Formic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-378.6kJ/molCmGuthrie, 1974Heat of hydrolysis; ALS
Δfgas-379.0kJ/molN/ALebedeva, 1964Value computed using ΔfHliquid° value of -425.5±0.3 kj/mol from Lebedeva, 1964 and ΔvapH° value of 46.5 kj/mol from Guthrie, 1974.; DRB
Δfgas-379.2 ± 0.6kJ/molCcbLebedeva, 1964Value computed using ΔfHliquid° from Lebedeva, 1964 and ΔvapH° value of 46.3 kJ/mol from Konicek and Wadso, 1970.; DRB
Δfgas-378.3kJ/molN/ASinke, 1959Value computed using ΔfHliquid° value of -424.8±0.3 kj/mol from Sinke, 1959 and ΔvapH° value of 46.5 kj/mol from Guthrie, 1974.; DRB
Δfgas-378.5 ± 0.6kJ/molCcbSinke, 1959Value computed using ΔfHliquid° from Sinke, 1959 and ΔvapH° value of 46.3 kJ/mol from Konicek and Wadso, 1970.; DRB
Quantity Value Units Method Reference Comment
gas248.70 ± 0.42J/mol*KN/AMillikan R.C., 1957Other third-law S(298.15 K) value is 248.11(1.26) J/mol*K [ Halford J.O., 1942, Millikan R.C., 1957]. Please also see Waring W., 1952.; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
33.2650.Chao J., 1986p=1 bar. Selected entropies and heat capacities are in close agreement with statistically calculated values [ Fukushima K., 1971] and value of S(298.15 K) calculated by ab initio method [ East A.L.L., 1997]. Maximum discrepancies with other statistical calculations [ Waring W., 1952, Green J.H.S., 1961, Gurvich, Veyts, et al., 1989] amount to 1.1-3.9 J/mol*K for S(T) and 3.0-5.9 J/mol*K for Cp(T). Please also see Chao J., 1978.; GT
33.44100.
34.91150.
37.83200.
43.54273.15
45.68 ± 0.07298.15
45.84300.
54.52400.
62.63500.
69.81600.
76.04700.
81.34800.
85.77900.
89.401000.
92.331100.
94.651200.
96.481300.
97.911400.
99.021500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-425.09kJ/molCmGuthrie, 1974Heat of hydrolysis; ALS
Δfliquid-425.5 ± 0.3kJ/molCcbLebedeva, 1964ALS
Δfliquid-424.8 ± 0.3kJ/molCcbSinke, 1959ALS
Quantity Value Units Method Reference Comment
Δcliquid-253.8 ± 0.3kJ/molCcbLebedeva, 1964Corresponding Δfliquid = -425.51 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-254.6 ± 0.3kJ/molCcbSinke, 1959Corresponding Δfliquid = -424.72 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid131.84J/mol*KN/AStout and Fisher, 1941Includes 2.89 J/mol*K for zero-point entropy.; DH
liquid128.4J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 29.7 J/mol*K. Revision of previous data.; DH
liquid143.1J/mol*KN/AGibson, Latimer, et al., 1920Used Berthelot's value, 10125 J/mol for H fusion. Extrapolation below 70 K, no details.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
99.04298.15Stout and Fisher, 1941T = 15 to 300 K.; DH
98.10298.15Glagoleva and Chervov, 1936Temperature range: 298.15, 333.15, 353.15 K.; DH
100.0290.Radulescu and Jula, 1934DH
98.3291.5Gibson, Latimer, et al., 1920T = 71 to 292 K. Value is unsmoothed experimental datum.; DH
95.4298.von Reis, 1881T = 291 to 385 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil373.9 ± 0.5KAVGN/AAverage of 25 out of 30 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus281.5 ± 0.6KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple281.45KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.1 K; TRC
Ttriple281.40KN/AStout and Fisher, 1941, 2Uncertainty assigned by TRC = 0.06 K; TRC
Quantity Value Units Method Reference Comment
Ptriple0.0236barN/ATaylor and Bruton, 1952Uncertainty assigned by TRC = 0.000067 bar; TRC
Quantity Value Units Method Reference Comment
Tc577.KN/AAnselme and Teja, 1990Uncertainty assigned by TRC = 30. K; Tc > 577 K, which was observed with decomposition; TRC
Tc588.KN/AAmbrose and Ghiassee, 1987Uncertainty assigned by TRC = 10. K; TRC
Tc580.KN/AMajer and Svoboda, 1985 
Quantity Value Units Method Reference Comment
Δvap46.3kJ/molN/AMajer and Svoboda, 1985 
Δvap36.0kJ/molAStephenson and Malanowski, 1987Based on data from 283. to 384. K.; AC
Δvap46.3 ± 0.5kJ/molCKonicek and Wadso, 1970ALS
Δvap46.3 ± 0.5kJ/molCKonicek, Wadsö, et al., 1970AC
Δvap19.9kJ/molN/AStout and Fisher, 1941, 3AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
22.69373.8N/AMajer and Svoboda, 1985 
35.2315.EBAmbrose and Ghiassee, 1987, 2Based on data from 300. to 392. K.; AC
35.2325.N/ADreisbach and Shrader, 1949Based on data from 310. to 374. K. See also Dreisbach and Martin, 1949.; AC
29.6303.N/ACampbell and Campbell, 1934AC
20.3315.N/ACoolidge, 1930Based on data from 273. to 373. K.; AC
20.9338.N/ACoolidge, 1930Based on data from 273. to 373. K.; AC
20.4315.CCoolidge, 1930AC
21.1338.CCoolidge, 1930AC
36.8288.N/AKahlbaum, 1894Based on data from 273. to 307. K.; AC
47.7374.N/AKahlbaum, 1883Based on data from 295. to 374. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 374.
A (kJ/mol) 23.8
α 2.1043
β -1.2652
Tc (K) 580.
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
273.7 to 307.42.00121515.-139.408Kahlbaum, 1894, 2Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
60.5275.N/AStephenson and Malanowski, 1987Based on data from 268. to 281. K.; AC
62. ± 1.213.TE,MECalis-Van Ginkel, Calis, et al., 1978Based on data from 203. to 218. K.; AC
60.1264.AStull, 1947Based on data from 253. to 275. K.; AC
60.7266.N/ACoolidge, 1930Based on data from 265. to 268. K. See also Jones, 1960.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
12.678281.40Stout and Fisher, 1941DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
45.05281.40Stout and Fisher, 1941DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chlorine anion + Formic acid = (Chlorine anion • Formic acid)

By formula: Cl- + CH2O2 = (Cl- • CH2O2)

Quantity Value Units Method Reference Comment
Δr115. ± 8.4kJ/molTDAsFrench, Ikuta, et al., 1982gas phase; B,M
Δr116. ± 8.8kJ/molCIDTWalker and Sunderlin, 1999gas phase; B
Δr107. ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Δr156. ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; In serious disagreement with other's values. Source of error not obvious.; B,M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSFrench, Ikuta, et al., 1982gas phase; M
Δr101.J/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr166.J/mol*KPHPMSYamdagni and Kebarle, 1971gas phase; M
Quantity Value Units Method Reference Comment
Δr84.1 ± 8.4kJ/molTDAsFrench, Ikuta, et al., 1982gas phase; B
Δr77.0 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Δr106. ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; In serious disagreement with other's values. Source of error not obvious.; B

HCO2 anion + Hydrogen cation = Formic acid

By formula: CHO2- + H+ = CH2O2

Quantity Value Units Method Reference Comment
Δr1449. ± 5.0kJ/molD-EAKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol; B
Δr1445. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase; B
Δr1445. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr1444. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1423. ± 19.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1419. ± 6.3kJ/molH-TSKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol; B
Δr1415. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase; B
Δr1416. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr1415. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

Fluorine anion + Formic acid = (Fluorine anion • Formic acid)

By formula: F- + CH2O2 = (F- • CH2O2)

Quantity Value Units Method Reference Comment
Δr190. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr159. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

CH5O+ + Formic acid = (CH5O+ • Formic acid)

By formula: CH5O+ + CH2O2 = (CH5O+ • CH2O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr134.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr116.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr99.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

Iodide + Formic acid = (Iodide • Formic acid)

By formula: I- + CH2O2 = (I- • CH2O2)

Quantity Value Units Method Reference Comment
Δr79.1 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Δr54.0 ± 8.8kJ/molCIDTWalker and Sunderlin, 1999gas phase; Authors suggest real value somewhere between this and Caldwell and Kebarle, 1984; B
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr53.1 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B

(Chlorine anion • Formic acid) + Formic acid = (Chlorine anion • 2Formic acid)

By formula: (Cl- • CH2O2) + CH2O2 = (Cl- • 2CH2O2)

Quantity Value Units Method Reference Comment
Δr46.9 ± 8.8kJ/molCIDTWalker and Sunderlin, 1999gas phase; B
Δr143. ± 13.kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas: H2. Value too bound based on French, Ikuta, et al., 1982, by Grimsrud fractionation factor ( Williamson, Knighton, et al., 1996).; B,M
Quantity Value Units Method Reference Comment
Δr230.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; Entropy change is questionable; M

(Chlorine anion • 4Formic acid) + Formic acid = (Chlorine anion • 5Formic acid)

By formula: (Cl- • 4CH2O2) + CH2O2 = (Cl- • 5CH2O2)

Quantity Value Units Method Reference Comment
Δr42.3 ± 8.4kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas: H2. Value too bound based on French, Ikuta, et al., 1982, by Grimsrud fractionation factor ( Williamson, Knighton, et al., 1996).; B,M
Quantity Value Units Method Reference Comment
Δr48.1J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; Entropy change is questionable; M

(Chlorine anion • 2Formic acid) + Formic acid = (Chlorine anion • 3Formic acid)

By formula: (Cl- • 2CH2O2) + CH2O2 = (Cl- • 3CH2O2)

Quantity Value Units Method Reference Comment
Δr93. ± 11.kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas: H2. Value too bound based on French, Ikuta, et al., 1982, by Grimsrud fractionation factor ( Williamson, Knighton, et al., 1996).; B,M
Quantity Value Units Method Reference Comment
Δr150.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; Entropy change is questionable; M

HCO2 anion + Formic acid = (HCO2 anion • Formic acid)

By formula: CHO2- + CH2O2 = (CHO2- • CH2O2)

Quantity Value Units Method Reference Comment
Δr154. ± 4.2kJ/molN/AMeot-Ner and Sieck, 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr164.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; large ΔrH, ΔrS,; cyclic structure? pyrolysis?; M
Quantity Value Units Method Reference Comment
Δr105. ± 6.7kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B

(HCO2 anion • 4Formic acid) + Formic acid = (HCO2 anion • 5Formic acid)

By formula: (CHO2- • 4CH2O2) + CH2O2 = (CHO2- • 5CH2O2)

Quantity Value Units Method Reference Comment
Δr42.3 ± 8.4kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas H2. There may be appreciable fractionation of neutral gases: Williamson, Knighton, et al., 1996; B,M
Quantity Value Units Method Reference Comment
Δr50.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; Entropy change is questionable; M

(Chlorine anion • 3Formic acid) + Formic acid = (Chlorine anion • 4Formic acid)

By formula: (Cl- • 3CH2O2) + CH2O2 = (Cl- • 4CH2O2)

Quantity Value Units Method Reference Comment
Δr59.0 ± 9.2kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas: H2. Value too bound based on French, Ikuta, et al., 1982, by Grimsrud fractionation factor ( Williamson, Knighton, et al., 1996).; B,M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; M

(HCO2 anion • 3Formic acid) + Formic acid = (HCO2 anion • 4Formic acid)

By formula: (CHO2- • 3CH2O2) + CH2O2 = (CHO2- • 4CH2O2)

Quantity Value Units Method Reference Comment
Δr59.4 ± 8.8kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas H2. There may be appreciable fractionation of neutral gases: Williamson, Knighton, et al., 1996; B,M
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; M

(HCO2 anion • 2Formic acid) + Formic acid = (HCO2 anion • 3Formic acid)

By formula: (CHO2- • 2CH2O2) + CH2O2 = (CHO2- • 3CH2O2)

Quantity Value Units Method Reference Comment
Δr84. ± 11.kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas H2. There may be appreciable fractionation of neutral gases: Williamson, Knighton, et al., 1996; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; M

(HCO2 anion • Formic acid) + Formic acid = (HCO2 anion • 2Formic acid)

By formula: (CHO2- • CH2O2) + CH2O2 = (CHO2- • 2CH2O2)

Quantity Value Units Method Reference Comment
Δr109. ± 13.kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas H2. There may be appreciable fractionation of neutral gases: Williamson, Knighton, et al., 1996; B,M
Quantity Value Units Method Reference Comment
Δr140.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; M

CH6N+ + Formic acid = (CH6N+ • Formic acid)

By formula: CH6N+ + CH2O2 = (CH6N+ • CH2O2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr79.5kJ/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KPHPMSMeot-Ner, 1984gas phase; M

CH2NO5- + Water + Formic acid = CH4NO6-

By formula: CH2NO5- + H2O + CH2O2 = CH4NO6-

Quantity Value Units Method Reference Comment
Δr18.4 ± 0.84kJ/molIMREViidanoja, Reiner, et al., 2000gas phase; B

Bromine anion + Formic acid = CH2BrO2-

By formula: Br- + CH2O2 = CH2BrO2-

Quantity Value Units Method Reference Comment
Δr72.0 ± 7.1kJ/molCIDTWalker and Sunderlin, 1999gas phase; B

CH2IO2- + 2Formic acid = C2H4IO4-

By formula: CH2IO2- + 2CH2O2 = C2H4IO4-

Quantity Value Units Method Reference Comment
Δr41.8 ± 8.8kJ/molCIDTWalker and Sunderlin, 1999gas phase; B

NO3 anion + Formic acid = CH2NO5-

By formula: NO3- + CH2O2 = CH2NO5-

Quantity Value Units Method Reference Comment
Δr47.70 ± 0.84kJ/molIMREViidanoja, Reiner, et al., 1998gas phase; B

CH2BrO2- + 2Formic acid = C2H4BrO4-

By formula: CH2BrO2- + 2CH2O2 = C2H4BrO4-

Quantity Value Units Method Reference Comment
Δr40. ± 7.1kJ/molCIDTWalker and Sunderlin, 1999gas phase; B

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
8900.6100.MN/A 
5200. CN/A 
5300.5700.QN/A 
5200. CN/A 
5400. CN/A 
5500. MN/A 
890. QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
3700.5700.CN/A 
13000. MN/AThe value given here was measured at a liquid phase volume mixing ratio of 1 ppmv. missing citation found that the Henry's law constant changes at higher concentrations.
7600. XN/AValue given here as quoted by missing citation.
3500.5700.CN/A 
 5700.TN/A 
3700.5700.CN/A 
5600. TN/A 
3700.5700.TN/A 
6000. XN/AValue given here as quoted by missing citation.

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman

Quantity Value Units Method Reference Comment
IE (evaluated)11.33 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)742.0kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity710.3kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
11.31PITraeger, 1985LBLHLM
11.329 ± 0.002SBell, Ng, et al., 1975LLK
11.16 ± 0.03PIWarneck, 1974LLK
11.314 ± 0.002PIKnowles and Nicholson, 1974LLK
11.3PEWatanabe, Yokoyama, et al., 1973LLK
11.33PEWatanabe, Yokoyama, et al., 1973, 2LLK
11.35 ± 0.03PEThomas, 1972LLK
11.16 ± 0.03PIMatthews and Warneck, 1969RDSH
11.33PEBrundle, Turner, et al., 1969RDSH
11.05 ± 0.03PIVilesov, 1960RDSH
11.05 ± 0.01PIWatanabe, 1957RDSH
11.33SPrice and Evans, 1937RDSH
11.5PEVon Niessen, Bieri, et al., 1980Vertical value; LLK
11.34PEBenoit and Harrison, 1977Vertical value; LLK
10.7PERao, 1975Vertical value; LLK
11.51PEKimura, Katsumata, et al., 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+22.7 ± 0.5O+H2OEIStepanov, Perov, et al., 1988LL
CHO+12.76OHPITraeger, 1985LBLHLM
CHO+13.0 ± 0.1OHPIGolovin, Akopyan, et al., 1979LLK
CHO+12.79 ± 0.03OHPIWarneck, 1974LLK
CHO+12.79 ± 0.03OHPIMatthews and Warneck, 1969RDSH
CHO2+12.4 ± 0.1HPIGolovin, Akopyan, et al., 1979LLK
CHO2+12.26HPIAkopyan and Villem, 1976LLK
CHO2+12.29 ± 0.03HPIWarneck, 1974LLK
HO+17.97 ± 0.06HCOPIWarneck, 1974LLK
O+20.0 ± 0.5CO+H2EIStepanov, Perov, et al., 1988LL

De-protonation reactions

HCO2 anion + Hydrogen cation = Formic acid

By formula: CHO2- + H+ = CH2O2

Quantity Value Units Method Reference Comment
Δr1449. ± 5.0kJ/molD-EAKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol; B
Δr1445. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase; B
Δr1445. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr1444. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1423. ± 19.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1419. ± 6.3kJ/molH-TSKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol; B
Δr1415. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase; B
Δr1416. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr1415. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Formic acid = CH2BrO2-

By formula: Br- + CH2O2 = CH2BrO2-

Quantity Value Units Method Reference Comment
Δr72.0 ± 7.1kJ/molCIDTWalker and Sunderlin, 1999gas phase; B

HCO2 anion + Formic acid = (HCO2 anion • Formic acid)

By formula: CHO2- + CH2O2 = (CHO2- • CH2O2)

Quantity Value Units Method Reference Comment
Δr154. ± 4.2kJ/molN/AMeot-Ner and Sieck, 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr164.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; large ΔrH, ΔrS,; cyclic structure? pyrolysis?; M
Quantity Value Units Method Reference Comment
Δr105. ± 6.7kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B

(HCO2 anion • Formic acid) + Formic acid = (HCO2 anion • 2Formic acid)

By formula: (CHO2- • CH2O2) + CH2O2 = (CHO2- • 2CH2O2)

Quantity Value Units Method Reference Comment
Δr109. ± 13.kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas H2. There may be appreciable fractionation of neutral gases: Williamson, Knighton, et al., 1996; B,M
Quantity Value Units Method Reference Comment
Δr140.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; M

(HCO2 anion • 2Formic acid) + Formic acid = (HCO2 anion • 3Formic acid)

By formula: (CHO2- • 2CH2O2) + CH2O2 = (CHO2- • 3CH2O2)

Quantity Value Units Method Reference Comment
Δr84. ± 11.kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas H2. There may be appreciable fractionation of neutral gases: Williamson, Knighton, et al., 1996; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; M

(HCO2 anion • 3Formic acid) + Formic acid = (HCO2 anion • 4Formic acid)

By formula: (CHO2- • 3CH2O2) + CH2O2 = (CHO2- • 4CH2O2)

Quantity Value Units Method Reference Comment
Δr59.4 ± 8.8kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas H2. There may be appreciable fractionation of neutral gases: Williamson, Knighton, et al., 1996; B,M
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; M

(HCO2 anion • 4Formic acid) + Formic acid = (HCO2 anion • 5Formic acid)

By formula: (CHO2- • 4CH2O2) + CH2O2 = (CHO2- • 5CH2O2)

Quantity Value Units Method Reference Comment
Δr42.3 ± 8.4kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas H2. There may be appreciable fractionation of neutral gases: Williamson, Knighton, et al., 1996; B,M
Quantity Value Units Method Reference Comment
Δr50.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; Entropy change is questionable; M

CH2BrO2- + 2Formic acid = C2H4BrO4-

By formula: CH2BrO2- + 2CH2O2 = C2H4BrO4-

Quantity Value Units Method Reference Comment
Δr40. ± 7.1kJ/molCIDTWalker and Sunderlin, 1999gas phase; B

CH2IO2- + 2Formic acid = C2H4IO4-

By formula: CH2IO2- + 2CH2O2 = C2H4IO4-

Quantity Value Units Method Reference Comment
Δr41.8 ± 8.8kJ/molCIDTWalker and Sunderlin, 1999gas phase; B

CH2NO5- + Water + Formic acid = CH4NO6-

By formula: CH2NO5- + H2O + CH2O2 = CH4NO6-

Quantity Value Units Method Reference Comment
Δr18.4 ± 0.84kJ/molIMREViidanoja, Reiner, et al., 2000gas phase; B

CH5O+ + Formic acid = (CH5O+ • Formic acid)

By formula: CH5O+ + CH2O2 = (CH5O+ • CH2O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr134.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr116.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr99.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

CH6N+ + Formic acid = (CH6N+ • Formic acid)

By formula: CH6N+ + CH2O2 = (CH6N+ • CH2O2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr79.5kJ/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KPHPMSMeot-Ner, 1984gas phase; M

Chlorine anion + Formic acid = (Chlorine anion • Formic acid)

By formula: Cl- + CH2O2 = (Cl- • CH2O2)

Quantity Value Units Method Reference Comment
Δr115. ± 8.4kJ/molTDAsFrench, Ikuta, et al., 1982gas phase; B,M
Δr116. ± 8.8kJ/molCIDTWalker and Sunderlin, 1999gas phase; B
Δr107. ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Δr156. ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; In serious disagreement with other's values. Source of error not obvious.; B,M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSFrench, Ikuta, et al., 1982gas phase; M
Δr101.J/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr166.J/mol*KPHPMSYamdagni and Kebarle, 1971gas phase; M
Quantity Value Units Method Reference Comment
Δr84.1 ± 8.4kJ/molTDAsFrench, Ikuta, et al., 1982gas phase; B
Δr77.0 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Δr106. ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; In serious disagreement with other's values. Source of error not obvious.; B

(Chlorine anion • Formic acid) + Formic acid = (Chlorine anion • 2Formic acid)

By formula: (Cl- • CH2O2) + CH2O2 = (Cl- • 2CH2O2)

Quantity Value Units Method Reference Comment
Δr46.9 ± 8.8kJ/molCIDTWalker and Sunderlin, 1999gas phase; B
Δr143. ± 13.kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas: H2. Value too bound based on French, Ikuta, et al., 1982, by Grimsrud fractionation factor ( Williamson, Knighton, et al., 1996).; B,M
Quantity Value Units Method Reference Comment
Δr230.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; Entropy change is questionable; M

(Chlorine anion • 2Formic acid) + Formic acid = (Chlorine anion • 3Formic acid)

By formula: (Cl- • 2CH2O2) + CH2O2 = (Cl- • 3CH2O2)

Quantity Value Units Method Reference Comment
Δr93. ± 11.kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas: H2. Value too bound based on French, Ikuta, et al., 1982, by Grimsrud fractionation factor ( Williamson, Knighton, et al., 1996).; B,M
Quantity Value Units Method Reference Comment
Δr150.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; Entropy change is questionable; M

(Chlorine anion • 3Formic acid) + Formic acid = (Chlorine anion • 4Formic acid)

By formula: (Cl- • 3CH2O2) + CH2O2 = (Cl- • 4CH2O2)

Quantity Value Units Method Reference Comment
Δr59.0 ± 9.2kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas: H2. Value too bound based on French, Ikuta, et al., 1982, by Grimsrud fractionation factor ( Williamson, Knighton, et al., 1996).; B,M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; M

(Chlorine anion • 4Formic acid) + Formic acid = (Chlorine anion • 5Formic acid)

By formula: (Cl- • 4CH2O2) + CH2O2 = (Cl- • 5CH2O2)

Quantity Value Units Method Reference Comment
Δr42.3 ± 8.4kJ/molN/ALuczynski, Wlodek, et al., 1978gas phase; Buffer gas: H2. Value too bound based on French, Ikuta, et al., 1982, by Grimsrud fractionation factor ( Williamson, Knighton, et al., 1996).; B,M
Quantity Value Units Method Reference Comment
Δr48.1J/mol*KHPMSLuczynski, Wlodek, et al., 1978gas phase; Entropy change is questionable; M

Fluorine anion + Formic acid = (Fluorine anion • Formic acid)

By formula: F- + CH2O2 = (F- • CH2O2)

Quantity Value Units Method Reference Comment
Δr190. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr159. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Iodide + Formic acid = (Iodide • Formic acid)

By formula: I- + CH2O2 = (I- • CH2O2)

Quantity Value Units Method Reference Comment
Δr79.1 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Δr54.0 ± 8.8kJ/molCIDTWalker and Sunderlin, 1999gas phase; Authors suggest real value somewhere between this and Caldwell and Kebarle, 1984; B
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr53.1 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B

NO3 anion + Formic acid = CH2NO5-

By formula: NO3- + CH2O2 = CH2NO5-

Quantity Value Units Method Reference Comment
Δr47.70 ± 0.84kJ/molIMREViidanoja, Reiner, et al., 1998gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 81

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   Cs     Symmetry Number σ = 1


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a' 1 OH str 3570  D 3570 M gas
a' 2 CH str 2943  C 2942.8 M gas
a' 3 C=O str 1770  C 1770 VS gas
a' 4 CH bend 1387  C 1387 VW gas
a' 5 OH bend 1229  C 1229 W gas
a' 6 C-O str 1105  C 1105.3 S gas
a' 7 OCO deform 625  C 625 M gas
a 8 CH bend 1033  C 1033 W gas
a 9 Torsion 638  C 638 S gas

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1543.Helmig, Pollock, et al., 199630. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone512.Peng, Yang, et al., 1991Program: not specified
PackedSE-30512.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1510.Mahajan, Goddik, et al., 200430. m/0.25 mm/0.5 μm, He, 40. C @ 2. min, 5. K/min, 230. C @ 10. min

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryStabilwax1528.Natali N., Chinnici F., et al., 200630. m/0.25 mm/0.25 μm, He; Program: 40C => 3C/min => 100C => 5C/min => 240C(10min)
CapillaryDB-Wax1543.6Yang, Chyau, et al., 1998He; Column length: 50. m; Column diameter: 0.32 mm; Program: 50C => 2.5C/min => 150C => 1.5C/min => 210C

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-1495.Castel, Fernandez, et al., 200650. m/0.2 mm/0.33 μm, He, 60. C @ 4. min, 2. K/min, 250. C @ 30. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone490.Zenkevich, Korolenko, et al., 1995Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1470.Guo, Wu, et al., 200830. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 250. C @ 10. min
CapillaryDB-Wax1470.Guo, Wu, et al., 200830. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 250. C @ 10. min
CapillaryDB-Wax1470.Guo, Wu, et al., 200830. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 250. C @ 10. min
CapillaryRTX-Wax1485.Prososki, Etzel, et al., 200730. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 10. K/min, 220. C @ 10. min
CapillarySupelcowax-101521.Vichi, Castellote, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillaryDB-Wax1492.Sekiwa, Kubota, et al., 1997He, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C
CapillaryDB-Wax1499.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryFFAP1505.Vernin, Metzger, et al., 1988He, 60. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tend: 240. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1501.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C
CapillaryCP-Wax 52CB1532.Muresan, Eillebrecht, et al., 200050. m/0.32 mm/1.2 μm; Program: 40C(10min) => 3C/min => 190C => 10C/min => 250C(5min)
CapillaryPolyethylene Glycol1533.Zenkevich, Korolenko, et al., 1995Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Guthrie, 1974
Guthrie, J.P., Hydration of carboxamides. Evaluation of the free energy change for addition of water to acetamide and formamide derivatives, J. Am. Chem. Soc., 1974, 96, 3608-3615. [all data]

Lebedeva, 1964
Lebedeva, N.D., Heats of combustion of monocarboxylic acids, Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]

Konicek and Wadso, 1970
Konicek, J.; Wadso, I., Enthalpies of vaporization of organic compounds. VII. Some carboxylic acids, Acta Chem. Scand., 1970, 24, 2612-26. [all data]

Sinke, 1959
Sinke, G.C., The heat of formation of formic acid, J. Phys. Chem., 1959, 63, 2063. [all data]

Millikan R.C., 1957
Millikan R.C., Infrared spectra and vibrational assignment of monomeric formic acid, J. Chem. Phys., 1957, 27, 1305-1308. [all data]

Halford J.O., 1942
Halford J.O., Entropy of the monomeric forms of formic acid and acetic acid, J. Chem. Phys., 1942, 10, 582-584. [all data]

Waring W., 1952
Waring W., Some thermodynamic properties of formic acid, Chem. Rev., 1952, 51, 171-183. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Fukushima K., 1971
Fukushima K., Normal coordinate treatment and thermodynamic properties of the cis-trans isomers of formic acid and its deutero-analog, J. Chem. Thermodyn., 1971, 3, 553-562. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Green J.H.S., 1961
Green J.H.S., Thermodynamic properties of organic oxygen compounds. Part III. Formic acid, J. Chem. Soc., 1961, 2241-2242. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Chao J., 1978
Chao J., Ideal gas thermodynamic properties of methanoic and ethanoic acids, J. Phys. Chem. Ref. Data, 1978, 7, 363-377. [all data]

Stout and Fisher, 1941
Stout, J.W.; Fisher, L.H., The entropy of formic acid. The heat capacity from 15 to 300K. Heats of fusion and vaporization, J. Chem. Phys., 1941, 9, 163-168. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Gibson, Latimer, et al., 1920
Gibson, G.E.; Latimer, W.M.; Parks, G.S., Entropy changes at low temperatures. I. Formic acid and urea. A test of the third law of thermodynamics, J. Am. Chem. Soc., 1920, 42, 1533-1542. [all data]

Glagoleva and Chervov, 1936
Glagoleva, A.A.; Chervov, S.I., Investigation of the heat capacity of formic acid and its aqueous solutions, Zhur. Obshch. Khim., 1936, 6, 685-690. [all data]

Radulescu and Jula, 1934
Radulescu, D.; Jula, O., Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen, Z. Phys. Chem., 1934, B26, 390-393. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Stout and Fisher, 1941, 2
Stout, J.W.; Fisher, L.H., The entropy of formic acid. The heat capacity from 15 to 300 K. Heats of fusion and vaporization, J. Chem. Phys., 1941, 9, 163-8. [all data]

Taylor and Bruton, 1952
Taylor, M.D.; Bruton, J., The vapour phase dissociation of some carboxylic acids. II. Formic and propionic acids., J. Am. Chem. Soc., 1952, 74, 4151. [all data]

Anselme and Teja, 1990
Anselme, M.J.; Teja, A.S., The critical properties of rapidly reacting substances, AIChE Symp. Ser., 1990, 86, 279, 128-32. [all data]

Ambrose and Ghiassee, 1987
Ambrose, D.; Ghiassee, N.B., Vapor Pressures and Critical Temperatures and Critical Pressures of Some Alkanoic Acids: C1 to C10, J. Chem. Thermodyn., 1987, 19, 505. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Konicek, Wadsö, et al., 1970
Konicek, Jiri; Wadsö, Ingemar; Munch-Petersen, J.; Ohlson, Ragnar; Shimizu, Akira, Enthalpies of Vaporization of Organic Compounds. VII. Some Carboxylic Acids., Acta Chem. Scand., 1970, 24, 2612-2616, https://doi.org/10.3891/acta.chem.scand.24-2612 . [all data]

Stout and Fisher, 1941, 3
Stout, J.W.; Fisher, Leon H., The Entropy of Formic Acid. The Heat Capacity from 15 to 300°K. Heats of Fusion and Vaporization, J. Chem. Phys., 1941, 9, 2, 163, https://doi.org/10.1063/1.1750869 . [all data]

Ambrose and Ghiassee, 1987, 2
Ambrose, D.; Ghiassee, N.B., Vapour pressures and critical temperatures and critical pressures of some alkanoic acids: C1 to C10, The Journal of Chemical Thermodynamics, 1987, 19, 5, 505-519, https://doi.org/10.1016/0021-9614(87)90147-9 . [all data]

Dreisbach and Shrader, 1949
Dreisbach, R.R.; Shrader, S.A., Vapor Pressure--Temperature Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2879-2880, https://doi.org/10.1021/ie50480a054 . [all data]

Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2875-2878, https://doi.org/10.1021/ie50480a053 . [all data]

Campbell and Campbell, 1934
Campbell, Alan Newton; Campbell, Alexandra Jean Robson, The thermodynamics of binary liquid mixtures : formic acid and water, Trans. Faraday Soc., 1934, 30, 1109, https://doi.org/10.1039/tf9343001109 . [all data]

Coolidge, 1930
Coolidge, Albert Sprague, THE VAPOR PRESSURE AND HEATS OF FUSION AND VAPORIZATION OF FORMIC ACID, J. Am. Chem. Soc., 1930, 52, 5, 1874-1887, https://doi.org/10.1021/ja01368a018 . [all data]

Kahlbaum, 1894
Kahlbaum, G.W.A., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1894, 13, 14. [all data]

Kahlbaum, 1883
Kahlbaum, Georg W.A., Ueber die Abhängigkeit der Siedetemperatur vom Luftdruck, Ber. Dtsch. Chem. Ges., 1883, 16, 2, 2476-2484, https://doi.org/10.1002/cber.188301602178 . [all data]

Kahlbaum, 1894, 2
Kahlbaum, G.W.A., Studien uber Dampfspannkraftsmessungen, Z. Phys. Chem. (Leipzig), 1894, 13, 14-55. [all data]

Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J., Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids, The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Walker and Sunderlin, 1999
Walker, B.W.; Sunderlin, L.S., The thermochemistry of formic acid halide anion clusters, Int. J. Mass Spectrom., 1999, 184, 2-3, 183-189, https://doi.org/10.1016/S1387-3806(99)00008-1 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P., Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria, J. Am. Chem. Soc., 1971, 93, 7139. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Kim, Bradforth, et al., 1995
Kim, E.H.; Bradforth, S.E.; Arnold, D.W.; Metz, R.B.; Neumark, D.M., Study of HCO2 and DCO2 by Negative Ion Photoelectron Spectroscopy, J. Chem. Phys., 1995, 103, 18, 7801, https://doi.org/10.1063/1.470196 . [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Luczynski, Wlodek, et al., 1978
Luczynski, Z.; Wlodek, S.; Wincel, H., Stabilities of HCOO-.(HCOOH)n and Cl-.(HCOOH)n clusters, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 103. [all data]

Williamson, Knighton, et al., 1996
Williamson, D.H.; Knighton, W.B.; Grimsrud, E.P., Pulsed High Pressure Mass Spectrometry with Near-Viscous Flow Ion Sampling, Int. J. Mass Spectrom. Ion Proc., 1996, 154, 1-2, 15, https://doi.org/10.1016/0168-1176(96)04372-8 . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Viidanoja, Reiner, et al., 2000
Viidanoja, J.; Reiner, T.; Kiendler, A.; Grimm, F.; Arnold, F., Laboratory investigations of negative ion molecule reactions of propionic, butyric, glyoxylic, pyruvic, and pinonic acids, Int. J. Mass Spectrom., 2000, 194, 1, 53-68, https://doi.org/10.1016/S1387-3806(99)00172-4 . [all data]

Viidanoja, Reiner, et al., 1998
Viidanoja, J.; Reiner, T.; Arnold, F., Laboratory Investigations of Negative Ion-Molecule Reactions of Formic and Acetic Acid., Int. J. Mass Spectrom., 1998, 181, 1-3, 31, https://doi.org/10.1016/S1387-3806(98)14151-9 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Traeger, 1985
Traeger, J.C., Heat of formation for the formyl cation by photoionization mass spectrometry, Int. J. Mass Spectrom. Ion Processes, 1985, 66, 271. [all data]

Bell, Ng, et al., 1975
Bell, S.; Ng, T.L.; Walsh, A.D., Vacuum ultraviolet spectra of formic and acetic acids, J. Chem. Soc. Faraday Trans. 2, 1975, 71, 393. [all data]

Warneck, 1974
Warneck, P., Heat of formation of the HCO radical, Z. Naturforsch. A:, 1974, 29, 350. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Watanabe, Yokoyama, et al., 1973
Watanabe, I.; Yokoyama, Y.; Ikeda, S., Vibrational structures in the photoelectron spectrum of formic acid, Chem. Phys. Lett., 1973, 19, 406. [all data]

Watanabe, Yokoyama, et al., 1973, 2
Watanabe, I.; Yokoyama, Y.; Ikeda, S., Lone pair ionization potentials of carboxylic acids determined by He(I) photoelectron spectroscopy, Bull. Chem. Soc. Jpn., 1973, 46, 1959. [all data]

Thomas, 1972
Thomas, R.K., Photoelectron spectroscopy of hydrogen-bonded systems: spectra of monomers, dimers and mixed complexes of carboxylic acides, Proc. R. Soc. London A:, 1972, 331, 249. [all data]

Matthews and Warneck, 1969
Matthews, C.S.; Warneck, P., Heats of formation of CHO+ and C3H3+ by photoionization, J. Chem. Phys. 5, 1969, 1, 854. [all data]

Brundle, Turner, et al., 1969
Brundle, C.R.; Turner, D.W.; Robin, M.B.; Basch, H., Photoelectron spectroscopy of simple amides and carboxylic acids, Chem. Phys. Lett., 1969, 3, 292. [all data]

Vilesov, 1960
Vilesov, F.I., The photoionization of vapors of compounds whose molecules contain carbonyl groups, Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Price and Evans, 1937
Price, W.C.; Evans, W.M., The absorption spectrum of formic acid in the vacuum ultra-violet, Proc. Roy. Soc. (London), 1937, A162, 110. [all data]

Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L., 30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O), J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

Stepanov, Perov, et al., 1988
Stepanov, A.N.; Perov, A.A.; Kabanov, S.P.; Simonov, A.P., Formation of long-lived, highly excited atoms during dissociative excitation of CH3CN, CH3CH2OH, CH3COOH, HCOOH, and C4H4S molecules on electron impact, Russ. J. Phys. Chem., 1988, 22, 81. [all data]

Golovin, Akopyan, et al., 1979
Golovin, A.V.; Akopyan, M.E.; Vilesov, F.I.; Sergeev, Y.L., Ion-electron coincidence study of the photoionization of formic and acetic acids, Khim. Vys. Energ., 1979, 13, 200. [all data]

Akopyan and Villem, 1976
Akopyan, M.E.; Villem, Ya.Ya., Ion-molecule reactions in the photoionization of formic and acetic acid vapors, High Energy Chem., 1976, 10, 24. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P., Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii, J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212 . [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Maltby, D., Prediction of retention indexes. III. Silylated derivatives of polar compounds, J. Chromatogr., 1991, 586, 1, 113-129, https://doi.org/10.1016/0021-9673(91)80029-G . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Mahajan, Goddik, et al., 2004
Mahajan, S.S.; Goddik, L.; Qian, M.C., Aroma Compounds in Sweet Whey Powder, J. Dairy Sci., 2004, 87, 12, 4057-4063, https://doi.org/10.3168/jds.S0022-0302(04)73547-X . [all data]

Natali N., Chinnici F., et al., 2006
Natali N.; Chinnici F.; Riponi C., Characterization of volatiles in extracts from oak chips obtained by accelerated solvent extraction (ASE), J. Agric. Food Chem., 2006, 54, 21, 8190-8198, https://doi.org/10.1021/jf0614387 . [all data]

Yang, Chyau, et al., 1998
Yang, M.-S.; Chyau, C.-C.; Horng, D.-T.; Yang, J.-S., Effects of Irradiation and Drying on Volatile Components of Fresh Shiitake edodes (Lentinus Sing), J. Sci. Food Agric., 1998, 76, 1, 72-76, https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<72::AID-JSFA921>3.0.CO;2-0 . [all data]

Castel, Fernandez, et al., 2006
Castel, C.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.-M.; Perichet, C.; Delbecque, C.; Arnaudo, J.-F., Volatile constituents of benzoin gums: Siam and Sumatra, part 2. Study of headspace sampling methods, Flavour Fragr. J., 2006, 21, 1, 59-67, https://doi.org/10.1002/ffj.1502 . [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Guo, Wu, et al., 2008
Guo, L.; Wu, J.-Z.; Han, T.; Cao, T.; Rahman, K.; Qin, L.-P., Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme, Molecules, 2008, 13, 9, 2114-2125, https://doi.org/10.3390/molecules13092114 . [all data]

Prososki, Etzel, et al., 2007
Prososki, R.A.; Etzel, M.R.; Rankin, S.A., Solvent type affects the number, distribution, and relative quantities of volatile compounds found in sweet whey powder, J. Dairy Sci., 2007, 90, 2, 523-531, https://doi.org/10.3168/jds.S0022-0302(07)71535-7 . [all data]

Vichi, Castellote, et al., 2003
Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E., Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection, J. Chromatogr. A, 2003, 983, 1-2, 19-33, https://doi.org/10.1016/S0021-9673(02)01691-6 . [all data]

Sekiwa, Kubota, et al., 1997
Sekiwa, Y.; Kubota, K.; Kobayashi, A., Characteristic flavor components in the brew of cooked clam (Meretrix lusoria) and the effect of storage on flavor formation, J. Agric. Food Chem., 1997, 45, 3, 826-830, https://doi.org/10.1021/jf960433e . [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Vernin, Metzger, et al., 1988
Vernin, G.; Metzger, J.; Obretenov, T.; Suon, K.-N.; Fraisse, D., GC/MS (EI,PCI,SIM)-data bank analysis of volatile compounds arising from thermal degradation of glucose-valine amadori intermediates in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 999-1028. [all data]

Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S., Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee., J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004 . [all data]

Muresan, Eillebrecht, et al., 2000
Muresan, S.; Eillebrecht, M.A.J.L.; de Rijk, T.C.; de Jonge, H.G.; Leguijt, T.; Nijhuis, H.H., Aroma profile development of intermediate chocolate products. I. Volatile constituents of block-milk, Food Chem., 2000, 68, 2, 167-174, https://doi.org/10.1016/S0308-8146(99)00171-5 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References