Oxygen cation


Reaction thermochemistry data

Go To: Top, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Oxygen cation + Carbon dioxide = (Oxygen cation • Carbon dioxide)

By formula: O2+ + CO2 = (O2+ • CO2)

Quantity Value Units Method Reference Comment
Δr41. ± 4.kJ/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr73.2J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase
Δr79.1J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=41.0 kJ/mol
Δr86.6J/mol*KN/ADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970
Δr84.J/mol*KN/AMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change calculated or estimated, DG>, ΔrH>
Quantity Value Units Method Reference Comment
Δr18.kJ/molDTRakshit and Warneck, 1981gas phase
Δr18.kJ/molFADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
39.600.PHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change calculated or estimated, DG>, ΔrH>

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O2+ + O2 = (O2+ • O2)

Quantity Value Units Method Reference Comment
Δr41. ± 5.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988gas phase
Δr104.7J/mol*KPHPMSConway and Janik, 1970gas phase
Δr84.J/mol*KPHPMSDurden, Kebarle, et al., 1969gas phase
Δr86.2J/mol*KPHPMSYang and Conway, 1964gas phase

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
16.300.DTRakshit and Warneck, 1981gas phase
14.300.DTRakshit and Warneck, 1980gas phase
14.296.FAHoward, Bierbaum, et al., 1972gas phase
25.200.FAAdams and Bohme, 1970gas phase

Oxygen cation + Nitrogen = (Oxygen cation • Nitrogen)

By formula: O2+ + N2 = (O2+ • N2)

Quantity Value Units Method Reference Comment
Δr21. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Δr22.kJ/molHPMSSpeller and Fitaire, 1983gas phase
Δr24.kJ/molPHPMSJanik and Conway, 1967gas phase
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase
Δr66.1J/mol*KHPMSSpeller and Fitaire, 1983gas phase
Δr79.1J/mol*KPHPMSJanik and Conway, 1967gas phase

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.0296.FAHoward, Bierbaum, et al., 1972gas phase

Oxygen cation + Ozone = (Oxygen cation • Ozone)

By formula: O2+ + O3 = (O2+ • O3)

Quantity Value Units Method Reference Comment
Δr60.7kJ/molFADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KN/ADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970
Quantity Value Units Method Reference Comment
Δr35.kJ/molFADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970

Oxygen cation + Nitrous oxide = (Oxygen cation • Nitrous oxide)

By formula: O2+ + N2O = (O2+ • N2O)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase
Δr45. ± 2.kJ/molDTIllies, 1988gas phase; ΔrH(0 K)=45.2 kJ/mol
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase
Δr64.0J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=45.2 kJ/mol

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
37.200.FAAdams and Bohme, 1970gas phase; switching reaction(O2+)O2

(Oxygen cation • Carbon dioxide) + Carbon dioxide = (Oxygen cation • 2Carbon dioxide)

By formula: (O2+ • CO2) + CO2 = (O2+ • 2CO2)

Quantity Value Units Method Reference Comment
Δr36. ± 2.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase
Δr31.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase
Δr63.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable

(Oxygen cation • 2Nitrogen) + Nitrogen = (Oxygen cation • 3Nitrogen)

By formula: (O2+ • 2N2) + N2 = (O2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr18. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Δr15.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase
Δr50.6J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable

(Oxygen cation • Nitrogen) + Nitrogen = (Oxygen cation • 2Nitrogen)

By formula: (O2+ • N2) + N2 = (O2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Δr18.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase
Δr57.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable

(Oxygen cation • Oxygen) + Oxygen = (Oxygen cation • 2Oxygen)

By formula: (O2+ • O2) + O2 = (O2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr25. ± 1.kJ/molPHPMSHiraoka, 1988gas phase
Δr28.7 ± 0.3kJ/molPHPMSConway and Janik, 1970gas phase
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, 1988gas phase
Δr133.0J/mol*KPHPMSConway and Janik, 1970gas phase

(Oxygen cation • 3Oxygen) + Oxygen = (Oxygen cation • 4Oxygen)

By formula: (O2+ • 3O2) + O2 = (O2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase
Δr10.3 ± 0.75kJ/molPHPMSConway and Janik, 1970gas phase
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka, 1988gas phase
Δr100.J/mol*KPHPMSConway and Janik, 1970gas phase

(Oxygen cation • 2Oxygen) + Oxygen = (Oxygen cation • 3Oxygen)

By formula: (O2+ • 2O2) + O2 = (O2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr10.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase
Δr10.6 ± 0.4kJ/molPHPMSConway and Janik, 1970gas phase
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase
Δr82.8J/mol*KPHPMSConway and Janik, 1970gas phase

(Oxygen cation • 4Oxygen) + Oxygen = (Oxygen cation • 5Oxygen)

By formula: (O2+ • 4O2) + O2 = (O2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr8.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase
Δr8. ± 3.kJ/molPHPMSConway and Janik, 1970gas phase
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka, 1988gas phase
Δr71.1J/mol*KPHPMSConway and Janik, 1970gas phase

(Oxygen cation • 4Nitrogen) + Nitrogen = (Oxygen cation • 5Nitrogen)

By formula: (O2+ • 4N2) + N2 = (O2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.184.HPMSSpeller and Fitaire, 1983gas phase

(Oxygen cation • 3Nitrogen) + Nitrogen = (Oxygen cation • 4Nitrogen)

By formula: (O2+ • 3N2) + N2 = (O2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.204.HPMSSpeller and Fitaire, 1983gas phase

(Oxygen cation • 5Carbon dioxide) + Carbon dioxide = (Oxygen cation • 6Carbon dioxide)

By formula: (O2+ • 5CO2) + CO2 = (O2+ • 6CO2)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka, Nakajima, et al., 1988gas phase; Entropy change calculated or estimated

(Oxygen cation • 7Oxygen) + Oxygen = (Oxygen cation • 8Oxygen)

By formula: (O2+ • 7O2) + O2 = (O2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr7.61kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated

(Oxygen cation • Oxygen) + Nitrogen = (Oxygen cation • Nitrogen • Oxygen)

By formula: (O2+ • O2) + N2 = (O2+ • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable
Quantity Value Units Method Reference Comment
Δr42.3J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable

(Oxygen cation • 10Nitrogen) + Nitrogen = (Oxygen cation • 11Nitrogen)

By formula: (O2+ • 10N2) + N2 = (O2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Oxygen cation • 9Nitrogen) + Nitrogen = (Oxygen cation • 10Nitrogen)

By formula: (O2+ • 9N2) + N2 = (O2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7.0 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr87.0J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Oxygen cation • 5Nitrogen) + Nitrogen = (Oxygen cation • 6Nitrogen)

By formula: (O2+ • 5N2) + N2 = (O2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Oxygen cation • 6Nitrogen) + Nitrogen = (Oxygen cation • 7Nitrogen)

By formula: (O2+ • 6N2) + N2 = (O2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Oxygen cation • 7Nitrogen) + Nitrogen = (Oxygen cation • 8Nitrogen)

By formula: (O2+ • 7N2) + N2 = (O2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8.8 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Oxygen cation • 8Nitrogen) + Nitrogen = (Oxygen cation • 9Nitrogen)

By formula: (O2+ • 8N2) + N2 = (O2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7.9 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Oxygen cation • 2Nitrous oxide) + Nitrous oxide = (Oxygen cation • 3Nitrous oxide)

By formula: (O2+ • 2N2O) + N2O = (O2+ • 3N2O)

Quantity Value Units Method Reference Comment
Δr25.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr79.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase

(Oxygen cation • 2Carbon dioxide) + Carbon dioxide = (Oxygen cation • 3Carbon dioxide)

By formula: (O2+ • 2CO2) + CO2 = (O2+ • 3CO2)

Quantity Value Units Method Reference Comment
Δr26. ± 1.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase
Quantity Value Units Method Reference Comment
Δr82.8J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase

(Oxygen cation • 3Nitrous oxide) + Nitrous oxide = (Oxygen cation • 4Nitrous oxide)

By formula: (O2+ • 3N2O) + N2O = (O2+ • 4N2O)

Quantity Value Units Method Reference Comment
Δr22.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase

(Oxygen cation • 3Carbon dioxide) + Carbon dioxide = (Oxygen cation • 4Carbon dioxide)

By formula: (O2+ • 3CO2) + CO2 = (O2+ • 4CO2)

Quantity Value Units Method Reference Comment
Δr21. ± 1.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase

(Oxygen cation • 4Nitrous oxide) + Nitrous oxide = (Oxygen cation • 5Nitrous oxide)

By formula: (O2+ • 4N2O) + N2O = (O2+ • 5N2O)

Quantity Value Units Method Reference Comment
Δr20.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase

(Oxygen cation • 4Carbon dioxide) + Carbon dioxide = (Oxygen cation • 5Carbon dioxide)

By formula: (O2+ • 4CO2) + CO2 = (O2+ • 5CO2)

Quantity Value Units Method Reference Comment
Δr19. ± 2.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase

(Oxygen cation • 5Nitrous oxide) + Nitrous oxide = (Oxygen cation • 6Nitrous oxide)

By formula: (O2+ • 5N2O) + N2O = (O2+ • 6N2O)

Quantity Value Units Method Reference Comment
Δr18.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase

(Oxygen cation • 6Nitrous oxide) + Nitrous oxide = (Oxygen cation • 7Nitrous oxide)

By formula: (O2+ • 6N2O) + N2O = (O2+ • 7N2O)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr84.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase

(Oxygen cation • Nitrous oxide) + Nitrous oxide = (Oxygen cation • 2Nitrous oxide)

By formula: (O2+ • N2O) + N2O = (O2+ • 2N2O)

Quantity Value Units Method Reference Comment
Δr31.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr84.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase

(Oxygen cation • 5Oxygen) + Oxygen = (Oxygen cation • 6Oxygen)

By formula: (O2+ • 5O2) + O2 = (O2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka, 1988gas phase
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka, 1988gas phase

(Oxygen cation • 6Oxygen) + Oxygen = (Oxygen cation • 7Oxygen)

By formula: (O2+ • 6O2) + O2 = (O2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 2.kJ/molPHPMSHiraoka, 1988gas phase
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka, 1988gas phase

Oxygen cation + Sulfur dioxide = (Oxygen cation • Sulfur dioxide)

By formula: O2+ + O2S = (O2+ • O2S)

Quantity Value Units Method Reference Comment
Δr40.kJ/molFAAdams and Bohme, 1970gas phase; switching reaction(O2+)O2; Conway and Janik, 1970

Oxygen cation + Water = (Oxygen cation • Water)

By formula: O2+ + H2O = (O2+ • H2O)

Quantity Value Units Method Reference Comment
Δr67.kJ/molFAAdams and Bohme, 1970gas phase; switching reaction(O2+)SO2, ΔrH>

(Oxygen cation • Nitrogen • Oxygen) + Nitrogen = (Oxygen cation • 2Nitrogen • Oxygen)

By formula: (O2+ • N2 • O2) + N2 = (O2+ • 2N2 • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.230.HPMSSpeller and Fitaire, 1983gas phase

Oxygen cation + Krypton = (Oxygen cation • Krypton)

By formula: O2+ + Kr = (O2+ • Kr)

Quantity Value Units Method Reference Comment
Δr32.kJ/molPDissJarrold, Misev, et al., 1984gas phase

Constants of diatomic molecules

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through March, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 16O2+
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A detailed review of O2+ and its spectrum may be found in Krupenie, 1972. Predicted electronc states and potential functions Beebe, Thulstrup, et al., 1976; contains references to earlier theoretical work.
x2 2Σ- 532.1 eV 1          x2 → A 526.4 eV 2
LaVilla, 1975
           (x2 → X) 531.8 eV 3
LaVilla, 1975
x1 4Σ- 531.0 eV 1          x1 → a 526.4 eV 2
LaVilla, 1975
Several additional states observed in ESCA studies Siegbahn, Nordling, et al., 1969 and tentatively assigned by Jonathan, Morris, et al., 1974.
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
(2Σg-) 29.5 eV 4           
(4Σg-) 27.5 eV 4           
(2Σu-) 15.8 eV 5           
c 4Σu- (100914) [1545] 6   [1.561] 7   [6.7E-6]  [1.1620] c → b V 51540.7 Z
LeBlanc, 1963; missing citation
(2Πu) (90000) 8           
B 2Σg- 66719 1156 9 22 9       (1.298) 10  
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D (2Δg) 62730 920 11 (12)       (1.33) 12  
C (2Φu) (53620) (900) 13          
b 4Σg- 49552 1196.77 Z 17.09 14  1.28729 15 0.02206  5.81E-6 1.85E-7 1.27964 b 16 → a 17 V 16666.74 Z
Nevin, 1938; Nevin and Murphy, 1941; Weniger, 1962
b' (4Πg) (48000) 18          b' ← a 
Moselev, Tadjeddine, et al., 1976
A 2Πu 40669.3 19 898.25 Z 13.573 7  1.06170 0.01936 20 -1.73E-4 5.94E-6 21  1.40905 A 22 → X 23 R 40068.1 Z
Bozoky, 1937; Feast, 1950; Bhale and Rao, 1968; Krupenie, 1972; Albritton, Harrop, et al., 1973; Colbourn and Douglas, 1977; Bhale and Narasimham, 1976
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a 4Πui 32964 24 1035.69 Z 10.39 14  1.10466 0.01575 25  4.88E-6 25  1.38138  
X 2Πg 197.3 26 1904.77 Z 16.259 14  1.6913 0.01976 27  5.32E-6 28  1.1164  
0 1904.77 Z 16.259 14  1.6913 0.01976 27  5.32E-6 28  1.1164  

Notes

1Removal of a 1s0 electron from the ground state of O2. 31
2Unresolved vertical transitions.
3Predicted vertical transition; in the X-ray emission spectrum of LaVilla, 1975 this transition is hidden by an artefact.
4Removal of a 2σg electron from the ground state of O2. 32
5Removal of a 2σu electron from the ground state of O2. 33
6Average of values obtained by photoelectron spectroscopy Edqvist, Lindholm, et al., 1970 and from the limits of Codling and Madden's Rydberg series.
7Spin splitting constant ε = 0.44 cm-1. Only bands having v'=0 occur in emission; predissociation Edqvist, Lindholm, et al., 1970, Schopman and Locht, 1974.
8Diffuse (predissociating) state observed in the photoelectron spectrum of O2; vertical I.P. ~24 eV Edqvist, Lindholm, et al., 1970, Gardner and Samson, 1975. Probably highest 2Πu sate of configuration ...πu3πg2 Dixon and Hull, 1969.
9From the limits of Tanaka and Takamine's Rydberg series; in good agreement with constants obtained from photoelectron spectra Edqvist, Lindholm, et al., 1970. Predissociation Doolittle, Schoen, et al., 1968, Schopman and Locht, 1974, Stockdale and Deleanu, 1974.
10Franck-Condon factor analysis of photoelectron band intensities Jonathan, Morris, et al., 1974.
11Only observed in the photoelectron spectrum of O2(1Δg) Jonathan and Morris, 1971, Jonathan, Morris, et al., 1974; tentatively identified as convergence limit of a fragmentary Rydberg series Lindholm, 1968. Predissociation Schopman and Locht, 1974.
12Franck-Condon factor analysis of the photoelectron spectrum Jonathan, Morris, et al., 1974.
13Only observed in the photoelectron spectrum of O2(1Δg) Jonathan, Morris, et al., 1974; vibrational numbering uncertain.
14RKR potential curves Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979. Calculated Franck-Condon factors for ionizing transitions from X 3Σg-, a 1Δg, b 1Σg+ Halmann and Laulicht, 1965, Asundi and Ramachandrarao, 1969, Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979, and for recombination transitions from X 2Πg and a 4Πu to B 3Σu- Krupenie, 1972. Halmann and Laulicht, 1965 give also results for 16O18O and 18O2; note, however, that their calculations for transitions to X 2Πg are based on the previously accepted but now abandoned vibrational numbering for the ground state of O2+ and lead to disagreement with observed photo-electron intensities Spohr and Puttkamer, 1967. Experimental Franck-Condon factors from photoelectron spectra Edqvist, Lindholm, et al., 1970, Gardner and Samson, 1974, Gardner and Samson, 1975.
15Spin splitting constant ε =0.1487 cm-1.
16Radiative lifetime τ = 1.15 μs Jeunehomme, 1966, Fink and Welge, 1968, Borst and Zipf, 1970, Fairbairn, 1974.
17Observed in various discharges Rao, 1963 and in aurorae Nicolet and Dogniaux, 1950, Vegard, 1950, Dahlstrom and Hunten, 1951, Rao, 1964. Excitation by electron impact Nishimura, 1968, by fast ions Herman, Ferguson, et al., 1961, Dufay, Druetta, et al., 1965. Franck-Condon factors Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979. Rotational line strengths Zare, 1972.
18Weakly bound state arising from 3P + 4S Beebe, Thulstrup, et al., 1976; in its unstable region observed by laser photofragment spectroscopy.
19Av increases from A0 = -3.6 to A15 = +10.0 Bhale, 1972, Albritton, Harrop, et al., 1973, Colbourn and Douglas, 1977, Bhale and Narasimham, 1976. Theoretical interpretation Raftery and Richards, 1975.
20Constants fitted to v'≤8 Albritton, Harrop, et al., 1973. Additional Bv values up to v=15 are listed by Colbourn and Douglas, 1977 who also give Λ-type doubling constants.
21Dv= +0.06(v+1/2) + 0.012(v+1/2)2 Albritton, Harrop, et al., 1973; the Dv values have been computed Albritton, Harrop, et al., 1973 from the experimental potential curve.
22Radiative lifetime τ = 0.69 μs Jeunehomme, 1966, Fink and Welge, 1968.
23Excitation by electron impact; its effect on the rotational temperature Branscomb, 1950. Franck-Condon factors Asundi and Ramachandrarao, 1969, Albritton, Schmeltekopf, et al., 1969, Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979.
24A0...A6 = -47.79 ... -48.01 Kovacs and Weniger, 1962; anomalous dependence on J of the multiplet splitting Budo and Kovacs, 1955, Kovacs and Weniger, 1962. Te calculated from the limit (b 4Σg-) of Tanaka and Takamine's Rydberg series with I.P (O2), v00(b→a), and the constants for a, X.
25Constants representing v=0,1,2; βe = -0.095~E-6, v=0,1,2 Nevin, 1938. For v = 3...6, see Nevin and Murphy, 1941, Weniger, 1962. Slightly different constants in Veseth, 1975.
26Av decreases from A0 = +200.33 Colbourn and Douglas, 1977 to A10 = +192.05 Albritton, Harrop, et al., 1973. See also Raftery and Richards, 1975.
27Constants fitted to v≤10 Albritton, Harrop, et al., 1973. Selected Bv values have been reevaluated from more precise measurements by Colbourn and Douglas, 1977 who also give improved Λ-type doubling constants.
28Dv= +0.03E-6(v+1/2) + ... Albritton, Harrop, et al., 1973; Dv computed from RKR potential Albritton, Harrop, et al., 1973.
29D00(O2) + I.P.(O) - I.P.(O2)
30From the electron impact appearance potential of O2++, A.P. = 36.3 eV Dorman and Morrison, 1963, and I.P.(O2). Daly and Powell, 1967 give A.P. = 37.2 eV.
31Highly excited states (K limits) observed in X-ray photo-electron Siegbahn, Nordling, et al., 1969 and emission LaVilla, 1975 spectra.
32Observed in the low-resolution X-ray photoelectron spectrum of Siegbahn, Nordling, et al., 1969. In the 304 Å photoelectron spectrum Gardner and Samson, 1975, 2, Gardner and Samson, 1975 find a very broad maximum corresponding to 4Σg- and two sharp peaks (I.P. 40.33 and 40.40 eV) corresponding to 2Σg-.
33Observed in the X-ray photoelectron spectrum Siegbahn, Nordling, et al., 1969. A very weak broad maximum appears near 27.5 eV in the 304 Å photoelectron spectrum of Edqvist, Lindholm, et al., 1970; not confirmed by Gardner and Samson, 1975. See also Jonathan, Morris, et al., 1974.

References

Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hiraoka, Nakajima, et al., 1988
Hiraoka, K.; Nakajima, G.; Shoda, S., Determination of the Stabilities of CO2+(CO2)n and O2+(CO2)n Clusters with n = 1 - 6, Chem. Phys. Lett., 1988, 146, 6, 535, https://doi.org/10.1016/0009-2614(88)87495-5 . [all data]

Illies, 1988
Illies, A.J., Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures, J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037 . [all data]

Dotan, Davidson, et al., 1978
Dotan, I.; Davidson, J.A.; Fehsenfeld, F.C.; Albritton, D.L., Reactions of O2+.O2 with CO2, O3 and CH4 and O2+.O3 with H2O and CH4 and their Role in Stratospheric Ion Chemistry, J. Geophys. Res., 1978, 83, C8, 4036, https://doi.org/10.1029/JC083iC08p04036 . [all data]

Conway and Janik, 1970
Conway, D.C.; Janik, G.S., Determination of the Bond Energies for the Series O2 - O2+ through O2 - O10+, J. Chem. Phys., 1970, 53, 5, 1859, https://doi.org/10.1063/1.1674262 . [all data]

Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H., Proton Affinity and Ion - Molecule Clustering in CO2 and CS2. Applications in Martian Ionospheric Chemistry, J. Chem. Phys., 1977, 66, 10, 4527, https://doi.org/10.1063/1.433706 . [all data]

Rakshit and Warneck, 1981
Rakshit, A.B.; Warneck, P., Formation and Reactions of O2+.CO2, O2+.H2O and O2+(CO2)2 Ions, Int. J. Mass Spectrom Ion Phys., 1981, 40, 2, 135, https://doi.org/10.1016/0020-7381(81)80037-X . [all data]

Hiraoka, 1988
Hiraoka, K., A Determination of the Stabilities of O2+(O2)n and O2-(O2)n with n = 1 - 8 from Measurements of the Gas-Phase Ion Equilibria, J. Chem. Phys., 1988, 89, 5, 3190, https://doi.org/10.1063/1.454976 . [all data]

Durden, Kebarle, et al., 1969
Durden, D.A.; Kebarle, P.; Good, A., Thermal Ion-Molecule Reaction Rate Constants at Pressures up to 10 torr with a Pulsed Mass Spectrometer. Reactions in Methane, Krypton, and Oxygen, J. Chem. Phys., 1969, 50, 2, 805, https://doi.org/10.1063/1.1671133 . [all data]

Yang and Conway, 1964
Yang, J.H.; Conway, D.C., Bonding in Ion Clusters. I. O4+, J. Chem. Phys., 1964, 40, 6, 1729, https://doi.org/10.1063/1.1725389 . [all data]

Rakshit and Warneck, 1980
Rakshit, A.B.; Warneck, P., A Drift Chamber Study of the Formation of Water Cluster Ions in Oxygen, J. Chem. Phys., 1980, 73, 10, 5074, https://doi.org/10.1063/1.439985 . [all data]

Howard, Bierbaum, et al., 1972
Howard, C.J.; Bierbaum, V.M.; Rundle, H.W.; Kaufman, F., Kinetics and Mechanism of Formation of Water Cluster Ions from O2+ and H2O+, J. Chem. Phys., 1972, 57, 8, 3491, https://doi.org/10.1063/1.1678783 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Hiraoka and Nakajima, 1988
Hiraoka, K.; Nakajima, G., A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria, J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285 . [all data]

Speller and Fitaire, 1983
Speller, C.V.; Fitaire, M., Proceedings of the 16th International Conference on Phenomena of Ionized Gases, H. Boetticher, H. Wenk and E. Shulz - Gulde, ed(s)., ICPIG, Dusseldorf, 1983, 568. [all data]

Janik and Conway, 1967
Janik, G.S.; Conway, D.C., Bonding in Heteromolecular Ion Clusters. N2O2+, J. Phys. Chem., 1967, 71, 4, 823, https://doi.org/10.1021/j100863a007 . [all data]

Hiraoka, Fujimaki, et al., 1994
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Sato, T.; Yamabe, S., Gas-Phase Solavtion of NO+, O2+, N2O+, and H3O+ with N2O, J. Chem. Phys., 1994, 101, 5, 4073, https://doi.org/10.1063/1.467524 . [all data]

Jarrold, Misev, et al., 1984
Jarrold, M.F.; Misev, L.; Bowers, M.T., Charge Transfer Half - Collisions: Photodissociation of the Kr.O2+ cluster Ion with Resolution of the Product Vibrational States, J. Chem. Phys., 1984, 81, 10, 4369, https://doi.org/10.1063/1.447448 . [all data]

Krupenie, 1972
Krupenie, P.H., The spectrum of molecular oxygen, J. Phys. Chem. Ref. Data, 1972, 1, 423. [all data]

Beebe, Thulstrup, et al., 1976
Beebe, N.H.F.; Thulstrup, E.W.; Andersen, A., Configuration interaction calculations of low-lying electronic states of O2,O2+, and O22+, J. Chem. Phys., 1976, 64, 2080. [all data]

LaVilla, 1975
LaVilla, R.E., The O Kα and C Kα emission and O K absorption spectra from O2 and CO2. IV, J. Chem. Phys., 1975, 63, 2733. [all data]

Siegbahn, Nordling, et al., 1969
Siegbahn, K.; Nordling, C.; Johansson, G.; Hedman, J.; Heden, P.F.; Hamrin, k.; Gelius, U.; Bergmark, T.; Werme, L.O.; Manne, R.; Baer, ESCA Applied to Free Molecules, North-Holland Publishing Company, Amsterdam, 1969, 0. [all data]

Jonathan, Morris, et al., 1974
Jonathan, N.; Morris, A.; Okuda, M.; Ross, K.J.; Smith, D.J., Vacuum ultraviolet photoelectron spectroscopy of transient species, J. Chem. Soc. Faraday Trans. 2, 1974, 70, 1810. [all data]

LeBlanc, 1963
LeBlanc, F.J., Electronic states of Hopfield's oxygen emission bands, J. Chem. Phys., 1963, 38, 487. [all data]

Nevin, 1938
Nevin, T.E., Rotational analysis of the first negative band spectrum of oxygen, Philos. Trans. R. Soc. London A, 1938, 237, 471. [all data]

Nevin and Murphy, 1941
Nevin, T.E.; Murphy, T., Analysis of the (0,3) band of the first negative system of the 0g+ molecule, Proc. R. Ir. Acad. Sect. A:, 1941, 46, 169-181. [all data]

Weniger, 1962
Weniger, S., Etude du spectre de la molecule d'oxygene ionisee dans le proche infra-rouge, J. Phys. Radium, 1962, 23, 225. [all data]

Moselev, Tadjeddine, et al., 1976
Moselev, J.T.; Tadjeddine, M.; Durup, J.; Ozenne, J.-B.; Pernot, C.; Tabche-Fouhaille, A., High resolution threshold photofragment spectroscopy of O2+(a4Πu → f4Πg), Phys. Rev. Lett., 1976, 37, 891. [all data]

Bozoky, 1937
Bozoky, L.v., Rotationsanalyse von O2+-, 2Π→2Π-banden, Z. Phys., 1937, 104, 275. [all data]

Feast, 1950
Feast, M.W., New O2+ second negative bands: a note on O3 and OΠ emission spectra, Proc. Phys. Soc. London Sect. A, 1950, 63, 557. [all data]

Bhale and Rao, 1968
Bhale, G.L.; Rao, P.R., Isotope shifts in the second negative bands of O2+, Proc. Indian Acad. Sci., 1968, A67, 350. [all data]

Albritton, Harrop, et al., 1973
Albritton, D.L.; Harrop, W.J.; Schmeltekopf, A.L.; Zare, R.N., Rotational analysis of the A2Πu-X2Πg second negative band system of O2+, J. Mol. Spectrosc., 1973, 46, 89. [all data]

Colbourn and Douglas, 1977
Colbourn, E.A.; Douglas, A.E., A remeasurement of some constants of the O2+ and N2+ molecules, J. Mol. Spectrosc., 1977, 65, 332. [all data]

Bhale and Narasimham, 1976
Bhale, G.L.; Narasimham, N.A., Reinvestigation of the second negative (A2Πu-X2Πg) band system of O2+, Pramana, 1976, 7, 324. [all data]

Edqvist, Lindholm, et al., 1970
Edqvist, O.; Lindholm, E.; Selin, L.E.; Asbrink, L., On the photoelectron spectrum of O2, Physica Scripta, 1970, 1, 25. [all data]

Schopman and Locht, 1974
Schopman, J.; Locht, R., The observation of predissociations in the oxygen molecular ion by low-energy electron impact, Chem. Phys. Lett., 1974, 26, 596. [all data]

Gardner and Samson, 1975
Gardner, J.L.; Samson, J.A.R., Photoion and photoelectron spectroscopy of oxygen, J. Chem. Phys., 1975, 62, 4460. [all data]

Dixon and Hull, 1969
Dixon, R.N.; Hull, S.E., The photo-ionization of π-electrons from O2, Chem. Phys. Lett., 1969, 3, 367. [all data]

Doolittle, Schoen, et al., 1968
Doolittle, P.H.; Schoen, R.I.; Schubert, K.E., Dissociative photoionization of O2, J. Chem. Phys., 1968, 49, 5108. [all data]

Stockdale and Deleanu, 1974
Stockdale, J.A.D.; Deleanu, L., Vibrational structure in kinetic energy spectra of O+ ions from electron impact dissociative ionization of O2: predissociation of the B2Σg- state of O2+, Chem. Phys. Lett., 1974, 28, 588. [all data]

Jonathan and Morris, 1971
Jonathan, N.; Morris, A., High resolution vacuum ultraviolet photoelectron spectra of transient species: O2(1Δg) and previously unobserved states of O2+, J. Chem. Phys., 1971, 54, 11, 4954-4955. [all data]

Lindholm, 1968
Lindholm, E., Rydberg series in small molecules. IV. Rydberg series in O2, Ark. Fys., 1968, 40, 9, 117-124. [all data]

Albritton, Schmeltekopf, et al., 1979
Albritton; Schmeltekopf; Zare, Diatomic Intensity Factors, to be published, cited in Huber and Herzberg, 1979, Wiley, 1979, 1. [all data]

Halmann and Laulicht, 1965
Halmann, M.; Laulicht, I., Isotope effects on vibrational transition probabilities. III. Ionization of isotopic H2, N2,,O2, NO, CO, and HCl molecules, J. Chem. Phys., 1965, 43, 1503. [all data]

Asundi and Ramachandrarao, 1969
Asundi, R.K.; Ramachandrarao, Ch.V.S., Revised Franck-Condon factors for the ionization transition of O2 and the second negative band system of O2+, Chem. Phys. Lett., 1969, 4, 89. [all data]

Spohr and Puttkamer, 1967
Spohr, R.; Puttkamer, E.v., Energiemessung von Photoelektronen und Franck-Condon-Faktoren der Schwingungsubergange einiger Molekulionen, Z. Naturforsch., 1967, 22a, 705. [all data]

Gardner and Samson, 1974
Gardner, J.L.; Samson, J.A.R., Vibrational intensity distributions for continuum photoionization of oxygen, J. Chem. Phys., 1974, 61, 5472. [all data]

Jeunehomme, 1966
Jeunehomme, M., Oscillator strengths of the negative systems of oxygen, J. Chem. Phys., 1966, 44, 4253. [all data]

Fink and Welge, 1968
Fink, E.H.; Welge, K.H., Lebensdauern und Loschquerschnitte elektronisch angeregter Zustande von N2O+, NO, O2+, CO+ und CO, Z. Naturforsch. A, 1968, 23, 358. [all data]

Borst and Zipf, 1970
Borst, W.L.; Zipf, E.C., Excitation of O2+ first negative bands by electron impact on O2, Phys. Rev. A: Gen. Phys., 1970, 1, 1410. [all data]

Fairbairn, 1974
Fairbairn, A.R., Radiative lifetime of O2+, J. Chem. Phys., 1974, 60, 521. [all data]

Rao, 1963
Rao, P.S.R., Vibrational intensities of the O2+ (first negative) bands, Proc. Phys. Soc. London, 1963, 81, 240. [all data]

Nicolet and Dogniaux, 1950
Nicolet, M.; Dogniaux, R., Nouvelles suggestions au sujet de l'interpretation du spectre des aurores, J. Geophys. Res., 1950, 55, 21. [all data]

Vegard, 1950
Vegard, L., Nouveaux resultats importants dans l'etude du spectre des aurores boreales et la physique de l'ionosphere, Ann. Geophys., 1950, 6, 157. [all data]

Dahlstrom and Hunten, 1951
Dahlstrom, C.E.; Hunten, D.M., O2+ and H in the auroral spectrum, Phys. Rev., 1951, 84, 378. [all data]

Rao, 1964
Rao, P.S.R., A comparison of intensities of the O2+ (first negative) bands excited in a hollow-cathode discharge and in aurorae, Nature (London), 1964, 201, 1112. [all data]

Nishimura, 1968
Nishimura, H., Excitation of N2+, O2+ and CO2+ band of electron impact, J. Phys. Soc. Jpn., 1968, 24, 130. [all data]

Herman, Ferguson, et al., 1961
Herman, L.; Ferguson, H.I.S.; Nicholls, R.W., Excitation of the first negative system of O2+ by a proton beam in air and oxygen, Can. J. Phys., 1961, 39, 476. [all data]

Dufay, Druetta, et al., 1965
Dufay, M.; Druetta, M.; Eidelsberg, M., Sur la luminescence de l'oxygene excitee par choc de particules accelerees sous 500 keV, C.R. Acad. Sci. Paris, 1965, 260, 1123. [all data]

Zare, 1972
Zare, R.N., Rotational line strengths: the O2+b4Σg- - a4Πu band system in Molecular Spectroscopy: Modern Research, Rao,K.N.; Mathews,C.W., ed(s)., Academic Press, New York, 1972, 207-221. [all data]

Bhale, 1972
Bhale, G.L., Spin-orbit coupling constant in the A2Πu state of O2+, J. Mol. Spectrosc., 1972, 43, 171. [all data]

Raftery and Richards, 1975
Raftery, J.; Richards, W.G., On the variation of the spin-orbit coupling in O2+, J. Chem. Phys., 1975, 62, 3184. [all data]

Branscomb, 1950
Branscomb, L.M., Anomalous molecular rotation and the temperature of the upper atmosphere, Phys. Rev., 1950, 79, 619. [all data]

Albritton, Schmeltekopf, et al., 1969
Albritton, D.L.; Schmeltekopf, A.L.; Zare, R.N., Evidence in support of the vibrational renumbering of the O2+g ground state, J. Chem. Phys., 1969, 51, 1667. [all data]

Kovacs and Weniger, 1962
Kovacs, I.; Weniger, S., Sur l'interpretation de la separation anomale des composantes du multiplet de l'etat 4Π de la molecule d'oxygene ionisee, J. Phys. Radium, 1962, 23, 377. [all data]

Budo and Kovacs, 1955
Budo, A.; Kovacs, I., Uber den 4Π-Zustand des O2+-Molekuls, Acta Phys. Acad. Sci. Hung., 1955, 4, 273. [all data]

Veseth, 1975
Veseth, L., Fine structure of 4Π states in diatomic molecules, Phys. Scr., 1975, 12, 125. [all data]

Dorman and Morrison, 1963
Dorman, F.H.; Morrison, J.D., Ionization potentials of doubly charged oxygen and nitrogen, J. Chem. Phys., 1963, 39, 1906. [all data]

Daly and Powell, 1967
Daly, N.R.; Powell, R.E., Electron collisions in oxygen, Proc. Phys. Soc. (London), 1967, 90, 629. [all data]

Gardner and Samson, 1975, 2
Gardner, J.L.; Samson, J.A.R., Vibrational structure in the photoelectron spectrum of O2+2Σg-g2s), Chem. Phys. Lett., 1975, 32, 315. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References