CF3O anion


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

CF3O- + Hydrogen cation = Carbonic difluoride

By formula: CF3O- + H+ = CF2O

Quantity Value Units Method Reference Comment
Δr1380. ± 8.4kJ/molG+TSHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Δr1454. ± 7.9kJ/molG+TSTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Δr<1431. ± 7.5kJ/molD-EAHuey, Dunlea, et al., 1996gas phase; EA > NO3
Δr1405.1kJ/molAcidLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Quantity Value Units Method Reference Comment
Δr1351. ± 6.7kJ/molIMRBHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Δr1425. ± 6.3kJ/molIMRBTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Δr1377. ± 5.0kJ/molH-TSLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.

CF3O- + Water = CH2F3O2-

By formula: CF3O- + H2O = CH2F3O2-

Quantity Value Units Method Reference Comment
Δr28. ± 4.2kJ/molN/AAmelynck, Van Bavel, et al., 2000gas phase

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Electron affinity of neutral species

EAneutral (eV) Method Reference Comment
4.39 ± 0.12D-EAHuey, Dunlea, et al., 1996Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
3.62 ± 0.11D-EATaft, Koppel, et al., 1990In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
>3.86808IMRBHuey, Dunlea, et al., 1996EA > NO3
3.70 ± 0.50EIAESpyrou, Hunter, et al., 1984From CF3OCF2H
4.1313D-EALarson and McMahon, 1983These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
>1.90 ± 0.20EIAEMacNeil and Thynne, 1972From CF3OOCF3
1.90 ± 0.10EIAEThynne and MacNeil, 1970From CF3OF
1.34862SIPage and Goode, 1969The Magnetron method, lacking mass analysis, is not considered reliable.

Protonation reactions

CF3O- + Hydrogen cation = Carbonic difluoride

By formula: CF3O- + H+ = CF2O

Quantity Value Units Method Reference Comment
Δr1380. ± 8.4kJ/molG+TSHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Δr1454. ± 7.9kJ/molG+TSTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Δr<1431. ± 7.5kJ/molD-EAHuey, Dunlea, et al., 1996gas phase; EA > NO3
Δr1405.1kJ/molAcidLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Quantity Value Units Method Reference Comment
Δr1351. ± 6.7kJ/molIMRBHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Δr1425. ± 6.3kJ/molIMRBTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Δr1377. ± 5.0kJ/molH-TSLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.

Vibrational and/or electronic energy levels

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

CO stretch 1514 Cs Ar IR Ault, 1980
CF stretch 1039 Cs Ar IR Ault, 1980
CF stretch 919 Cs Ar IR Ault, 1980
CF stretch 808 Cs Ar IR Ault, 1980
OCF deform. 555 Cs Ar IR Ault, 1980

Additional references: Jacox, 1994, page 302

Notes

CsInteraction with cesium

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Huey, Dunlea, et al., 1996
Huey, L.G.; Dunlea, E.J.; Howard, C.J., Gas-Phase Acidity of CF3OH, J. Phys. Chem., 1996, 100, 16, 6504, https://doi.org/10.1021/jp953058m . [all data]

Segovia and Ventura, 1997
Segovia, M.; Ventura, O.N., Density functional and G2 study of the strength of the OH bond in CF3OH, Chem. Phys. Lett., 1997, 277, 5-6, 490-496, https://doi.org/10.1016/S0009-2614(97)00860-9 . [all data]

Burk, Koppel, et al., 2000
Burk, P.; Koppel, I.A.; Rummel, A.; Trummal, A., Can O-H acid be more acidic than its S-H analog? A G2 study of fluoromethanols and fluoromethanethiols, J. Phys. Chem. A, 2000, 104, 7, 1602-1607, https://doi.org/10.1021/jp993487a . [all data]

Chyall and Squires, 1996
Chyall, L.J.; Squires, R.R., The Proton Affinity and Absolute Heat of Formation of Trifluoromethanpl, J. Phys. Chem., 1996, 100, 16435. [all data]

Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F., Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids, J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Amelynck, Van Bavel, et al., 2000
Amelynck, C.; Van Bavel, A.M.; Schoon, N.; Arijs, E., Gas phase reactions of CF3O- and CF3O-center dot H2O and their relevance to the detection of stratospheric HCl, Int. J. Mass Spectrom., 2000, 202, 1-3, 207-216, https://doi.org/10.1016/S1387-3806(00)00244-X . [all data]

Spyrou, Hunter, et al., 1984
Spyrou, S.M.; Hunter, S.R.; Christophorou, L.G., Studies of Negative Ion Formation in Fluoroethers and Fluorosulphides using Low-Energy (10 eV) Electron Beam and Electron Swarm Techniques., J. Chem. Phys., 1984, 81, 10, 4481, https://doi.org/10.1063/1.447417 . [all data]

MacNeil and Thynne, 1972
MacNeil, K.A.G.; Thynne, J.C.J., Negative ion formation at low electron energies by hexafluorodimethyl peroxide, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 135. [all data]

Thynne and MacNeil, 1970
Thynne, J.C.J.; MacNeil, K.A.G., Ionisation and dissociation of carbonyl fluoride and trifluoromethyl hypofluorite by electron impact, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 95. [all data]

Page and Goode, 1969
Page, F.M.; Goode, G.C., Negative Ions and the Magnetron., Wiley, NY, 1969. [all data]

Ault, 1980
Ault, B.S., Infrared matrix isolation study of the trihalomethoxy anions, J. Phys. Chem., 1980, 84, 25, 3448, https://doi.org/10.1021/j100462a028 . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References