Dimethyl Sulfoxide
- Formula: C2H6OS
- Molecular weight: 78.133
- IUPAC Standard InChIKey: IAZDPXIOMUYVGZ-UHFFFAOYSA-N
- CAS Registry Number: 67-68-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: DMSO; Methane, sulfinylbis-; Methyl sulfoxide; Demsodrox; Dimexide; Dipirartril-tropico; Dolicur; Dromisol; Durasorb; DMS 70; DMS 90; Hyadur; Infiltrina; Somipront; Sulfinylbismethane; SQ 9453; Dimethyl sulphoxide; (CH3)2SO; A 10846; Deltan; Demasorb; Demavet; Demeso; Dermasorb; Doligur; Domoso; Gamasol 90; M 176; Methylsulfinylmethane; Rimso 50; Syntexan; NSC-763; Topsym; Dimethyl sulfur oxide; Herpid; Kemsol; Sclerosol; Sulfoxide, dimethyl; Methane, 1,1'-sulfinylbis-; DMSO (methyl sulfoxide); Sulphinylbis methane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 463. ± 1. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 291.65 | K | N/A | Lindberg and Stenholm, 1966 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tfus | 291.57 | K | N/A | Douglas, 1948 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 291.65 | K | N/A | Douglas, 1946 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 291.59 | K | N/A | Clever and Westrum, 1970 | Uncertainty assigned by TRC = 0.1 K; TRC |
Ttriple | 291.67 | K | N/A | Clever and Westrum, 1970 | Uncertainty assigned by TRC = 0.06 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 52.9 ± 0.4 | kJ/mol | V | Douglas, 1948, 2 | ALS |
ΔvapH° | 52.9 ± 0.4 | kJ/mol | RG | Douglas, 1948, 3 | Based on data from 293. to 323. K.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
48.1 | 368. | TGA | Al-Najjar and Al-Sammerrai, 2007 | Based on data from 353. to 383. K.; AC |
48.6 | 392. | N/A | Dykyj, Svoboda, et al., 1999 | Based on data from 377. to 483. K.; AC |
51.7 | 320. | A | Stephenson and Malanowski, 1987 | Based on data from 305. to 464. K.; AC |
52.3 | 308. | N/A | Sassa, Konishi, et al., 1974 | Based on data from 298. to 318. K.; AC |
50.6 | 340. | MM | Jakli and Alexander Van Hook, 1972 | Based on data from 325. to 442. K. See also Boublik, Fried, et al., 1984.; AC |
52.1 | 318. | N/A | NISHIMURA, NAKAYAMA, et al., 1972 | Based on data from 303. to 423. K.; AC |
52.5 | 308. | N/A | Meszaros, 1969 | Based on data from 293. to 323. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
325.49 to 442.09 | 4.49107 | 1807.002 | -60.995 | Jakli and van Hook, 1972 | Coefficents calculated by NIST from author's data. |
293. to 323. | 5.23039 | 2239.161 | -29.215 | Douglas, 1948, 3 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
14.368 | 291.67 | Clever and Westrum, 1970, 2 | DH |
14.37 | 291.7 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
49.26 | 291.67 | Clever and Westrum, 1970, 2 | DH |
IR Spectrum
Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
- LIQUID (NEAT); BECKMAN IR-7 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- LIQUID (NEAT); PERKIN-ELMER 180; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 4000-1330 CM-1, 10% IN CS2 FOR 1330-600 CM-1); BECKMAN IR-7 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10.75% IN CCl4 FOR 3800-1300, 2.24% IN CS2 FOR 1300-620, AND 10.75% IN CCl4 FOR 620-250 CM-1) VERSUS SOLVENT; Not specified, most likely a grating or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1990. |
NIST MS number | 118614 |
References
Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Lindberg and Stenholm, 1966
Lindberg, J.J.; Stenholm, V.,
Viscosities, Densities, and Related Properties of Binary Mixtures Containing Dimethyl Sulphoxide and Mono-Subst. Benzenes or Guaiacol,
Suom. Kemistiseuran Tied., 1966, 75, 22. [all data]
Douglas, 1948
Douglas, T.B.,
Vapor Pressure of Methyl Sulfoxide from 20 to 50 deg. Calculation of the Heat of Vaporization,
J. Am. Chem. Soc., 1948, 70, 2001. [all data]
Douglas, 1946
Douglas, T.B.,
Heats of Formation of Liquid Methyl Sulfoxide and Crystalline Methyl Sulfone at 18 deg.,
J. Am. Chem. Soc., 1946, 68, 1072. [all data]
Clever and Westrum, 1970
Clever, H.L.; Westrum, E.F.,
Dimethyl sulfoxide and dimethyl sulfone. Heat capacities, enthalpies of fusion, and thermodynamic properties.,
J. Phys. Chem., 1970, 74, 1309. [all data]
Douglas, 1948, 2
Douglas, T.B.,
Vapor pressure of methyl sulfoxide from 20 to 50°. Calculation of the heat of vaporization,
J. Am. Chem. Soc., 1948, 70, 2001-20. [all data]
Douglas, 1948, 3
Douglas, Thomas B.,
Vapor Pressure of Methyl Sulfoxide from 20 to 50°. Calculation of the Heat of Vaporization,
J. Am. Chem. Soc., 1948, 70, 6, 2001-2002, https://doi.org/10.1021/ja01186a005
. [all data]
Al-Najjar and Al-Sammerrai, 2007
Al-Najjar, Hazim; Al-Sammerrai, Dhoaib,
Thermogravimetric determination of the heat of vaporization of some highly polar solvents,
J. Chem. Technol. Biotechnol., 2007, 37, 3, 145-152, https://doi.org/10.1002/jctb.280370302
. [all data]
Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R.,
Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Sassa, Konishi, et al., 1974
Sassa, Yoshimasa; Konishi, Ryoichi; Katayama, Takashi,
Isothermal vapor-liquid equilibrium data of DMSO [dimethyl sulfoxide] solutions by total pressure method. DMSO-acetone, DMSO-tetrahydrofuran, and DMSO-ethyl acetate systems,
J. Chem. Eng. Data, 1974, 19, 1, 44-48, https://doi.org/10.1021/je60060a004
. [all data]
Jakli and Alexander Van Hook, 1972
Jakli, Gyorgy; Alexander Van Hook, W.,
The vapor pressures of dimethyl sulfoxide and hexadeuterodimethyl sulfoxide from about 313 to 453 K,
The Journal of Chemical Thermodynamics, 1972, 4, 6, 857-864, https://doi.org/10.1016/0021-9614(72)90007-9
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
NISHIMURA, NAKAYAMA, et al., 1972
NISHIMURA, MICHIKO; NAKAYAMA, MUTSUO; YANO, TAKEO,
VAPOR PRESSURE OF PURE DMSO AND VAPOR-LIQUID EQUILIBRIA IN DMSO-H2O SYSTEM UNDER ISOBARIC CONDITIONS,
J. Chem. Eng. Japan / JCEJ, 1972, 5, 3, 223-226, https://doi.org/10.1252/jcej.5.223
. [all data]
Meszaros, 1969
Meszaros, S.,
Period. Polytech., Chem. Eng., 1969, 13, 1-2, 79. [all data]
Jakli and van Hook, 1972
Jakli, G.; van Hook, W.A.,
The Vapor Pressures of Dimethyl Sulfoxide and Hexadeuterodimethyl Sulfoxide from about 313 to 453 K,
J. Chem. Thermodyn., 1972, 4, 6, 857-864, https://doi.org/10.1016/0021-9614(72)90007-9
. [all data]
Clever and Westrum, 1970, 2
Clever, H.L.; Westrum, E.F., Jr.,
Dimethylsulfoxide and dimethylsulfone. Heat capacities, enthalpies of fusion, and thermodynamic properties,
J. Phys. Chem., 1970, 74, 1309-1317. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Notes
Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.