1-Hexanol
- Formula: C6H14O
- Molecular weight: 102.1748
- IUPAC Standard InChIKey: ZSIAUFGUXNUGDI-UHFFFAOYSA-N
- CAS Registry Number: 111-27-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Hexyl alcohol; n-Hexan-1-ol; n-Hexanol; n-Hexyl alcohol; Amylcarbinol; Caproyl alcohol; Hexanol; Pentylcarbinol; 1-Hexyl alcohol; 1-Hydroxyhexane; n-C6H13OH; Hexan-1-ol; Hexanol-(1); Epal 6; NSC 9254
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -316. ± 10. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 439.7 ± 2.1 | J/mol*K | N/A | Green J.H.S., 1961 | Other third-law value of entropy at 298.15 K is 441.41(4.18) J/mol*K [ Chermin H.A.G., 1961].; GT |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -377.5 ± 0.44 | kJ/mol | Ccb | Mosselman and Dekker, 1975 | ALS |
ΔfH°liquid | -379.4 ± 1.0 | kJ/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; ALS |
ΔfH°liquid | -383.9 ± 2.0 | kJ/mol | Ccb | Green, 1960 | ALS |
ΔfH°liquid | -387.7 | kJ/mol | Cm | Kelley, 1929 | hfusion=3.68 kcal/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3984.37 ± 0.44 | kJ/mol | Ccb | Mosselman and Dekker, 1975 | Corresponding ΔfHºliquid = -377.50 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -3982.6 ± 0.92 | kJ/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -379.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -3978.1 ± 2.0 | kJ/mol | Ccb | Green, 1960 | Corresponding ΔfHºliquid = -383.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -3978.1 | kJ/mol | Ccb | Verkade and Coops, 1927 | Corrected for 298 and 1 atm.; Corresponding ΔfHºliquid = -383.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 287.4 | J/mol*K | N/A | Kelley, 1929, 2 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
243.2 | 298.15 | Atrashenok, Nesterov, et al., 1991 | T = 227 to 363 K. Cp(liq) = 2.37095 - 0.0851173(T/100) - 0.195794(T/100)2 - 0.00639224(T/100)3 + 0.0530459(T/100)4 - 0.00859433(T/100)5 kJ/kg*K.; DH |
242.5 | 298.15 | Vesely, Barcal, et al., 1989 | T = 298.15 to 318.15 K.; DH |
241.32 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
237.85 | 298.15 | Ortega, 1986 | DH |
240.57 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
239.68 | 298.15 | Costas and Patterson, 1985 | T = 283.15, 298.15, 313.15 K.; DH |
239.62 | 298.15 | Bravo, Pintos, et al., 1984 | DH |
249.15 | 300.607 | Kalinowska and Woycicki, 1984 | T = 230 to 300 K. Value is unsmoothed experimental datum.; DH |
241.32 | 298.15 | Zegers and Somsen, 1984 | DH |
240.65 | 298.15 | Benson, D'Arcy, et al., 1983 | DH |
236.5 | 293.15 | Arutyunyan, 1981 | T = 273 to 533 K. p = 0.1 MPa. Unsmoothed experimental datum at 293.15 K, Cp = 2.315 kJ/kg*K.; DH |
236.5 | 293.15 | Arutyunyan, 1981 | T = 293 to 393 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.315 kJ/kg*K. Cp given from 293.15 to 533.15 K for pressure range 10 to 60 MPa.; DH |
247.7 | 303.74 | Griigo'ev, Yanin, et al., 1979 | T = 303 to 462 K. p = 0.98 bar.; DH |
244.8 | 298. | Hutchinson and Bailey, 1959 | DH |
232.46 | 290.01 | Kelley, 1929, 2 | T = 16 to 298 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 430. ± 2. | K | AVG | N/A | Average of 54 out of 59 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 225. ± 5. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 225.8 | K | N/A | Kelley, 1929, 3 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 610.5 ± 0.9 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 34.2 ± 0.2 | bar | N/A | Gude and Teja, 1995 | |
Pc | 34.20 | bar | N/A | Quadri, Khilar, et al., 1991 | Uncertainty assigned by TRC = 0.50 bar; TRC |
Pc | 34.13 | bar | N/A | Rosenthal and Teja, 1990 | Uncertainty assigned by TRC = 0.06 bar; TRC |
Pc | 34.13 | bar | N/A | Rosenthal and Teja, 1989 | Uncertainty assigned by TRC = 0.20 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.387 | l/mol | N/A | Gude and Teja, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.58 ± 0.02 | mol/l | N/A | Gude and Teja, 1995 | |
ρc | 2.62 | mol/l | N/A | Teja, Lee, et al., 1989 | TRC |
ρc | 2.54 | mol/l | N/A | Anselme and Teja, 1988 | Uncertainty assigned by TRC = 0.06 mol/l; TRC |
ρc | 2.62 | mol/l | N/A | Efremov, 1966 | Uncertainty assigned by TRC = 0.03 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 61. ± 2. | kJ/mol | AVG | N/A | Average of 13 out of 14 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
44.5 | 430.5 | N/A | Majer and Svoboda, 1985 | |
59.7 | 359. | EB | Gierycz, Kosowski, et al., 2009 | Based on data from 344. to 384. K.; AC |
51.4 | 385. | EB | Tan, Li, et al., 2004 | Based on data from 370. to 416. K.; AC |
62.0 | 288. | GS | Kulikov, Verevkin, et al., 2001 | Based on data from 265. to 328. K.; AC |
61.9 ± 0.2 | 301. | GS | Verevkin, 1998 | Based on data from 268. to 333. K.; AC |
61.2 | 296. | N/A | N'Guimbi, Kasehgari, et al., 1992 | Based on data from 253. to 338. K.; AC |
57.7 | 313. | A | Stephenson and Malanowski, 1987 | Based on data from 298. to 343. K.; AC |
58.5 | 340. | DTA | Stephenson and Malanowski, 1987 | Based on data from 325. to 431. K. See also Kemme and Kreps, 1969.; AC |
58.5 ± 0.2 | 328. | C | Majer, Svoboda, et al., 1985 | AC |
57.6 ± 0.2 | 343. | C | Majer, Svoboda, et al., 1985 | AC |
55.2 ± 0.2 | 358. | C | Majer, Svoboda, et al., 1985 | AC |
53.8 ± 0.2 | 368. | C | Majer, Svoboda, et al., 1985 | AC |
47.9 | 395. | EB | Reddy, Rao, et al., 1985 | Based on data from 380. to 417. K.; AC |
57.9 | 323. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 308. to 430. K.; AC |
56.0 | 349. | N/A | Rose and Supina, 1961 | Based on data from 334. to 381. K.; AC |
57.9 | 348. | N/A | Butler, Ramchandani, et al., 1935 | Based on data from 333. to 425. K. See also Boublik, Fried, et al., 1984.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 368. |
---|---|
A (kJ/mol) | 72.06 |
α | -1.059 |
β | 1.0052 |
Tc (K) | 610. |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
325.4 to 430.5 | 4.41271 | 1422.031 | -107.706 | Kemme and Kreps, 1969 | |
334.1 to 381.7 | 5.64356 | 2117.967 | -51.988 | Rose and Supina, 1961 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
15.380 | 225.8 | Kelley, 1929, 2 | DH |
15.48 | 225.8 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
68.11 | 225.8 | Kelley, 1929, 2 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
53. | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
65. | V | N/A | ||
58. | M | Buttery, Ling, et al., 1969 | ||
64. | V | Butler, Ramchandani, et al., 1935, 2 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
799. | Holmes, Aubry, et al., 1999 | MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.89 | PE | Ashmore and Burgess, 1977 | LLK |
10.35 | PE | Ashmore and Burgess, 1977 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C2H4O+ | ~10.7 | ? | EI | Holmes, Terlouw, et al., 1976 | LLK |
C4H8+ | 9.89 | ? | EI | Holmes, Terlouw, et al., 1976 | LLK |
De-protonation reactions
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1565. ± 8.8 | kJ/mol | G+TS | Higgins and Bartmess, 1998 | gas phase; B |
ΔrH° | 1565. ± 13. | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results.; B |
ΔrH° | 1561. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1537. ± 8.4 | kJ/mol | IMRE | Higgins and Bartmess, 1998 | gas phase; B |
ΔrG° | 1538. ± 13. | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results.; B |
ΔrG° | 1533. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Green J.H.S., 1961
Green J.H.S.,
Thermodynamic properties of the normal alcohols C1-C12,
J. Appl. Chem., 1961, 11, 397-404. [all data]
Chermin H.A.G., 1961
Chermin H.A.G.,
Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol,
Petrol. Refiner, 1961, 40 (4), 127-130. [all data]
Mosselman and Dekker, 1975
Mosselman, C.; Dekker, H.,
Enthalpies of formation of n-alkan-1-ols,
J. Chem. Soc. Faraday Trans. 1, 1975, 417-424. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Rossini, 1934
Rossini, F.D.,
Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages,
J. Res. NBS, 1934, 13, 189-197. [all data]
Green, 1960
Green, J.H.S.,
Revision of the values of the heats of formation of normal alcohols,
Chem. Ind. (London), 1960, 1215-1216. [all data]
Kelley, 1929
Kelley, K.K.,
The heat capacities of ethyl and hexyl alcohols from 16°K. to 298°K. and the corresponding entropies and free energies and free energies,
J. Am. Chem. Soc., 1929, 51, 779-781. [all data]
Verkade and Coops, 1927
Verkade, P.E.; Coops, J., Jr.,
Calorimetric researches XIV. Heats of combustion of successive members of homologous series: the normal primary aliphatic alcohols,
Recl. Trav. Chim. Pays-Bas, 1927, 46, 903-917. [all data]
Kelley, 1929, 2
Kelley, K.K.,
The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies,
J. Am. Chem. Soc., 1929, 51, 779-786. [all data]
Atrashenok, Nesterov, et al., 1991
Atrashenok, T.R.; Nesterov, N.A.; Zhuk, I.P.; Peshchenko, A.D.,
Measured specific heats of hexan-1-ol and 3-methyl-2-butanol over wide temperature ranges,
Inzh.-Fiz. Zh., 1991, 61(2), 301-304. [all data]
Vesely, Barcal, et al., 1989
Vesely, F.; Barcal, P.; Zabransky, M.; Svoboda, V.,
Heat capacities of 4-methyl-2-pentanone, 2,6-dimethyl-4-heptanone, 1-hexanol, 1-heptanol, and 1-octanol in the temperature range 298-318 K,
Collect. Czech. Chem. Commun., 1989, 54, 602-607. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Ortega, 1986
Ortega, J.,
Excess molar heat capacities of the binary mixtures of cyclohexane with isomers of hexanol at 298.15 K,
Rev. Latinoam. Ing. Quim. Quim. Apl., 1986, 16, 307-315. [all data]
Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S.,
Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Costas and Patterson, 1985
Costas, M.; Patterson, D.,
Self-association of alcohols in inert solvents, J. Chem. Soc.,
Faraday Trans. 1, 1985, 81, 635-654. [all data]
Bravo, Pintos, et al., 1984
Bravo, R.; Pintos, M.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Excess volumes excess heat capacities of some mixtures: (an isomer of hexanol + an n-alkane) at 298.15 K,
J. Chem. Thermodynam., 1984, 16, 73-79. [all data]
Kalinowska and Woycicki, 1984
Kalinowska, B.; Woycicki, W.,
Heat capacities of liquids in the temperature interval between 90 and 300 K and at atmospheric pressure. III. Heat capacities and excess heat capacities of (n-hexanol-1-ol + n-hexane),
J. Chem. Thermodynam., 1984, 16, 609-613. [all data]
Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G.,
Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol),
J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
Benson, D'Arcy, et al., 1983
Benson, G.C.; D'Arcy, P.J.; Sugamori, M.E.,
Heat capacities of binary mixtures of 1-hexanol with hexane isomers at 298.15 K,
Thermochim. Acta, 1983, 71, 161-166. [all data]
Arutyunyan, 1981
Arutyunyan, G.S.,
Experimental investigaiton of the isobaric heat capacity of n-hexyl alcohol at different temperatures and pressures,
Izv. Akad. Nauk Azerb., 1981, SSR (2), 97-99. [all data]
Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP,
54, 1979, 57-64. [all data]
Hutchinson and Bailey, 1959
Hutchinson, E.; Bailey, L.G.,
A thermodynamic study of colloidal electrolyte solutions. II. Heat capacities of solubilized systems, experimental,
Z. Physik. Chem. [N.G.], 1959, 21, 30-37. [all data]
Kelley, 1929, 3
Kelley, K.K.,
The heat capacities of ethyl and hexyl alcohols from 16 to 298 K and the corresponding entropies and free energies,
J. Am. Chem. Soc., 1929, 51, 779-87. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Quadri, Khilar, et al., 1991
Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J.,
Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols,
J. Chem. Thermodyn., 1991, 23, 67-76. [all data]
Rosenthal and Teja, 1990
Rosenthal, D.J.; Teja, A.S.,
The Critical Pressures and temperatures of Isomeric Alkanols,
Ind. Eng. Chem. to be published 1990 1990, 1990. [all data]
Rosenthal and Teja, 1989
Rosenthal, D.J.; Teja, A.S.,
Critical pressures and temperatures of isomeric alkanols,
Ind. Eng. Chem. Res., 1989, 28, 1693. [all data]
Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J.,
Correlation of the Critical Properties of Alkanes and Alkanols
in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]
Anselme and Teja, 1988
Anselme, M.J.; Teja, A.S.,
Critical Temperatures and Densities of Isomeric Alkanols with Six to Ten Carbon Atoms,
Fluid Phase Equilib., 1988, 40, 127-34. [all data]
Efremov, 1966
Efremov, Yu.V.,
Density, Surface Tension, Saturated Vapor Pressurs and Critical Parameters of Alcohols,
Zh. Fiz. Khim., 1966, 40, 1240. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard,
Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols,
J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z
. [all data]
Tan, Li, et al., 2004
Tan, Taijun; Li, Haoran; Wang, Congmin; Jiang, Hui; Han, Shijun,
Isothermal and isobaric vapor--liquid equilibria for the binary system trimethylbenzoquinone + n-hexanol,
Fluid Phase Equilibria, 2004, 224, 2, 279-283, https://doi.org/10.1016/j.fluid.2004.06.056
. [all data]
Kulikov, Verevkin, et al., 2001
Kulikov, Dmitry; Verevkin, Sergey P.; Heintz, Andreas,
Enthalpies of vaporization of a series of aliphatic alcohols,
Fluid Phase Equilibria, 2001, 192, 1-2, 187-207, https://doi.org/10.1016/S0378-3812(01)00633-1
. [all data]
Verevkin, 1998
Verevkin, Sergey P.,
Thermochemistry of phenols: experimental standard molar enthalpies of formation of 2-phenylphenol, 4-phenylphenol, 2,6-diphenylphenol, and 2,2´- and 4,4´-dihydroxybiphenyl,
The Journal of Chemical Thermodynamics, 1998, 30, 3, 389-396, https://doi.org/10.1006/jcht.1997.0316
. [all data]
N'Guimbi, Kasehgari, et al., 1992
N'Guimbi, J.; Kasehgari, H.; Mokbel, I.; Jose, J.,
Tensions de vapeur d'alcools primaires dans le domaine 0,3 Pa à 1,5 kPa,
Thermochimica Acta, 1992, 196, 2, 367-377, https://doi.org/10.1016/0040-6031(92)80100-B
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I.,
Vapor pressure of primary n-alkyl chlorides and alcohols,
J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011
. [all data]
Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Uchytilová, V.; Finke, M.,
Enthalpies of vaporization of aliphatic C5 and C6 alcohols,
Fluid Phase Equilibria, 1985, 20, 111-118, https://doi.org/10.1016/0378-3812(85)90026-3
. [all data]
Reddy, Rao, et al., 1985
Reddy, K. Dayananda; Rao, M.V. Prabhakara; Ramakrishna, M.,
Activity coefficients and excess Gibbs free energies for the systems isobutyl methyl ketone(1)-1-pentanol(2) and isobutyl methyl ketone(1)-1-hexanol (2),
J. Chem. Eng. Data, 1985, 30, 4, 394-397, https://doi.org/10.1021/je00042a008
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Rose and Supina, 1961
Rose, Arthur; Supina, W.R.,
Vapor Pressure and Vapor-Liquid Equilibrium Data for Methyl Esters of the Common Saturated Normal Fatty Acids.,
J. Chem. Eng. Data, 1961, 6, 2, 173-179, https://doi.org/10.1021/je60010a003
. [all data]
Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
58. The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols,
J. Chem. Soc., 1935, 280, https://doi.org/10.1039/jr9350000280
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G.,
Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution,
J. Agric. Food Chem., 1969, 17, 385-389. [all data]
Butler, Ramchandani, et al., 1935, 2
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols,
J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280
. [all data]
Holmes, Aubry, et al., 1999
Holmes, J.L.; Aubry, C.; Mayer, P.M.,
Proton affinities of primary alkanols: An appraisal of the kinetic method,
J. Phys. Chem. A, 1999, 103, 705. [all data]
Ashmore and Burgess, 1977
Ashmore, F.S.; Burgess, A.R.,
Study of Some Medium Size Alcohols and Hydroperoxides by Photoelectron Spectroscopy,
J. Chem. Soc. Faraday Trans. 2, 1977, 73, 1247. [all data]
Holmes, Terlouw, et al., 1976
Holmes, J.L.; Terlouw, J.K.; Lossing, F.P.,
The thermochemistry of C2H4O+ ions,
J. Phys. Chem., 1976, 80, 2860. [all data]
Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E.,
The Gas Phase Acidities of Long Chain Alcohols.,
Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.