1,3-Diazine
- Formula: C4H4N2
- Molecular weight: 80.0880
- IUPAC Standard InChIKey: CZPWVGJYEJSRLH-UHFFFAOYSA-N
- CAS Registry Number: 289-95-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Pyrimidine; m-Diazine; Metadiazine; Miazine; 1,3-Diazabenzene; Py; Pyr
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C10H5CrNO5 (solution) + (solution) = (solution) + (solution)
By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -61.9 | kJ/mol | KinS | Wovkulich and Atwood, 1980 | solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 106.3 ± 4.6 kJ/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 168.2 ± 2.5 kJ/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin; MS |
(cr) + (l) = C10H5NO5W (cr) + (g)
By formula: C6O6W (cr) + C4H4N2 (l) = C10H5NO5W (cr) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.6 | kJ/mol | N/A | Nakashima and Adamson, 1982 | The reaction enthalpy was calculated from the enthalpy of the reaction W(CO)6(solution) + py(solution) = W(CO)5(py)(solution) + CO(solution) in cyclohexane, 27.4 ± 2.9 kJ/mol, together with the enthalpies of solution of W(CO)6(cr), W(CO)5(py)(cr), and py(l), 35.7, 36.4, and 7.9 kJ/mol, respectively Nakashima and Adamson, 1982.; MS |
C4H3N2- + =
By formula: C4H3N2- + H+ = C4H4N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1612. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1576.5 ± 2.9 | kJ/mol | N/A | Wren, Vogelhuber, et al., 2012 | gas phase; B |
ΔrG° | 1577. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B |
(solution) + (solution) = C10H5NO5W (solution) + (solution)
By formula: C6O6W (solution) + C4H4N2 (solution) = C10H5NO5W (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.4 ± 2.9 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Cyclohexane; MS |
ΔrH° | 24.9 ± 2.9 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Benzene; MS |
ΔrH° | 18.4 ± 0.4 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Tetrahydrofuran; MS |
C39H68O3P2W (solution) + (solution) = C44H71NO3P2W (solution) + (g)
By formula: C39H68O3P2W (solution) + C4H4N2 (solution) = C44H71NO3P2W (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -39.7 ± 2.1 | kJ/mol | RSC | Gonzalez, Zhang, et al., 1988 | solvent: Toluene; MS |
ΔrH° | -41.8 ± 2.1 | kJ/mol | RSC | Gonzalez, Zhang, et al., 1988 | solvent: Tetrahydrofuran; MS |
C14H10CrN2O4 (cr) = 2 (g) + 4 (g) + (cr)
By formula: C14H10CrN2O4 (cr) = 2C4H4N2 (g) + 4CO (g) + Cr (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >199. | kJ/mol | TD-HFC | Adedeji, Connor, et al., 1978 | The reaction enthalpy is a low limit Adedeji, Connor, et al., 1978.; MS |
C8H6MoO3 (solution) + 3 (solution) = C18H15MoN3O3 (solution) + (solution)
By formula: C8H6MoO3 (solution) + 3C4H4N2 (solution) = C18H15MoN3O3 (solution) + C5H6 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -69.9 ± 2.9 | kJ/mol | RSC | Nolan, Hoff, et al., 1985 | solvent: Pyridine; Reaction temperature: 323 K; MS |
+ = C4H4N3O-
By formula: NO- + C4H4N2 = C4H4N3O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.5 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
C9H9CrN3O3 (solution) + 3 (solution) = C18H15CrN3O3 (solution) + 3 (solution)
By formula: C9H9CrN3O3 (solution) + 3C4H4N2 (solution) = C18H15CrN3O3 (solution) + 3C2H3N (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.1 ± 3.8 | kJ/mol | RSC | Mukerjee, Lang, et al., 1992 | solvent: Tetrahydrofuran; MS |
C7H9Cl2NPd (solution) + (l) = (PdCl2(C5H5N)2) (solution) + (solution)
By formula: C7H9Cl2NPd (solution) + C4H4N2 (l) = (PdCl2(C5H5N)2) (solution) + C2H4 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -57.7 ± 1.7 | kJ/mol | RSC | Partenheimer and Durham, 1974 | solvent: Dichloromethane; MS |
C10H5NO5W (cr) + (g) = (g) + (g)
By formula: C10H5NO5W (cr) + CO (g) = C6O6W (g) + C4H4N2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 83. ± 10. | kJ/mol | DSC | Daamen, van der Poel, et al., 1979 | Please also see Meester, Vriends, et al., 1976.; MS |
C12H16CrO5 (solution) + (solution) = (solution) + C10H5CrNO5 (solution)
By formula: C12H16CrO5 (solution) + C4H4N2 (solution) = C7H16 (solution) + C10H5CrNO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -84.1 ± 1.7 | kJ/mol | PAC | Yang, Vaida, et al., 1988 | solvent: Heptane; MS |
C39H66MoO3P3 (solution) + (solution) = C44H71MoNO3P2 (solution)
By formula: C39H66MoO3P3 (solution) + C4H4N2 (solution) = C44H71MoNO3P2 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -70.7 ± 2.5 | kJ/mol | RSC | Zhang, Gonzalez, et al., 1991 | solvent: Toluene; MS |
(cr) + 3 (g) = C18H15MoN3O3 (cr) + 3 (g)
By formula: C6MoO6 (cr) + 3C4H4N2 (g) = C18H15MoN3O3 (cr) + 3CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -50.4 ± 7.0 | kJ/mol | HFC | Adedeji, Connor, et al., 1978 | MS |
(cr) + 3 (g) = C18H15N3O3W (g) + 3 (g)
By formula: C6O6W (cr) + 3C4H4N2 (g) = C18H15N3O3W (g) + 3CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -54.7 ± 8.4 | kJ/mol | HFC | Adedeji, Connor, et al., 1978 | MS |
C10H5CrNO5 (cr) + (g) = (g) + (g)
By formula: C10H5CrNO5 (cr) + CO (g) = C6CrO6 (g) + C4H4N2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 75. ± 6. | kJ/mol | DSC | Daamen, van der Poel, et al., 1979 | MS |
C10H5MoNO5 (cr) + (g) = (g) + (g)
By formula: C10H5MoNO5 (cr) + CO (g) = C6MoO6 (g) + C4H4N2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57. ± 3. | kJ/mol | DSC | Daamen, van der Poel, et al., 1979 | MS |
By formula: Fe+ + C4H4N2 = (Fe+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 199. ± 7.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Cr+ + C4H4N2 = (Cr+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 177. ± 6.3 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Ti+ + C4H4N2 = (Ti+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 214. ± 10. | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Mn+ + C4H4N2 = (Mn+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Sc+ + C4H4N2 = (Sc+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 214. ± 9.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Mg+ + C4H4N2 = (Mg+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 5.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: V+ + C4H4N2 = (V+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 204. ± 7.1 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Ni+ + C4H4N2 = (Ni+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 244. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Al+ + C4H4N2 = (Al+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159. ± 5.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Zn+ + C4H4N2 = (Zn+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 208. ± 7.5 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Co+ + C4H4N2 = (Co+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 245. ± 13. | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Cu+ + C4H4N2 = (Cu+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 249. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C4H4N2+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.33 ± 0.07 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 885.8 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 855.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
>-0.24999 | ETS | Nenner and Schultz, 1975 | Pyrimidine. EA estimated as 0 eV, based on soln phase electrochemical correlations. G3MP2B3 calculations put EA at -4 kcal/mol; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.1 | PE | Piancastelli, Keller, et al., 1983 | LBLHLM |
9.23 | PE | Gleiter, Heilbronner, et al., 1972 | LLK |
9.32 ± 0.01 | PE | Asbrink, Fridh, et al., 1972 | LLK |
9.42 | PE | Dewar and Worley, 1969 | RDSH |
9.35 ± 0.01 | PI | Yencha and El-Sayed, 1968 | RDSH |
9.73 ± 0.03 | PE | Hush and Cheung, 1975 | Vertical value; LLK |
9.73 | PE | Suffolk, 1974 | Vertical value; LLK |
9.73 | PE | Gleiter, Heilbronner, et al., 1970 | Vertical value; RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C3H2N+ | 15.01 ± 0.10 | ? | EI | Momigny, Urbain, et al., 1965 | RDSH |
C3H3N+ | 12.87 ± 0.10 | HCN | EI | Momigny, Urbain, et al., 1965 | RDSH |
C4H3N2+ | 13.01 ± 0.10 | H | EI | Momigny, Urbain, et al., 1965 | RDSH |
De-protonation reactions
C4H3N2- + =
By formula: C4H3N2- + H+ = C4H4N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1612. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1576.5 ± 2.9 | kJ/mol | N/A | Wren, Vogelhuber, et al., 2012 | gas phase; B |
ΔrG° | 1577. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B |
Gas Chromatography
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | OV-101 | 110. | 744. | Golovnya, Kuz'menko, et al., 2000 | He; Phase thickness: 0.4 μm |
Capillary | OV-101 | 110. | 744. | Zhuravleva, 2000 | 50. m/0.3 mm/0.4 μm, He |
Capillary | OV-101 | 110. | 744. | Golovnya, Kuz'menko, et al., 1999 | 50. m/0.3 mm/0.4 μm, He |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | OV-1 | 702. | Yamaji, Kimura, et al., 1978 | Gas Chrom Q; Column length: 1. m; Program: not specified |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | PEG-2000 | 150. | 1303. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 180. | 1308. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 200. | 1318. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-1 | 718.4 | Gautzsch and Zinn, 1996 | 8. K/min; Tstart: 35. C; Tend: 300. C |
Packed | SE-30 | 728. | Peng, Ding, et al., 1988 | He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1257. | Peng, Yang, et al., 1991 | Program: not specified |
Capillary | DB-Wax | 1276. | Peng, Yang, et al., 1991 | Program: not specified |
References
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D.,
J. Organometal. Chem., 1980, 184, 77. [all data]
Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J.,
Inorg. Chem., 1972, 11, 72. [all data]
Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J.,
Inorg. Chem., 1967, 6, 2082. [all data]
Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W.,
J. Phys. Chem., 1982, 86, 2905. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Garver, J.M.; Kato, S.; Sheps, L.; Bierbaum, V.M.; Lineberger, W.C.,
C-H Bond Strengths and Acidities in Aromatic Systems: Effects of Nitrogen Incorporation in Mono-, Di-, and Triazines,
J. Am. Chem. Soc., 2012, 134, 15, 6584-6595, https://doi.org/10.1021/ja209566q
. [all data]
Gonzalez, Zhang, et al., 1988
Gonzalez, A.A.; Zhang, K.; Nolan, S.P.; Lopez de la Vega, R.; Mukerjee, S.L.; Hoff, C.D.,
Organometallics, 1988, 7, 2429. [all data]
Adedeji, Connor, et al., 1978
Adedeji, F.A.; Connor, J.A.; Demain, C.P.; Martinho Simões, J.A.; Skinner, H.A.; Zafarani- Moattar, M.T.,
J. Organometal. Chem., 1978, 149, 333. [all data]
Nolan, Hoff, et al., 1985
Nolan, S.P.; Hoff, C.D.; Landrum, J.T.,
J. Organometal. Chem., 1985, 282, 357. [all data]
Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H.,
Microsolvation of small anions by aromatic molecules: An exploratory study,
J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750
. [all data]
Mukerjee, Lang, et al., 1992
Mukerjee, S.L.; Lang, R.F.; Ju, T.; Kiss, G.; Hoff, C.D.; Nolan, S.P.,
Inorg. Chem., 1992, 31, 4885. [all data]
Partenheimer and Durham, 1974
Partenheimer, W.; Durham, B.,
J. Am. Chem. Soc., 1974, 96, 3800. [all data]
Daamen, van der Poel, et al., 1979
Daamen, H.; van der Poel, H.; Stufkens, D.J.; Oskam, A.,
Thermochim. Acta, 1979, 34, 69. [all data]
Meester, Vriends, et al., 1976
Meester, M.A.M.; Vriends, R.C.J.; Stufkens, D.J.; Vrieze, K.,
Inorg. Chim. Acta, 1976, 19, 95. [all data]
Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S.,
Polyhedron, 1988, 7, 1619. [all data]
Zhang, Gonzalez, et al., 1991
Zhang, K.; Gonzalez, A.A.; Murkerjee, S.L.; Chou, S.-J.; Hoff, C.D.; Kubat- Martin, K.A.; Barnhart, D.; Kubas, G.J.,
J. Am. Chem. Soc., 1991, 113, 9170. [all data]
Amunugama and Rodgers, 2001
Amunugama, R.; Rodgers, M.T.,
Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory,
J. Phys. Chem. A, 2001, 105, 43, 9883, https://doi.org/10.1021/jp010663i
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Nenner and Schultz, 1975
Nenner, I.; Schultz, G.J.,
Temporary negative ions and electron affinities of benzene and N-heterocyclic molecules: Pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine,
J. Chem. Phys., 1975, 62, 1747. [all data]
Piancastelli, Keller, et al., 1983
Piancastelli, M.N.; Keller, P.R.; Taylor, J.W.; Grimm, F.A.; Carlson, T.A.,
Angular distribution parameter as a function of photon energy for some mono- and diazabenzenes and its use for orbital assignment,
J. Am. Chem. Soc., 1983, 105, 4235. [all data]
Gleiter, Heilbronner, et al., 1972
Gleiter, R.; Heilbronner, E.; Hornung, V.,
Photoelectron spectra of azabenzenes azanaphthalenes: I. Pyridine, diazines s-triazine and s-tetrazine,
Helv. Chim. Acta, 1972, 55, 255. [all data]
Asbrink, Fridh, et al., 1972
Asbrink, L.; Fridh, C.; Jonsson, B.O.; Lindholm, E.,
Rydberg series in small molecules. XVI. Photoelectron, UV, mass and electron impact spectra of pyrimidine,
Int. J. Mass Spectrom. Ion Phys., 1972, 8, 215. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. II.The ionization potentials of azabenzenes and azanaphthalenes,
J. Chem. Phys., 1969, 51, 263. [all data]
Yencha and El-Sayed, 1968
Yencha, A.J.; El-Sayed, M.A.,
Lowest ionization potentials of some nitrogen heterocyclics,
J. Chem. Phys., 1968, 48, 3469. [all data]
Hush and Cheung, 1975
Hush, N.S.; Cheung, A.S.,
Ionization potentials and donor properties of nucleic acid bases and related compounds,
Chem. Phys. Lett., 1975, 34, 11. [all data]
Suffolk, 1974
Suffolk, R.J.,
The photoelectron spectra of the perfluorodiazines,
J. Electron Spectrosc. Relat. Phenom., 1974, 3, 53. [all data]
Gleiter, Heilbronner, et al., 1970
Gleiter, R.; Heilbronner, E.; Hornung, V.,
Lone pair interaction in pyridazine, pyrimidine, and pyrazine,
Angew. Chem. Int. Ed. Engl., 1970, 9, 901. [all data]
Momigny, Urbain, et al., 1965
Momigny, J.; Urbain, J.; Wankenne, H.,
Les effets de l'impact electronique sur la pyridine et les diazines isomeres,
Bull. Soc. Roy. Sci. Liege, 1965, 34, 337. [all data]
Golovnya, Kuz'menko, et al., 2000
Golovnya, R.V.; Kuz'menko, T.E.; Krikunova, N.I.,
The influence of alkyl substituents on the chromatographic indicator of self-association of N-containing heterocyclic compounds,
Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 321-324, https://doi.org/10.1007/BF02494681
. [all data]
Zhuravleva, 2000
Zhuravleva, I.L.,
Evaluation of the polarity and boiling points of nitrogen-containing heterocyclic compounds by gas chromatography,
Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 325-328, https://doi.org/10.1007/BF02494682
. [all data]
Golovnya, Kuz'menko, et al., 1999
Golovnya, R.V.; Kuz'menko, T.E.; Zhuravleva, I.L.,
Gas chromatographic indicator of the ability of five- and six-membered heterocyclic nitrogen-containing compounds for self-association in pure liquids,
Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 4, 726-729, https://doi.org/10.1007/BF02496256
. [all data]
Yamaji, Kimura, et al., 1978
Yamaji, A.; Kimura, S.; Kawasaki, H.; Yuki, H.,
Gas chromatographic analysis of pyrimidine and purine bases by retention indices,
Yakugaku Zasshi, 1978, 98, 1, 1536-1541. [all data]
Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L.,
Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases,
Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]
Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P.,
Use of incremental models to estimate the retention indexes of aromatic compounds,
Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946
. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F.,
Prediction of rentention idexes. II. Structure-retention index relationship on polar columns,
J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.