Butanoic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-475.9 ± 4.0kJ/molN/ALebedeva, 1964Value computed using ΔfHliquid° value of -533.92±0.59 kj/mol from Lebedeva, 1964 and ΔvapH° value of 58±4 kj/mol from missing citation.; DRB
Δfgas-475.9 ± 4.0kJ/molCcbLebedeva, 1964Value computed using ΔfHliquid° from Lebedeva, 1964 and ΔvapH° value of 58. kJ/mol from Konicek and Wadso, 1970.; DRB
Quantity Value Units Method Reference Comment
gas353.26J/mol*KN/AStull D.R., 1969See [ Stull D.R., 1969], acrylic acid, C3H4O2.; GT

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-533.92 ± 0.59kJ/molCcbLebedeva, 1964ALS
Quantity Value Units Method Reference Comment
Δcliquid-2183.5 ± 0.59kJ/molCcbLebedeva, 1964Corresponding Δfliquid = -533.84 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid225.3J/mol*KN/AMartin and Andon, 1982DH
liquid226.4J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 53.6 J/mol*K. Revision of previous data.; DH
liquid255.2J/mol*KN/AParks and Anderson, 1926Extrapolation below 90 K, 82.42 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
177.7298.15Martin and Andon, 1982T = 13 to 450 K. Data also given by equation.; DH
178.298.15Konicek and Wadso, 1971DH
176.1290.7Parks and Anderson, 1926T = 89 to 291292 to 448 K. Value is unsmoothed experimental datum.; DH
176.1298.von Reis, 1881T = 292 to 448 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil436. ± 2.KAVGN/AAverage of 53 out of 57 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus267.6KN/ARadwan and Hanna, 1976Uncertainty assigned by TRC = 0.2 K; TRC
Tfus267.8KN/ACostello and Bowden, 1958Uncertainty assigned by TRC = 0.5 K; TRC
Tfus267.89KN/ADreisbach and Martin, 1949Uncertainty assigned by TRC = 0.05 K; TRC
Tfus267.KN/ATimmermans, 1935Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple267.97KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple268.03KN/AMartin and Andon, 1982, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; type of transition uncertain; TRC
Ttriple267.4KN/AParks and Anderson, 1926, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc615.2KN/AAndereya and Chase, 1990Uncertainty assigned by TRC = 2. K; TRC
Tc624.KN/AAmbrose and Ghiassee, 1987Uncertainty assigned by TRC = 1. K; TRC
Tc631.77KN/AD'Souza and Teja, 1987Uncertainty assigned by TRC = 2.5 K; Ambrose's procedure; TRC
Tc627.90KN/ABrown, 1906Uncertainty assigned by TRC = 6. K; TRC
Quantity Value Units Method Reference Comment
Pc40.64barN/AAndereya and Chase, 1990Uncertainty assigned by TRC = 0.60 bar; TRC
Pc39.50barN/AAmbrose and Ghiassee, 1987Uncertainty assigned by TRC = 0.50 bar; TRC
Pc40.9407barN/AD'Souza and Teja, 1987Uncertainty assigned by TRC = 0.90 bar; Ambrose's procedure; TRC
Quantity Value Units Method Reference Comment
Δvap59. ± 2.kJ/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
52.5399.N/AClifford, Ramjugernath, et al., 2004Based on data from 384. to 435. K.; AC
50.3406.EBMuñoz and Krähenbühl, 2001Based on data from 391. to 429. K.; AC
58.5 ± 0.3293.GSVerevkin, 2000Based on data from 278. to 308. K.; AC
47.7452.AStephenson and Malanowski, 1987Based on data from 437. to 592. K.; AC
51.1316.AStephenson and Malanowski, 1987Based on data from 301. to 358. K.; AC
53.2370.AStephenson and Malanowski, 1987Based on data from 355. to 453. K. See also Dykyj, 1971.; AC
52.378.N/ADreisbach and Shrader, 1949Based on data from 363. to 436. K. See also Dreisbach and Martin, 1949, 2 and Boublik, Fried, et al., 1984.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
293. to 423.6.109542634.471-3.471Jasper and Miller, 1955Coefficents calculated by NIST from author's data.
364.07 to 436.404.909041793.898-70.564Dreisbach and Shrader, 1949Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
76.0 ± 1.5248.TE,MECalis-Van Ginkel, Calis, et al., 1978Based on data from 238. to 255. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
11.07264.7Acree, 1991AC
11.59268.Martin and Andon, 1982AC
11.071267.4Parks and Anderson, 1926DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
41.40267.4Parks and Anderson, 1926DH

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
1.040155. to 230.crystaline, IIcrystaline, IMartin and Andon, 1982DH
11.590268.03crystaline, IliquidMartin and Andon, 1982DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
5.06155. to 230.crystaline, IIcrystaline, IMartin and Andon, 1982DH
43.24268.03crystaline, IliquidMartin and Andon, 1982DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
4700. MN/A
1900. QN/A
1900. MN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C4H8O2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.17 ± 0.05eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
10.17 ± 0.05PIPECOButler, Fraser-Monteiro, et al., 1982LBLHLM
10.24EIHolmes, Fingas, et al., 1981LLK
10.24EIHolmes and Lossing, 1980LLK
10.46PEWatanabe, Yokoyama, et al., 1973LLK
10.16 ± 0.05PIWatanabe, Nakayama, et al., 1962RDSH
10.38PEBenoit and Harrison, 1977Vertical value; LLK
10.22PESustmann and Trill, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C2H4+11.5 ± 0.1C2H4O2PIPECOButler, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C2H4O2+10.42 ± 0.05C2H4PIPECOButler, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C2H4O2+10.60C2H4EIHolmes and Lossing, 1980LLK
C2H5+11.6 ± 0.1C2H3O2PIPECOButler, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C2H402+10.60 ± 0.05C2H4EIHolmes and Lossing, 1980, 2LLK
C3H5O2+10.5 ± 0.1CH3PIPECOButler, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C3H6+11.4 ± 0.1CH2O2PIPECOButler, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C3H7+10.96 ± 0.05COOHPIPECOButler, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C4H7O+11.8 ± 0.1OHPIPECOButler, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM

De-protonation reactions

C4H7O2- + Hydrogen cation = Butanoic acid

By formula: C4H7O2- + H+ = C4H8O2

Quantity Value Units Method Reference Comment
Δr1451. ± 8.4kJ/molTDEqNorrman and McMahon, 1999gas phase; B
Δr1450. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase; B
Δr1450. ± 9.2kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr1420. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase; B
Δr1420. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Lebedeva, 1964
Lebedeva, N.D., Heats of combustion of monocarboxylic acids, Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]

Konicek and Wadso, 1970
Konicek, J.; Wadso, I., Enthalpies of vaporization of organic compounds. VII. Some carboxylic acids, Acta Chem. Scand., 1970, 24, 2612-26. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Martin and Andon, 1982
Martin, J.F.; Andon, R.J.L., Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids, J. Chem. Thermodynam., 1982, 14, 679-688. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Anderson, 1926
Parks, G.S.; Anderson, C.T., Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid, J. Am. Chem. Soc., 1926, 48, 1506-1512. [all data]

Konicek and Wadso, 1971
Konicek, J.; Wadso, I., Thermochemical properties of some carboxylic acids, amines and N-substituted amides in aqueous solution, Acta Chem. Scand., 1971, 25, 1541-1551. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Radwan and Hanna, 1976
Radwan, M.H.; Hanna, A.A., Binary Azeotropes Containing Butyric Acid, J. Chem. Eng. Data, 1976, 21, 285-8. [all data]

Costello and Bowden, 1958
Costello, J.M.; Bowden, S.T., The temperature variation of orthobaric density difference in liquid- vapour systems: IV fatty acids, Recl. Trav. Chim. Pays-Bas, 1958, 77, 803. [all data]

Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 2875-8. [all data]

Timmermans, 1935
Timmermans, J., Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds., Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Martin and Andon, 1982, 2
Martin, J.F.; Andon, R.J.L., Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids., J. Chem. Thermodyn., 1982, 14, 679-88. [all data]

Parks and Anderson, 1926, 2
Parks, G.S.; Anderson, C.T., Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid, J. Am. Chem. Soc., 1926, 48, 1506-12. [all data]

Andereya and Chase, 1990
Andereya, E.; Chase, J.D., Chem. Eng. Technol., 1990, 13, 304-12. [all data]

Ambrose and Ghiassee, 1987
Ambrose, D.; Ghiassee, N.B., Vapor Pressures and Critical Temperatures and Critical Pressures of Some Alkanoic Acids: C1 to C10, J. Chem. Thermodyn., 1987, 19, 505. [all data]

D'Souza and Teja, 1987
D'Souza, R.; Teja, A.S., The prediction of the vapor pressures of carboxylic acids, Chem. Eng. Commun., 1987, 61, 13. [all data]

Brown, 1906
Brown, J.C., The critical temperature and value of ml/theta of some carbon compounds, J. Chem. Soc., Trans., 1906, 89, 311. [all data]

Clifford, Ramjugernath, et al., 2004
Clifford, Scott L.; Ramjugernath, Deresh; Raal, J. David, Subatmospheric Vapor Pressure Curves for Propionic Acid, Butyric Acid, Isobutyric Acid, Valeric Acid, Isovaleric Acid, Hexanoic Acid, and Heptanoic Acid, J. Chem. Eng. Data, 2004, 49, 5, 1189-1192, https://doi.org/10.1021/je034180e . [all data]

Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina, Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid, J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u . [all data]

Verevkin, 2000
Verevkin, S.P., Measurement and Prediction of the Monocarboxylic Acids Thermochemical Properties, J. Chem. Eng. Data, 2000, 45, 5, 953-960, https://doi.org/10.1021/je990282m . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1971
Dykyj, J., Petrochemia, 1971, 11, 2, 27. [all data]

Dreisbach and Shrader, 1949
Dreisbach, R.R.; Shrader, S.A., Vapor Pressure--Temperature Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2879-2880, https://doi.org/10.1021/ie50480a054 . [all data]

Dreisbach and Martin, 1949, 2
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2875-2878, https://doi.org/10.1021/ie50480a053 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Jasper and Miller, 1955
Jasper, Joseph J.; Miller, George B., The Vapor Pressure of Monofluoroacetic Acid, J. Phys. Chem., 1955, 59, 5, 441-442, https://doi.org/10.1021/j150527a015 . [all data]

Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J., Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids, The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Butler, Fraser-Monteiro, et al., 1982
Butler, J.J.; Fraser-Monteiro, M.L.; Fraser-Monteiro, L.; Baer, T.; Hass, J.R., Thermochemistry and dissociation dynamics of state-selected C4H8O2+ Ions. 2. Butanoic acid, J. Phys. Chem., 1982, 86, 747. [all data]

Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P., Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations, Can. J. Chem., 1981, 59, 80. [all data]

Holmes and Lossing, 1980
Holmes, J.L.; Lossing, F.P., Gas-phase heats of formation of keto and enol ions of carbonyl compounds., J. Am. Chem. Soc., 1980, 102, 1591. [all data]

Watanabe, Yokoyama, et al., 1973
Watanabe, I.; Yokoyama, Y.; Ikeda, S., Lone pair ionization potentials of carboxylic acids determined by He(I) photoelectron spectroscopy, Bull. Chem. Soc. Jpn., 1973, 46, 1959. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Sustmann and Trill, 1972
Sustmann, R.; Trill, H., Photoelektronenspektroskopische Bestimmung von Substituenten-Effekten. II. α,β-ungesattigte Carbonester, Tetrahedron Lett., 1972, 42, 4271. [all data]

Holmes and Lossing, 1980, 2
Holmes, J.L.; Lossing, F.P., Thermochemistry and unimolecular reactions of ionized acetic acid and its enol in the gas phase., J. Am. Chem. Soc., 1980, 102, 3732. [all data]

Norrman and McMahon, 1999
Norrman, K.; McMahon, T.B., Intramolecular solvation of carboxylate anions in the gas phase, J. Phys. Chem. A, 1999, 103, 35, 7008-7016, https://doi.org/10.1021/jp9908202 . [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References