bullock and Hause, 1971. The radio-frequency spectrum of this state was studied by the molecular beam magnetic resonance method Freund, Miller, et al., 1970, de Santis, Lurio, et al., 1973: magnetic hyperfine and electric quadrupole coupling constants.
107 Lofthus and Krupenie, 1977.
108Lifetime τ= 1.3 s (F2) Shemansky, 1969, Shemansky and Carleton, 1969, Meyer, Klosterboer, et al., 1971, τ= 2.5 s (F1, F3) Shemansky, 1969, Shemansky and Carleton, 1969, Meyer, Klosterboer, et al., 1971 levels Shemansky, 1969, Shemansky and Carleton, 1969, Meyer, Klosterboer, et al., 1971; electronic transition moment, variation with r Chandraiah and Shepherd, 1968, Broadfoot and Maran, 1969, Shemansky, 1969.
109ωeze = -0.00024 Lofthus and Krupenie, 1977. Bendtsen, 1974 gives ΔG(1/2) = 2329.9168 and similar data for 14N15N and 15N2.
110From B0 and B1 of Bendtsen, 1974 and using γe = -0.000033 Lofthus and Krupenie, 1977.
111Rot.-vibr.128 and rot. sp.:
112Raman spectra of 14N15N and 15N2 Bendtsen, 1974, Butcher and Jones, 1974.
113gJ(15N2) = 0.2593, sign not determined Chan, Baker, et al., 1964. For magnetic resonance spectra of metastable N2 in the A 3Σu+ state see Freund, Miller, et al., 1970, de Santis, Lurio, et al., 1973.
114From the predissociation in C 3Πu assuming dissociation into 4S3/2 + 2D5/2. The latest ab initio calculation of the ground state gives De = 8.58 eV Dunning, Cartwright, et al., 1976.
115From the Rydberg series.
116Average of the two limits corresponding to 2Π3/2 and 2Π1/2.
117From the data on N2+.
118From x → X of N2+ and I.P.(N2): the extrapolated K limit is 409.5 eV Nakamura, Sasanuma, et al., 1969.
119Confirmed by electron-energy-loss measurements van der Wiel, El-Sherbini, et al., 1970. Preionization to X 2Σg+ and A 2Πu of N2+ observed by Auger electrons of 384.7 and 383.8 eV Carlson, Moddeman, et al., 1970.
120This series, of which only two members have been observed, probably converges to C 2Σu+ of N2+. In u4 v=1...13, in u5 v=3...8 have been observed, but the vibrational numbering in both states is uncertain. Evidence of preionization.
121Interpreted as . ..ndΣ by Lindholm, 1969.
122Preionization also observed by electron spectroscopy Hicks, Comer, et al., 1973, Wilden, Hicks, et al., 1976.
123For higher n values cn and c'n+l lie close together and interact strongly (l-uncoupling). Band structures for n = 5...12 have been discussed Carroll and Yoshino, 1972, Carroll, 1973, Johns and Lepard, 1975.
124The limit according to Yoshino [see Lofthus and Krupenie, 1977] lies at 125667.5 cm-1 but is estimated Lofthus and Krupenie, 1977 to have an uncertainty of 5 cm-1.
125A0...A3= -12.073 ... -12.094 Carroll, Collins, et al., 1972; see also Veseth, 1973.
126Quoted from Lofthus and Krupenie, 1977; not deperturbed. Dressler, 1969 gives 104139.
127Also referred to as "infrared afterglow bands".
128Predicted transition moments for quadrupole vibration spectrum Cartwright and Dunning, 1974. The quadrupole moment in the v=0 level is measured to be -1.4E-26 e.s.u. cm2 Ketelaar and Rettschnick, 1963, Buckingham, Disch, et al., 1968.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Hiraoka and Yamabe, 1989
Hiraoka, K.; Yamabe, S., How are Nitrogen Molecules Bound to NO2+ and NO+?, J. Chem. Phys., 1989, 90, 6, 3268, https://doi.org/10.1063/1.455880 . [all data]

Gheno and Fitaire, 1987
Gheno, F.; Fitaire, M., Association of N2 with NH4+ and H3O+(H2O)n, n = 1,2,3, J. Chem. Phys., 1987, 87, 2, 953, https://doi.org/10.1063/1.453250 . [all data]

Speller, Fitaire, et al., 1983
Speller, C.V.; Fitaire, M.; Pointu, A.M., Three - Body Association Reactions of NO+ and O2+ with N2, J. Chem. Phys., 1983, 79, 5, 2190, https://doi.org/10.1063/1.446067 . [all data]

Turner and Conway, 1976
Turner, D.L.; Conway, D.C., Stability of the NO+.N2 Ion Cluster, J. Chem. Phys., 1976, 65, 10, 3944, https://doi.org/10.1063/1.432887 . [all data]

Johnsen, Huang, et al., 1975
Johnsen, R.; Huang, C.M.; Biondi, M.A., The Formation and Breakup of NO2+.N2 Clusters in N2 at Low Temperatures, J. Chem. Phys., 1975, 63, 8, 3374, https://doi.org/10.1063/1.431751 . [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E., Three-Body Association Reactions of NO+ with O2, N2, and CO2, J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432 . [all data]

Hiraoka and Nakajima, 1988
Hiraoka, K.; Nakajima, G., A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria, J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285 . [all data]

Teng and Conway, 1973
Teng, H.H.; Conway, D.C., Ion - Molecule Equilibria in Mixtures of N2 and Ar, J. Chem. Phys., 1973, 59, 5, 2316, https://doi.org/10.1063/1.1680338 . [all data]

Payzant and Kebarle, 1970
Payzant, J.D.; Kebarle, P., Clustering Equilibrium N2+ + 2N2 = N4+ + N2 and the Bond Dissociation Energy of N4+, J. Chem. Phys., 1970, 53, 12, 4723, https://doi.org/10.1063/1.1674010 . [all data]

Varney, 1968
Varney, R.N., Equilibrium Constant and Rates for the Reversible Reaction N4+ -> N2+ + N2, Phys. Rev., 1968, 174, 1, 165, https://doi.org/10.1103/PhysRev.174.165 . [all data]

Varney, 1959
Varney, R.N., Molecular Ions, J. Chem. Phys., 1959, 31, 5, 1314, https://doi.org/10.1063/1.1730590 . [all data]

Speller and Fitaire, 1983
Speller, C.V.; Fitaire, M., Proceedings of the 16th International Conference on Phenomena of Ionized Gases, H. Boetticher, H. Wenk and E. Shulz - Gulde, ed(s)., ICPIG, Dusseldorf, 1983, 568. [all data]

Janik and Conway, 1967
Janik, G.S.; Conway, D.C., Bonding in Heteromolecular Ion Clusters. N2O2+, J. Phys. Chem., 1967, 71, 4, 823, https://doi.org/10.1021/j100863a007 . [all data]

Howard, Bierbaum, et al., 1972
Howard, C.J.; Bierbaum, V.M.; Rundle, H.W.; Kaufman, F., Kinetics and Mechanism of Formation of Water Cluster Ions from O2+ and H2O+, J. Chem. Phys., 1972, 57, 8, 3491, https://doi.org/10.1063/1.1678783 . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14, Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8 . [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Hiraoka, 1988
Hiraoka, K., Determination of the Stabilities of O3-(N2)n, O3-(O2)n, and O4-(N2)n from Measurements of the Gas Phase Equilibria, Chem. Phys., 1988, 125, 2-3, 439, https://doi.org/10.1016/0301-0104(88)87096-4 . [all data]

Turner, Simpson, et al., 1983
Turner, J.J.; Simpson, M.B.; Poliakoff, M.; Maier II, W.B., J. Am. Chem. Soc., 1983, 105, 3898. [all data]

National Bureau of Standards, 1968
National Bureau of Standards, US, Technical Note 270 - 3 in The NBS Tables of Chemical Thermodynamic Properties, 1968. [all data]

Saporoschenko, 1965
Saporoschenko, M., Mobility of Mass Analyzed N+, N2+, N3+, and N4+ Ions in Nitrogen Gas, Phys. Rev. A, 1965, 139, 352. [all data]

Franklin, Dibeler, et al., 1958
Franklin, J.L.; Dibeler, V.H.; Reese, R.M.; Krauss, M., Ionization and dissociation of hydrazoic acid and methyl azide by electron impact, J. Am. Chem. Soc., 1958, 80, 298. [all data]

Haynes, Freysinger, et al., 1995
Haynes, C.L.; Freysinger, W.; Armentrout, P.B., Collision-induced dissociation of N3+(X3-) with Ne, Ar, Kr, and Xe, Int. J. Mass Spectrom. Ion Processes, 1995, 149/150, 267. [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., Laboratory Measurements of Stratospheric Sodium Ion Measurements, Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693 . [all data]

Beyer and Keller, 1971
Beyer, R.A.; Keller, G.E., The Clustering of Atmospheric Gases to Alkali Ions, Trans. Am. Geophys. Union, 1971, 52, 303. [all data]

Meot-Ner (Mautner) and Field, 1974
Meot-Ner (Mautner), M.; Field, F.H., Kinetics and Thermodynamics of the Association of CO+ with CO and of N2+ with N2 between 120 and 650 K, J. Chem. Phys., 1974, 61, 9, 3742, https://doi.org/10.1063/1.1682560 . [all data]

Gonzalez and Hoff, 1989
Gonzalez, A.A.; Hoff, C.D., Inorg. Chem., 1989, 28, 4295. [all data]

Speller, 1983
Speller, C.V., Ph. D. Thesis, Universite de Paris Sud, 1983. [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Speller, Fitaire, et al., 1982
Speller, C.V.; Fitaire, M.; Pointu, A.M., H2CN+.nN2 Clustering Formation and the Atmosphere of Titan, Nature, 1982, 300, 5892, 507, https://doi.org/10.1038/300507a0 . [all data]

Howard and Skinner, 1966
Howard, P.B.; Skinner, H.A., Thermochemistry of some reactions of aqueous hydrazine with halogens, hydrogen halides and N-halogenosuccinimides, J. Chem. Soc. A, 1966, 1536-1540. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Posey and Johnson, 1988
Posey, L.A.; Johnson, M.A., Pulsed Photoelectron Spectroscopy of Negative Cluster Ions: Isolation of Three Distinguishable Forms of N2O2-, J. Chem. Phys., 1988, 88, 9, 5385, https://doi.org/10.1063/1.454576 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Belt, Scaiano, et al., 1993
Belt, S.T.; Scaiano, J.C.; Whittlesey, M.K., J. Am. Chem. Soc., 1993, 115, 1921. [all data]

Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J., Mendeleev Commun., 1991, 145.. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Trickl, Cromwell, et al., 1989
Trickl, T.; Cromwell, E.F.; Lee, Y.T.; Kung, A.H., State-selective ionization of nitrogen in the X2 =0 and v =1 states by two-color (1+1) photon excitation near threshold, J. Chem. Phys., 1989, 91, 6006. [all data]

Stephen, Mark, et al., 1984
Stephen, K.; Mark, T.D.; Futrell, J.H.; Helm, H., Electron impact ionization of (N2)2: Appearance energies of N3+ and N4+, J. Chem. Phys., 1984, 80, 3185. [all data]

Grade, Wienecke, et al., 1983
Grade, M.; Wienecke, J.; Rosinger, W.; Hirschwald, W., Electron impact investigation of the molecules SeS(g) and TeSe(g) under high-temperature equilibrium conditions, Ber. Bunsen-Ges. Phys. Chem., 1983, 87, 355. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Armentrout, Tarr, et al., 1981
Armentrout, P.B.; Tarr, S.M.; Dori, A.; Freund, R.S., Electron impact ionization cross section of metastable N2 (A2Σu+), J. Chem. Phys., 1981, 75, 2788. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Sahini, Constantin, et al., 1978
Sahini, V.E.; Constantin, V.; Serban, I., Determination of ionization potentials using a MI-1305 mass spectrometer, Rev. Roum. Chim., 1978, 23, 479. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Lee and Rabalais, 1974
Lee, T.H.; Rabalais, J.W., Vibrational transition probabilities in photoelectron spectra, J. Chem. Phys., 1974, 61, 2747. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Hotop and Niehaus, 1970
Hotop, H.; Niehaus, A., Reactions of excited atoms and molecules with atoms and molecules. V.Comparison of Penning electron and photoelectron spectra of H2, N2 and CO, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 415. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Cook and Metzger, 1964
Cook, G.R.; Metzger, P.H., Photoionization and absorption cross sections of O2 and N2 in the 600- to 1000-A region, J. Chem. Phys., 1964, 41, 321. [all data]

Ogawa and Tanaka, 1962
Ogawa, M.; Tanaka, Y., Rydberg absorption series of N2, Can. J. Phys., 1962, 40, 1593. [all data]

Worley, 1943
Worley, R.E., Absorption spectrum of N2 in the extreme ultraviolet, Phys. Rev., 1943, 64, 207. [all data]

Worley and Jenkins, 1938
Worley, R.E.; Jenkins, F.A., A new Rydberg series in N2, Phys. Rev., 1938, 54, 305. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Katrib, Debies, et al., 1973
Katrib, A.; Debies, T.P.; Colton, R.J.; Lee, T.H.; Rabalais, J.W., The use of differential photoionization cross sections as a function of excitation energy in assigning photoelectron spectra, Chem. Phys. Lett., 1973, 22, 196. [all data]

Locht, Schopman, et al., 1975
Locht, R.; Schopman, J.; Wankenne, H.; Momigny, J., The dissociative ionization of nitrogen, Chem. Phys., 1975, 7, 393. [all data]

Smyth, Schiavone, et al., 1973
Smyth, K.C.; Schiavone, J.A.; Freund, R.S., Dissociative excitation of N2 by electron impact: Translational spectroscopy of long-lived high- Rydberg fragment atoms, J. Chem. Phys., 1973, 59, 5225. [all data]

Crowe and McConkey, 1973
Crowe, A.; McConkey, J.W., Dissociative ionization by electron impact II. N+ N++ from N2, J. Phys. B:, 1973, 6, 2108. [all data]

Hierl and Franklin, 1967
Hierl, P.M.; Franklin, J.L., Appearance potentials and kinetic energies of ions from N2, CO, and NO, J. Chem. Phys., 1967, 47, 3154. [all data]

Frost and McDowell, 1956
Frost, D.C.; McDowell, C.A., The dissociation energy of the nitrogen molecule, Proc. Roy. Soc. (London), 1956, A236, 278. [all data]

Shul, Passarella, et al., 1987
Shul, R.J.; Passarella, R.; Upshulte, B.L.; Keesee, R.G.; Castleman, A.W., Thermal Energy Reactions Invoving Ar+ Monomer and Dimer with N2, H2, Xe, and Kr, J. Chem. Phys., 1987, 86, 8, 4446, https://doi.org/10.1063/1.452718 . [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Hiraoka, Nasu, et al., 1996
Hiraoka, K.; Nasu, M.; Fujimaki, S.; Ignacio, E.W.; Yamabe, S., Gas-Phase Stability and Structure of the Cluster Ions CF3+(CO)n, CF3+(N2)n, CF3+((CF4)n, and CF4H+(CF4)n, J. Phys. Chem., 1996, 100, 13, 5245, https://doi.org/10.1021/jp9530010 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Spears and Fehsenfeld, 1972
Spears, K.G.; Fehsenfeld, F.C., Termolecular Association Reactions of Mg, Ca, and Ba Ions, J. Chem. Phys., 1972, 56, 11, 5698, https://doi.org/10.1063/1.1677091 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Gatland, Colonna-Romano, et al., 1975
Gatland, I.R.; Colonna-Romano, L.M.; Keller, G.E., Single and Double Clustering of Nitrogen to Li+, Phys. Rev. A, 1975, 12, 5, 1885, https://doi.org/10.1103/PhysRevA.12.1885 . [all data]

Hiraoka and Yamabe, 1989, 2
Hiraoka, K.; Yamabe, S., Stabilities of the N3+(N2)n Cluster Ions with n = 1 - 11, Chem. Phys. Lett., 1989, 154, 2, 139, https://doi.org/10.1016/S0009-2614(89)87275-6 . [all data]

Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B., Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]], J. Phys. Chem., 1995, 99, 7819. [all data]

Lofthus and Krupenie, 1977
Lofthus, A.; Krupenie, P.H., The spectrum of molecular nitrogen, J. Phys. Chem. Ref. Data, 1977, 6, 113. [all data]

Tilford, Wilkinson, et al., 1966
Tilford, S.G.; Wilkinson, P.G.; Franklin, V.B.; Naber, R.H.; Benesch, W.; Vanderslice, J.T., Summary of observed absorption lines of room-temperature molecular nitrogen between 1060 and 1520 Å, Astrophys. J. Suppl. Ser., 1966, 13, 31. [all data]

Wallace, 1962
Wallace, L., A collection of the band-head wavelengths of N2 and N2+, Astrophys. J. Suppl. Ser., 1962, 6, 445. [all data]

Pearse and Gaydon, 1963
Pearse, R.W.B.; Gaydon, A.G., The identification of molecular spectra, Third Edition, Pub. John Wiley & Sons, Inc., New York, 1963, 0. [all data]

Huffman, Tanaka, et al., 1963
Huffman, R.E.; Tanaka, Y.; Larrabee, J.C., Absorption coefficients of nitrogen in the 1000-580 Å wavelength region, J. Chem. Phys., 1963, 39, 910. [all data]

Carter, 1972
Carter, V.L., High-resolution N2 absorption study from 730 to 980 Å, J. Chem. Phys., 1972, 56, 4195. [all data]

Gilmore, 1965
Gilmore, F.R., Potential energy curves for N2, NO, O2 and corresponding ions, J. Quant. Spectry. Radiative Transfer, 1965, 5, 369. [all data]

Benesch, Vanderslice, et al., 1965
Benesch, W.; Vanderslice, J.T.; Tilford, S.G.; Wilkinson, P.G., Potential curves for the observed states of N2 below 11 eV, Astrophys. J., 1965, 142, 1227. [all data]

Gartner and Thrush, 1975
Gartner, E.M.; Thrush, B.A., Infrared emission by active nitrogen. I. The kinetic behaviour of N2(B'3Σu-), Proc. R. Soc. London A, 1975, 346, 103. [all data]

Nakamura, Sasanuma, et al., 1969
Nakamura, M.; Sasanuma, M.; Sato, S.; Watanabe, M.; Yamashita, H.; Iguchi, Y.; Ejiri, A.; Nakai, S.; Yamaguchi, S.; Sagawa, T.; Nakai, Y.; Oshio, T., Absorption structure near the K edge of the nitrogen molecule, Phys. Rev., 1969, 178, 80. [all data]

Werme, Grennberg, et al., 1973
Werme, L.O.; Grennberg, B.; Nordgren, J.; Nordling, C.; Siegbahn, K., Fine structure in the x-ray emission spectrum of N2, compared with electron spectroscopy, Nature (London), 1973, 242, 453. [all data]

Vinogradov, Shlarbaum, et al., 1974
Vinogradov, A.S.; Shlarbaum, B.; Zimkina, T.M., K-absorption spectrum of nitrogen in the N2 molecule, Opt. Spectrosc. Engl. Transl., 1974, 36, 383, In original 658. [all data]

Vinogradov, Zimkina, et al., 1974
Vinogradov, A.S.; Zimkina, T.M.; Akimov, V.N.; Shlarbaum, B., Structure of absorption spectra of the molecules N2, O2, and NF3 near the ionization thresholds of the inner atomic shells, Bull. Acad. Sci. USSR, Phys. Ser. Engl. Transl., 1974, 38, 69, In original 508. [all data]

Lee, Wong, et al., 1975
Lee, J.S.; Wong, T.C.; Bonham, R.A., Observation of a new electronic transition in N2 at 31.4 eV by means of high energy electron impact spectroscopy, J. Chem. Phys., 1975, 63, 1643. [all data]

Codling, 1966
Codling, K., Structure in the photo-ionization continuum of N, near 500 k, Astrophys., 1966, J.143, 552. [all data]

Lee, Carlson, et al., 1973
Lee, L.C.; Carlson, R.W.; Judge, D.L.; Ogawa, M., The absorption cross sections of N2, O2, CO, NO, CO2, N2O, CH4, C2H4, C2H6 and C4H10 from 180 to 700 Å, J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 1023. [all data]

Hopfield, 1930
Hopfield, J.J., New spectra in nitrogen, Phys. Rev., 1930, 36, 789-790. [all data]

Comes and Weber, 1969
Comes, F.J.; Weber, K.W., Wirkungsquerschnitte der Photoabsorption und Photoionisation des N2-Molekuls, Z. Naturforsch. A, 1969, 24, 1941. [all data]

Cook, Ogawa, et al., 1973
Cook, G.R.; Ogawa, M.; Carlson, R.W., Photodissociation continuums of N2 and O2, J. Geophys. Res., 1973, 78, 1663. [all data]

Ogawa, 1964
Ogawa, M., Vibrational isotope shifts of absorption bands of N2 in the spectral region 720-830 Å, Can. J. Phys., 1964, 42, 1087. [all data]

Carroll and Yoshino, 1967
Carroll, P.K.; Yoshino, K., New Rydberg series of N2, J. Chem. Phys., 1967, 47, 3073. [all data]

Johns and Lepard, 1975
Johns, J.W.C.; Lepard, D.W., Calculation of rotation-electronic energies and relative transition intensities in diatomic molecules, J. Mol. Spectrosc., 1975, 55, 374. [all data]

Yoshino, Tanaka, et al., 1975
Yoshino, K.; Tanaka, Y.; Carroll, P.K.; Mitchell, P., High resolution absorption spectrum of N2 in the vacuum-UV region, O3,4 1Πu ← X1Σg+ bands, J. Mol. Spectrosc., 1975, 54, 87. [all data]

Carroll and Collins, 1970
Carroll, P.K.; Collins, C.P., The high energy 1Σu+ states of N2, J. Phys. B:, 1970, 3, 127. [all data]

Lofthus, 1957
Lofthus, A., Emission band spectra of nitrogen. A study of some singlet systems, Can. J. Phys., 1957, 35, 216. [all data]

Carroll and Subbaram, 1975
Carroll, P.K.; Subbaram, K.V., Two new band systems in the near ultraviolet spectrum of N2, Can. J. Phys., 1975, 53, 2198. [all data]

Gaydon, 1944
Gaydon, A.G., The band spectrum of nitrogen: new singlet systems, Proc. R. Soc. London A, 1944, 182, 286. [all data]

Rajan, 1974
Rajan, K.J., The 1-0 band of the b1Πu - a1Πg transition and the 1-10 and 2-12 bands of the fifth positive system of N2: rotational analyses, Proc. R. Ir. Acad. Sect. A:, 1974, 74, 17-23. [all data]

Herman-Montagne, 1945
Herman-Montagne, R., Contribution a l'etude du spectre de la molecule d'azote, Ann. Phys. (Paris), 1945, 20, 241. [all data]

Gaydon and Herman, 1946
Gaydon, A.G.; Herman, R., Band systems in the spectrum of nitrogen, Proc. Phys. Soc. London, 1946, 58, 292. [all data]

Dressler, 1969
Dressler, K., The lowest valence and Rydberg states in the dipole-allowed absorption spectrum of nitrogen. A survey of their interactions, Can. J. Phys., 1969, 47, 547. [all data]

Janin and Crozet, 1946
Janin, J.; Crozet, A., Excitation du spectre de l'azote par passage de l'effluve electrique a travers le gaz ammoniac, Compt. Rend., 1946, 223, 1114. [all data]

Janin, 1950
Janin, J., Etude de certains systemes de simplets de la molecule d'azote, J. Rech. C.N.R.S., 1950, 3, 156. [all data]

Herman, 1951
Herman, R., Nouvelle transition interdite de la molecule N2, Compt. Rend., 1951, 233, 738. [all data]

Carroll and Sayers, 1953
Carroll, P.K.; Sayers, N.D., The band spectrum of nitrogen: new studies of the triplet systems, Proc. Phys. Soc. London Sect. A, 1953, 66, 1138. [all data]

Gaydon, 1944, 2
Gaydon, A.G., The band spectrum of N2: weak systems in the visible region, Proc. Phys. Soc. London, 1944, 56, 85. [all data]

Grun, 1954
Grun, A.E., Die Gaydon-Banden des N2, Z. Naturforsch. A, 1954, 9, 1017. [all data]

Tilford and Wilkinson, 1964
Tilford, S.G.; Wilkinson, P.G., The emission spectrum of molecular nitrogen in the region 900-1130 Å, J. Mol. Spectrosc., 1964, 12, 231. [all data]

Carroll and Collins, 1969
Carroll, P.K.; Collins, C.P., High resolution absorption studies of the b1Πu ← X1Σg+ system of nitrogen, Can. J. Phys., 1969, 47, 563. [all data]

Wilkinson and Houk, 1956
Wilkinson, P.G.; Houk, N.B., Emission spectra of nitrogen in the vacuum ultraviolet, J. Chem. Phys., 1956, 24, 528. [all data]

Gero and Schmid, 1940
Gero, L.; Schmid, R., Rotationsanalyse der IV. Positiven banden des N2-molekuls, Z. Phys., 1940, 116, 598. [all data]

Lutz, 1969
Lutz, B.L., Pressure-induced a"1Σg+ ← X1Σg+ absorption in the vacuum ultraviolet spectrum of molecular nitrogen, J. Chem. Phys., 1969, 51, 706. [all data]

Freund, 1969
Freund, R.S., Molecular-beam measurements of the emission spectrum and radiative lifetime of N2 in the metastable E3Σg+ state, J. Chem. Phys., 1969, 50, 3734. [all data]

Coster, Brons, et al., 1933
Coster, D.; Brons, F.; van der Ziel, A., Die sogenannte zweite positive gruppe des stickstoffspektrums, Z. Phys., 1933, 84, 304. [all data]

Dieke and Heath, 1959
Dieke, G.H.; Heath, D.F., The first and second positive bands of N2, Rpt. Johns Hopkins Spectroscopic #17, 1959, 1-195. [all data]

Tanaka, 1955
Tanaka, Y., Absorption spectrum of nitrogen in the region from 1075 to 1650 A, J. Opt. Soc. Am., 1955, 45, 663. [all data]

Tanaka, Ogawa, et al., 1964
Tanaka, Y.; Ogawa, M.; Jursa, A.S., Forbidden absorption-band systems of N2 in the vacuum-ultraviolet region, J. Chem. Phys., 1964, 40, 3690. [all data]

Carroll, Collins, et al., 1972
Carroll, P.K.; Collins, C.C.; Murnaghan, J.T., Rotational studies of the Gaydon-Herman (green) bands of N2, J. Phys. B:, 1972, 5, 1634. [all data]

McFarlane, 1966
McFarlane, R.A., Measurements on the w1Δu → a1Πg transition in molecular nitrogen, Phys. Rev., 1966, 146, 37. [all data]

Chutjian, Cartwright, et al., 1973
Chutjian, A.; Cartwright, D.C.; Trajmar, S., Excitation of the W3Δu, w1Δu, B'3Σu-, and a'1Σu- states of N2 by electron impact, Phys. Rev. Lett., 1973, 30, 195. [all data]

McFarlane, 1965
McFarlane, R.A., Observation of a 1Π-1Σ- transition in the N2 molecule, Phys. Rev. A: Gen. Phys., 1965, 140, 1070. [all data]

McFarlane, 1966, 2
McFarlane, R.A., 4B7-precision spectroscopy of new infrared emission systems of molecular nitrogen, IEEE J. Quantum Electron., 1966, 2, 229. [all data]

Miller, 1970
Miller, R.E., High-resolution emission Lyman-Birge-Hopfield bands of nitrogen, J. Opt. Soc. Am., 1970, 60, 171. [all data]

Campbell and Thrush, 1969
Campbell, I.M.; Thrush, B.A., Some new vacuum ultra-violet emissions of active nitrogen, Trans. Faraday Soc., 1969, 65, 32. [all data]

Golde, 1975
Golde, M.F., Vacuum UV emission by electronically excited N2: the collision-induced N2(a1Πg, v=0) = N2(a'1Σu-, v=0) transition, Chem. Phys. Lett., 1975, 31, 348. [all data]

Carroll and Rubalcava, 1960
Carroll, P.K.; Rubalcava, H.E., Rotational analysis of the 5-1 band of the B'-B system of N2, Proc. Phys. Soc. London, 1960, 76, 337. [all data]

Dieke and Heath, 1960
Dieke, G.H.; Heath, D.F., Structure of the infrared Y bands of N2, J. Chem. Phys., 1960, 33, 432. [all data]

Wilkinson, 1960
Wilkinson, P.G., Forbidden band systems in nitrogen. III. The Y3Σu- ← X1Σg+ system in absorption, J. Chem. Phys., 1960, 32, 1061. [all data]

Golde and Thrush, 1972
Golde, M.F.; Thrush, B.A., Vacuum ultraviolet emission by active nitrogen. IV. The kinetic behaviour of N2(B'3Σu-), Proc. R. Soc. London A, 1972, 330, 121. [all data]

Wu and Benesch, 1968
Wu, H.L.; Benesch, W., Evidence for the 3Δu → B3Πg transition in N2, Phys. Rev., 1968, 172, 31. [all data]

Saum and Benesch, 1970
Saum, K.A.; Benesch, W.M., Infrared electronic emission spectrum of nitrogen, Appl. Opt., 1970, 9, 195. [all data]

Benesch and Saum, 1971
Benesch, W.M.; Saum, K.A., The w3Δu state of molecular nitrogen, J. Phys. B:, 1971, 4, 732. [all data]

Covey, Saum, et al., 1973
Covey, R.; Saum, K.A.; Benesch, W., Transition probabilities for the W3Δu - B3Πg system of molecular nitrogen, J. Opt. Soc. Am., 1973, 63, 5, 592-596. [all data]

Wilkinson, 1962
Wilkinson, P.G., Some unsolved problems in the vacuum ultraviolet, J. Quant. Spectrosc. Radiat. Transfer, 1962, 2, 343. [all data]

Miller, 1965
Miller, R.E., High-resolution emission Vegard-Kaplan bands of nitrogen, J. Chem. Phys., 1965, 43, 1695. [all data]

Miller, 1966
Miller, R.E., The absolute energy of the A3Σu+ state of nitrogen, J. Mol. Spectrosc., 1966, 19, 185. [all data]

Crawford, Welsh, et al., 1949
Crawford, M.F.; Welsh, H.L.; Locke, J.L., Infra-red absorption of oxygen and nitrogen induced by intermolecular forces, Phys. Rev., 1949, 75, 1607. [all data]

Bosomworth and Gush, 1965
Bosomworth, D.R.; Gush, H.P., Collision-induced absorption of compressed gases in the far infrared, Part II, Can. J. Phys., 1965, 43, 751. [all data]

Reddy and Cho, 1965
Reddy, S.P.; Cho, C.W., Induced infrared absorption of nitrogen and nitrogen-foreign gas mixtures, Can. J. Phys., 1965, 43, 2331. [all data]

Shapiro and Gush, 1966
Shapiro, M.M.; Gush, H.P., The collision-induced fundamental and first overtone bands of oxygen and nitrogen, Can. J. Phys., 1966, 44, 949. [all data]

de Remigis, Welsh, et al., 1971
de Remigis, J.; Welsh, H.L.; Bruno, R.; Taylor, D.W., Induced fundamental infrared band of nitrogen dissolved in solid argon, Can. J. Phys., 1971, 49, 3201. [all data]

Sheng and Ewing, 1971
Sheng, D.T.; Ewing, G.E., Collision induced infrared absorption of gaseous nitrogen at low temperatures, J. Chem. Phys., 1971, 55, 5425. [all data]

Buontempo, Cunsolo, et al., 1975
Buontempo, U.; Cunsolo, S.; Jacucci, G.; Weis, J.J., The far infrared absorption spectrum of N2 in the gas and liquid phases, J. Chem. Phys., 1975, 63, 2570. [all data]

Courtois and Jouve, 1975
Courtois, D.; Jouve, P., Electric field induced infrared spectrum of nitrogen. Vibrational polarizability matrix elements, J. Mol. Spectrosc., 1975, 55, 18. [all data]

Stoicheff, 1954
Stoicheff, B.P., High resolution Raman spectroscopy of gases. III. Raman spectrum of nitrogen, Can. J. Phys., 1954, 32, 630. [all data]

Butcher, Willetts, et al., 1971
Butcher, R.J.; Willetts, D.V.; Jones, W.J., On the use of a Fabry-Perot etalon for the determination of rotational constants of simple molecules - the pure rotational Raman spectra of oxygen and nitrogen, Proc. R. Soc. London A, 1971, 324, 231. [all data]

Bendtsen, 1974
Bendtsen, J., The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2, J. Raman Spectrosc., 1974, 2, 133. [all data]

Watson, Lang, et al., 1973
Watson, W.S.; Lang, J.; Stewart, D.T., Photoabsorption coefficients of molecular nitrogen in the 300-700 Å region, J. Phys. B:, 1973, 6, 148. [all data]

Hicks, Comer, et al., 1973
Hicks, P.J.; Comer, J.; Read, F.H., Autoionizing transitions in N2 and H2 produced by electron impact, J. Phys. B:, 1973, 6, 65. [all data]

Wilden, Hicks, et al., 1976
Wilden, D.G.; Hicks, P.J.; Comer, J., Autoionization of N2 studied using an electron time-of-flight coincidence spectrometer, J. Phys. B:, 1976, 9, 1959. [all data]

Cook and Ogawa, 1970
Cook, G.R.; Ogawa, M., Oscillator strengths of the Hopfield absorption series of N2, J. Chem. Phys., 1970, 53, 1292. [all data]

Yoshino, Ogawa, et al., 1976
Yoshino, K.; Ogawa, M.; Tanaka, Y., Extension of Rydberg absorption series of N2, A2Πu ← X1Σg+, J. Mol. Spectrosc., 1976, 61, 403. [all data]

Cook and Ogawa, 1965
Cook, G.R.; Ogawa, M., Photo-ionization of N2 in the 734-805 Å region, Can. J. Phys., 1965, 43, 256. [all data]

Carter and Berkowitz, 1973
Carter, V.L.; Berkowitz, J., Photoionization yields in N2 in the band series from 734 to 796 Å, J. Chem. Phys., 1973, 59, 4573. [all data]

Cook and McNeal, 1972
Cook, G.R.; McNeal, R.J., Photoionization of vibrationally excited nitrogen, J. Chem. Phys., 1972, 56, 1388. [all data]

Carroll and Yoshino, 1972
Carroll, P.K.; Yoshino, K., The cn 1Πu and c'n 1Σu+ Rydberg states of N2: high resolution studies, J. Phys. B:, 1972, 5, 1614. [all data]

Leoni and Dressler, 1972
Leoni, M.; Dressler, K., Deperturbation of the Worley-Jenkins Rydberg series of N2, Helv. Phys. Acta, 1972, 45, 959. [all data]

Leoni, 1972
Leoni, Dissertation, ETH Zurich, 1972, 1. [all data]

Ledbetter, 1972
Ledbetter, J.W., Jr., New Rydberg bands in the visible region and identification of the lowest 1Σg+ Rydberg state of the N2 molecule, J. Mol. Spectrosc., 1972, 42, 100. [all data]

Mulliken, 1976
Mulliken, R.S., Predissociation and Λ-doubling in the even-parity Rydberg states of the nitrogen molecule, J. Mol. Spectrosc., 1976, 61, 92. [all data]

Lofthus, 1960
Lofthus, A., A new predissociation in nitrogen, Nature (London), 1960, 186, 302. [all data]

Veseth, 1973
Veseth, L., On the calculation of molecular parameters for triplet states in diatomic molecules. The G3Δg and H3Φu states of N2, Mol. Phys., 1973, 26, 101. [all data]

Mohamed and Khanna, 1974
Mohamed, K.A.; Khanna, B.N., Franck-Condon factors & r-centroids for the H3φu-G3Δg (Gaydon-Herman) green band system of N2, Indian J. Pure Appl. Phys., 1974, 12, 77-78. [all data]

Lefebvre-Brion, 1969
Lefebvre-Brion, H., Theoretical study of homogeneous perturbations. II. Least-squares fitting method to obtain "deperturbed" crossing Morse curves. Application to the perturbed 1Σu+ states of N2, Can. J. Phys., 1969, 47, 541. [all data]

Hesser and Dressler, 1966
Hesser, J.E.; Dressler, K., Radiative lifetimes of ultraviolet molecular transitions, J. Chem. Phys., 1966, 45, 3149. [all data]

Hesser, 1968
Hesser, J.E., Absolute Transition Probabilities in Ultraviolet Molecular Spectra, J. Chem. Phys., 1968, 48, 6, 2518, https://doi.org/10.1063/1.1669477 . [all data]

Lawrence, Mickey, et al., 1968
Lawrence, G.M.; Mickey, D.L.; Dressler, K., Absolute oscillator strengths of the strongest bands within the dipole-allowed absorption spectrum of nitrogen, J. Chem. Phys., 1968, 48, 1989. [all data]

Geiger and Schroder, 1969
Geiger, J.; Schroder, B., Intensity perturbations due to configuration interaction observed in the electron energy-loss spectrum of N2, J. Chem. Phys., 1969, 50, 7. [all data]

Tilford and Wilkinson, 1964, 2
Tilford, S.G.; Wilkinson, P.G., An inverse predissociation in molecular nitrogen, J. Mol. Spectrosc., 1964, 12, 347. [all data]

Tanaka and Nakamura, 1967
Tanaka, Y.; Nakamura, M., Selective enhancement of the b'1Σu+ → X1Σg+ and g1Σu+ → X1Σg+ band systems of N2 in the vacuum ultraviolet region, Sci. Light (Tokyo), 1967, 16, 73. [all data]

Kurzweg, Egbert, et al., 1973
Kurzweg, L.; Egbert, G.T.; Burns, D.J., Lifetime of the D3Σu+ state of N2, J. Chem. Phys., 1973, 59, 2641. [all data]

Hebert and Nicholls, 1969
Hebert, G.R.; Nicholls, R.W., Franck-Condon factors for the v'=0 progression of the N2 fourth positive band system, J. Phys. B:, 1969, 2, 626. [all data]

Meyer, Skerbele, et al., 1965
Meyer, V.D.; Skerbele, A.; Lassettre, E.N., Intensity distribution in the N2 k(b1Πu)←1Σg+ transition, J. Chem. Phys., 1965, 43, 3769. [all data]

Leoni and Dressler, 1971
Leoni, M.; Dressler, K., Predissociation probabilities and determination of a repulsive potential in the N2 molecule, Z. Angew. Math. Phys., 1971, 22, 794. [all data]

Dressler and Lutz, 1967
Dressler, K.; Lutz, B.L., Optical identification of the 12.28-eV quadrupole transition in molecular nitrogen, Phys. Rev. Lett., 1967, 19, 1219. [all data]

Lassettre, Skerbele, et al., 1966
Lassettre, E.N.; Skerbele, A.; Meyer, V.D., Quadrupole-allowed transitions in the electron-impact spectrum of N2, J. Chem. Phys., 1966, 45, 3214. [all data]

Michels, 1970
Michels, H.H., Identification of two low-lying non-Rydberg states of the nitrogen molecule, J. Chem. Phys., 1970, 53, 841. [all data]

Ledbetter and Dressler, 1976
Ledbetter, J.W., Jr.; Dressler, K., Interaction of the C'3Πu and C3Πu states in 14N2, 14N15N, and 15N2, J. Mol. Spectrosc., 1976, 63, 370. [all data]

Carroll, 1963
Carroll, P.K., The structure of the Goldstein-Kaplan bands of N2, Proc. R. Soc. London A, 1963, 272, 270. [all data]

Ledbetter, 1977
Ledbetter, J.W., Jr., A new band of N2 and identification of the lower vibronic level of the C', v=1 and the C, v=5 3Πu state interaction, J. Chem. Phys., 1977, 67, 3400. [all data]

Borst, 1972
Borst, W.L., Excitation of several important metastable states of N2 by electron impact, Phys. Rev. A: Gen. Phys., 1972, 5, 648. [all data]

Borst and Zipf, 1971
Borst, W.L.; Zipf, E.C., Lifetimes of metastable CO and N2 molecules, Phys. Rev. A: Gen. Phys., 1971, 3, 979. [all data]

Carroll and Mulliken, 1965
Carroll, P.K.; Mulliken, R.S., 3Π Levels and predissociations of N2 near the 12.135-eV dissociation limit, J. Chem. Phys., 1965, 43, 2170. [all data]

Budo, 1935
Budo, A., Uber die Triplett-Bandentermformel fur den allgemeinen intermediaren fall und anwendung derselben auf die B3Π-, C3Π-terme des N2-molekuls, Z. Phys., 1935, 96, 219. [all data]

Buttenbender and Herzberg, 1935
Buttenbender, G.; Herzberg, G., Uber die struktur der zweiten positiven stickstoffgruppe und die pradissoziation des N2-molekuls, Ann. Phys. (Neue Folge), 1935, 21, 577. [all data]

Hori and Endo, 1941
Hori, T.; Endo, Y., Uber die pradissoziation in der zweiten positiven stickstoffgruppe, Proc. Phys. Math. Soc. Jpn., 1941, 23, 834. [all data]

Frackowiak, 1964
Frackowiak, M., Predissociation in C3Πu state of 15N2, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 1964, 12, 361. [all data]

Gero, 1935
Gero, L., Zur deutung der storungen in den zweiten positiven stickstoffbanden, Z. Phys., 1935, 96, 669. [all data]

Coster and Brons, 1935
Coster, D.; Brons, F., Zur deutung der storungen in den zweiten positiven stickstoffbanden, Z. Phys., 1935, 97, 570. [all data]

Johnson and Fowler, 1970
Johnson, A.W.; Fowler, R.G., Measured lifetimes of rotational and vibrational levels of electronic states of N2, J. Chem. Phys., 1970, 53, 65. [all data]

Imhof and Read, 1971
Imhof, R.E.; Read, F.H., Measured lifetimes of the C3Πu state of N2 and the a3Σg+ state of H2, J. Phys. B:, 1971, 4, 1063. [all data]

Dotchin and Chupp, 1973
Dotchin, L.W.; Chupp, E.L., Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+, and CO, J. Chem. Phys., 1973, 59, 3960. [all data]

Chen and Anderson, 1975
Chen, S.T.; Anderson, R.J., Excitation of the C3Πu state of N2 by electron impact, J. Chem. Phys., 1975, 63, 1250. [all data]

Osherovich and Gorshkov, 1976
Osherovich, A.L.; Gorshkov, V.N., Measurement of the radiation lifetimes of the C3Πu excited state of the N2 molecule and the B2Σu+ excited state of the N2+ molecule by the phase-shift and delayed-coincidences methods, Opt. Spectrosc. Engl. Transl., 1976, 41, 92, In original 158. [all data]

Nicholls, 1963
Nicholls, R.W., Einstein A coefficients, oscillator strengths and absolute band strengths for the N2 second positive and N2+ first negative systems, J. Atmos. Terr. Phys., 1963, 25, 218. [all data]

Reis, 1964
Reis, V.H., Oscillator strengths for the N2 second positive and N2+ first negative systems from observations of shock layers about hypersonic projectiles, J. Quant. Spectrosc. Radiat. Transfer, 1964, 4, 783. [all data]

Parks, Rao, et al., 1968
Parks, J.H.; Rao, D.R.; Javan, A., A high-resolution study of the C3Πu → B3Πg (O,O) stimulated transitions in N2, Appl. Phys. Lett., 1968, 13, 142. [all data]

Kasuya and Lide, 1967
Kasuya, T.; Lide, D.R., Jr., Measurements on the molecular nitrogen pulsed laser, Appl. Opt., 1967, 6, 69. [all data]

Bleekrode, 1968
Bleekrode, R., Contribution to the study of "abnormal" rotational energy distributions in the C3Πu-B3Πg bands of 14N2, J. Chem. Phys., 1968, 49, 951. [all data]

Fishburne, Lazdinis, et al., 1967
Fishburne, E.S.; Lazdinis, S.S.; Seibert, G.L., The N2 second positive system excited by impact with a metastable argon atom, J. Mol. Spectrosc., 1967, 23, 100. [all data]

Shvangiradze, Oganezov, et al., 1960
Shvangiradze, R.R.; Oganezov, K.A.; Chikhladze, B.Ya., Isotopic band shifts in the electronic-vibrational spectra of some diatomic molecules, Opt. Spectrosc. Engl. Transl., 1960, 8, 239. [all data]

Zare, Larsson, et al., 1965
Zare, R.N.; Larsson, E.O.; Berg, R.A., Franck-Condon factors for electronic band systems of molecular nitrogen, J. Mol. Spectrosc., 1965, 15, 117. [all data]

Benesch, Vanderslice, et al., 1966
Benesch, W.; Vanderslice, J.T.; Tilford, S.G.; Wilkinson, P.G., Franck-Condon factors for permitted transitions in N2, Astrophys. J., 1966, 144, 408. [all data]

Shumaker, 1969
Shumaker, J.B., Jr., Franck-Condon factors for high rotational levels of nitrogen, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 153. [all data]

Tyte, 1962
Tyte, D.C., The effect of helium on the intensity of the second positive system of nitrogen, Proc. Phys. Soc. London, 1962, 80, 1354. [all data]

Shemansky and Broadfoot, 1971
Shemansky, D.E.; Broadfoot, A.L., Excitation of N2 and N2+ systems by electrons. I. Absolute transition probabilities, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1385. [all data]

Jain, 1972
Jain, D.C., Transition moment variation in the first and second positive band systems of N2, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 759. [all data]

Benesch, Vanderslice, et al., 1966, 2
Benesch, W.; Vanderslice, J.T.; Tilford, S.G.; Wilkinson, P.G., Franck-Condon factors for observed transitions in N2 above 6 EV, Astrophys. J., 1966, 143, 236. [all data]

Carroll, 1962
Carroll, P.K., Note on the 5Σg+ state of N2, J. Chem. Phys., 1962, 37, 805. [all data]

Oldenberg, 1957
Oldenberg, O., The 5Σ level of the nitrogen molecule in The Threshold of Space [The Proceedings of the Conference on Chemical Aeronomy, Zelikoff, ed(s)., Pergamon Press, Publications Division, New York, 1957, 180-185. [all data]

Mulliken, 1962
Mulliken, R.S., Low-energy 5Σg+ states of the nitrogen molecule, J. Chem. Phys., 1962, 37, 809. [all data]

Bayes and Kistiakowsky, 1960
Bayes, K.D.; Kistiakowsky, G.B., On the mechanism of the Lewis-Rayleigh nitrogen afterglow, J. Chem. Phys., 1960, 32, 992. [all data]

Krauss and Neumann, 1976
Krauss, M.; Neumann, D.B., The 5Σg+ states of N2, Mol. Phys., 1976, 32, 101. [all data]

Lofthus and Mulliken, 1957
Lofthus, A.; Mulliken, R.S., Emission band spectra of nitrogen. Kaplan's first and second systems, J. Chem. Phys., 1957, 26, 1010. [all data]

Tilford, Vanderslice, et al., 1979
Tilford; Vanderslice; Tanaka, Unpublished, quoted by Lofthus and Krupenie, 1977, cited in Huber and Herzberg, 1979, 2, 1979, 425. [all data]

Tilford and Benesch, 1976
Tilford, S.G.; Benesch, W.M., Absorption oscillator strengths for the a'1Σu--X1Σg+ and w1Δu-X1Σg+ transitions of molecular nitrogen, J. Chem. Phys., 1976, 64, 3370. [all data]

Roncin, Damany, et al., 1967
Roncin, J.-Y.; Damany, N.; Romand, J., Far ultraviolet absorption spectra of atoms and molecules trapped in rare gas matrices at low temperature, J. Mol. Spectrosc., 1967, 22, 154. [all data]

Vanderslice, Tilford, et al., 1965
Vanderslice, J.T.; Tilford, S.G.; Wilkinson, P.G., The high-resolution absorption spectrum of nitrogen from 1060 to 1520 Å. I. The a1Πg ← X1Σg+ system, Astrophys. J., 1965, 141, 395. [all data]

Douglas and Herzberg, 1951
Douglas, A.E.; Herzberg, G., Predissociation and dissociation of the N2 molecule, Can. J. Phys., 1951, 29, 294. [all data]

Freund, 1972
Freund, R.S., Radiative lifetime of N2(a1Πg) and the formation of metastable N2(a'1Σu-), J. Chem. Phys., 1972, 56, 4344. [all data]

Ching, Cook, et al., 1967
Ching, B.K.; Cook, G.R.; Becker, R.A., Oscillator strengths of the a, w, and C bands of N2, J. Quant. Spectrosc. Radiat. Transfer, 1967, 7, 323. [all data]

Pilling, Bass, et al., 1971
Pilling, M.J.; Bass, A.M.; Braun, W., A curve of growth determination of the f-values for the fourth positive system of CO and the Lyman-Birge-Hopfield system of N2, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1593. [all data]

Wilkinson and Mulliken, 1957
Wilkinson, P.G.; Mulliken, R.S., An electric quadrupole electronic band system in molecular nitrogen, Astrophys. J., 1957, 126, 10. [all data]

Vanderslice, Wilkinson, et al., 1965
Vanderslice, J.T.; Wilkinson, P.G.; Tilford, S.G., Magnetic-dipole and electric-quadrupole transition moments for the a1Πg ← X1Σg+ transition in N2, J. Chem. Phys., 1965, 42, 2681. [all data]

McEwen and Nicholls, 1966
McEwen, D.J.; Nicholls, R.W., Intensity distribution of the Lyman-Birge-Hopfield band system of N2, Nature (London), 1966, 209, 902. [all data]

Lassettre, Meyer, et al., 1965
Lassettre, E.N.; Meyer, V.D.; Longmire, M.S., Relative intensities of Lyman-Birge-Hopfield bands in electron impact spectrum of nitrogen, J. Chem. Phys., 1965, 42, 807. [all data]

Tilford, Wilkinson, et al., 1965
Tilford, S.G.; Wilkinson, P.G.; Vanderslice, J.T., The high-resolution absorption spectrum of nitrogen from 1060 to 1520 Å. II. The a'1Σu- ← X1Σg+ system, Astrophys. J., 1965, 141, 427. [all data]

Tilford, Vanderslice, et al., 1965
Tilford, S.G.; Vanderslice, J.T.; Wilkinson, P.G., The high resolution absorption spectrum of nitrogen from 1060 to 1520 Å. III. The B'3Σu- ← X1Σg+ system, Astrophys. J., 1965, 141, 1226. [all data]

Kovacs, 1970
Kovacs, I., On an intercombination transition of the N2 molecule, Opt. Spectrosc. Engl. Transl., 1970, 28, 239, In original 444. [all data]

Saum and Benesch, 1970, 2
Saum, K.A.; Benesch, W.M., W3Δu-X1Σg+ system of N2, Phys. Rev. A: Gen. Phys., 1970, 2, 1655. [all data]

Bullock and Hause, 1971
Bullock, L.E.; Hause, C.D., Molecular constants of the B3Π and A3Σ states of N2, J. Mol. Spectrosc., 1971, 39, 519. [all data]

Artym, 1966
Artym, R.I., Formula for the vibrational transitions of the triplet states B3Πg - A3u+ of nitrogen, Opt. Spectrosc. Engl. Transl., 1966, 2, 2, In original 4. [all data]

Van Der Ziel, 1934
Van Der Ziel, A., Predissociation in the first positive group of N2 and its bearing on the electronic level diagram of the nitrogen molecule, Physica (The Hague), 1934, 1, 353. [all data]

Polak, Slovetskii, et al., 1972
Polak, L.S.; Slovetskii, D.I.; Sokolov, A.S., Predissociation and quenching probabilities for the vibrational levels of the B3Πg state of molecular nitrogen, Opt. Spectrosc. Engl. Transl., 1972, 32, 247, In original 472. [all data]

Becker, Fink, et al., 1972
Becker, K.H.; Fink, E.H.; Groth, W.; Jud, W.; Kley, D., N2 formation in the Lewis-Rayleigh afterglow, Faraday Discuss. Chem. Soc., 1972, 53, 35. [all data]

Ung, 1976
Ung, A.Y.-M., Observations of the high vibrational levels of N2(B3Πg) in the Lewis-Rayleigh afterglow of nitrogen, J. Chem. Phys., 1976, 65, 2987. [all data]

Chen and Anderson, 1975, 2
Chen, S.T.; Anderson, R.J., Excitation of the B3Πg states of N2 by electron impact, Phys. Rev. A: Gen. Phys., 1975, 12, 468. [all data]

Jeunehomme, 1966
Jeunehomme, M., Transition moment of the first positive band system of nitrogen, J. Chem. Phys., 1966, 45, 1805. [all data]

Wurster, 1962
Wurster, W.H., Measured transition probability for the first-positive band system of nitrogen, J. Chem. Phys., 1962, 36, 2111. [all data]

Dronov, Sobolev, et al., 1966
Dronov, A.P.; Sobolev, N.N.; Faizullov, F.S., Determination of the electronic transition strength for the first positive band system of nitrogen. II, Opt. Spectrosc. Engl. Transl., 1966, 21, 301, In original 538. [all data]

Cunio and Jansson, 1968
Cunio, B.E.; Jansson, R.E.W., The electronic transition moment of the N2 first positive system (N2 1PG), J. Quant. Spectrosc. Radiat. Transfer, 1968, 8, 1763. [all data]

Kupriyanova, Kolesnikov, et al., 1969
Kupriyanova, E.B.; Kolesnikov, V.N.; Sobolev, N.N., Electronic band strengths of the first positive system of N2 and of the Mainel system of N2+-II, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 1025. [all data]

Miller, 1970, 2
Miller, R.E., Rotational line intensities in 3Σ+-1Σ+ electronic transitions, Phys. Rev. A: Gen. Phys., 1970, 1, 590. [all data]

Freund, Miller, et al., 1970
Freund, R.S.; Miller, T.A.; de Santis, D.; Lurio, A., Radio-frequency spectrum of metastable N2(A 3Σu+). I. Magnetic hyperfine and electric quadrupole constants, J. Chem. Phys., 1970, 53, 6, 2290-2303. [all data]

de Santis, Lurio, et al., 1973
de Santis, D.; Lurio, A.; Miller, T.A.; Freund, R.S., Radio-frequency spectrum of metastable N2(A3Σu+). II. Fine structure, magnetic hyperfine structure, and electric quadrupole constants in the lowest 13 vibrational levels, J. Chem. Phys., 1973, 58, 4625. [all data]

Shemansky, 1969
Shemansky, D.E., N2 Vegard-Kaplan system in absorption, J. Chem. Phys., 1969, 51, 689. [all data]

Shemansky and Carleton, 1969
Shemansky, D.E.; Carleton, N.P., Lifetime of the N2 Vegard-Kaplan system, J. Chem. Phys., 1969, 51, 682. [all data]

Meyer, Klosterboer, et al., 1971
Meyer, J.A.; Klosterboer, D.H.; Setser, D.W., Energy transfer reactions of N2(A3Σu+). IV. Measurement of the radiative lifetime and study of the interaction with olefins and other molecules, J. Chem. Phys., 1971, 55, 2084. [all data]

Chandraiah and Shepherd, 1968
Chandraiah, G.; Shepherd, G.G., Intensity measurements in emission of 18 Vegard-Kaplan bands of N2, Can. J. Phys., 1968, 46, 221. [all data]

Broadfoot and Maran, 1969
Broadfoot, A.L.; Maran, S.P., Electronic transition moment for the N2 Vegard-Kaplan bands, J. Chem. Phys., 1969, 51, 678. [all data]

Butcher and Jones, 1974
Butcher, R.J.; Jones, W.J., Study of the rotational Raman spectra of 14N15N and 15N2, using a Fabry-Perot etalon, J. Chem. Soc. Faraday Trans. 2, 1974, 70, 560. [all data]

Chan, Baker, et al., 1964
Chan, S.I.; Baker, M.R.; Ramsey, N.F., Molecular-beam magnetic-resonance studies of the nitrogen molecule, Phys. Rev., 1964, 136, 1224. [all data]

Dunning, Cartwright, et al., 1976
Dunning, T.H., Jr.; Cartwright, D.C.; Hunt, W.J.; Hay, P.J.; Bobrowicz, F.W., Generalized valence bond calculations on the ground state (X1Σg+) of nitrogen, J. Chem. Phys., 1976, 64, 4755. [all data]

van der Wiel, El-Sherbini, et al., 1970
van der Wiel, M.J.; El-Sherbini, Th.M.; Brion, C.E., K shell excitation of nitrogen and carbon monoxide by electron impact, Chem. Phys. Lett., 1970, 7, 161. [all data]

Carlson, Moddeman, et al., 1970
Carlson, T.A.; Moddeman, W.E.; Pullen, B.P.; Krause, M.O., Identification of high energy lines in the K-LL Auger spectrum of N2, Chem. Phys. Lett., 1970, 5, 390. [all data]

Lindholm, 1969
Lindholm, E., Rydberg series in small molecules. III. Rydberg series in N2, Ark. Fys., 1969, 40, 111. [all data]

Carroll, 1973
Carroll, P.K., Band structures in N2 Rydberg complexes, J. Chem. Phys., 1973, 58, 3597. [all data]

Cartwright and Dunning, 1974
Cartwright, D.C.; Dunning, T.H., Jr., Vibrational matrix elements of the quadrupole moment of N2(X1Σg+), J. Phys. B:, 1974, 7, 1776. [all data]

Ketelaar and Rettschnick, 1963
Ketelaar, J.A.A.; Rettschnick, R.P.H., The quadrupole moment of nitrogen deduced from the pressure-induced rotational spectrum of nitrogen, Mol. Phys., 1963, 7, 191. [all data]

Buckingham, Disch, et al., 1968
Buckingham, A.D.; Disch, R.L.; Dunmur, D.A., The quadrupole moments of some simple molecules, J. Am. Chem. Soc., 1968, 90, 3104. [all data]

Huber and Herzberg, 1979, 2
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References