Ethyl ether
- Formula: C4H10O
- Molecular weight: 74.1216
- IUPAC Standard InChIKey: RTZKZFJDLAIYFH-UHFFFAOYSA-N
- CAS Registry Number: 60-29-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Ethane, 1,1'-oxybis-; Anaesthetic ether; Anesthesia ether; Anesthetic ether; Diethyl ether; Diethyl oxide; Ethoxyethane; Pronarcol; Solvent ether; 1,1'-Oxybisethane; (C2H5)2O; Aether; Diaethylaether; Dwuetylowy eter; Etere etilico; Ether ethylique; Ether, ethyl; Ethyl ether, tech.; Ethyl oxide; Oxyde d'ethyle; Rcra waste number U117; UN 1155; 3-Oxapentane; Ether; Ethyl ether anhydrous A.C.S.; Sulfuric ether; NSC 100036
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -252.7 ± 2.0 | kJ/mol | Ccb | Pihlaja and Heikkil, 1968 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -250.3 ± 1.8 kJ/mol; ALS |
ΔfH°gas | -252.2 ± 0.79 | kJ/mol | Cm | Pilcher, Skinner, et al., 1963 | ALS |
ΔfH°gas | -244. | kJ/mol | Ccb | Murrin and Goldhagen, 1957 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -2726.3 ± 1.8 | kJ/mol | Ccb | Pihlaja and Heikkil, 1968 | Corresponding ΔfHºgas = -276.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -2751.1 ± 0.75 | kJ/mol | Cm | Pilcher, Skinner, et al., 1963 | Corresponding ΔfHºgas = -252.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 342.2 | J/mol*K | N/A | Counsell J.F., 1971 | Other third-law entropy values at 298.15 K are 342.46 [ Cope C.S., 1959], 342.33 [ Stull D.R., 1969], and 342.60 J/mol*K [ Chao J., 1986].; GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
62.50 | 100. | Chao J., 1986 | p=1 bar.; GT |
84.80 | 150. | ||
99.70 | 200. | ||
114.30 | 273.15 | ||
119.46 ± 0.15 | 298.15 | ||
119.86 | 300. | ||
142.81 | 400. | ||
165.77 | 500. | ||
186.35 | 600. | ||
204.35 | 700. | ||
220.04 | 800. | ||
233.74 | 900. | ||
245.68 | 1000. | ||
256.08 | 1100. | ||
265.12 | 1200. | ||
272.97 | 1300. | ||
279.81 | 1400. | ||
285.76 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
121.94 | 309.98 | Counsell J.F., 1971 | Other experimental values of heat capacity [ Jennings W.H., 1934, Jatkar S.K.K., 1939, Valentin F.H.H., 1950] are believed to be less reliable (see [ Chao J., 1986]).; GT |
126.57 | 329.99 | ||
131.32 | 350.00 | ||
137.21 | 375.00 | ||
143.27 | 400.01 | ||
149.10 | 424.99 | ||
155.11 | 450.04 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -271.2 ± 1.9 | kJ/mol | Ccb | Murrin and Goldhagen, 1957 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -2732.1 ± 1.9 | kJ/mol | Ccb | Murrin and Goldhagen, 1957 | Corresponding ΔfHºliquid = -271.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 253.5 | J/mol*K | N/A | Counsell, Lee, et al., 1971 | DH |
S°liquid | 252.7 | J/mol*K | N/A | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 58.6 J/mol*K. Revision of previous data.; DH |
S°liquid | 283.3 | J/mol*K | N/A | Parks and Huffman, 1926 | Extrapolation below 90 K, 88.70 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
172.5 | 298.15 | Counsell, Lee, et al., 1971 | T = 15 to 300 K.; DH |
171.88 | 293.15 | Mazur, 1939 | T = -112 to 20°C.; DH |
172.0 | 293. | Mazur, 1939, 2 | T = -110 to 20°C.; DH |
167.4 | 290. | Kurnakov and Voskresenskaya, 1936 | DH |
164.8 | 255.2 | Aoyama and Kanda, 1935 | T = 80 to 255 K. Value is unsmoothed experimental datum.; DH |
179.9 | 308. | Bennewitz and Wendroth, 1927 | T = 308 to 488 K. Value is unsmoothed experimental datum. Pressure 40 atmospheres.; DH |
170.7 | 290.0 | Parks and Huffman, 1926 | T = 76 to 290 K. Value is unsmoothed experimental datum.; DH |
179.1 | 286.6 | Keyes and Beattie, 1924 | T = 274, 286 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 307.7 ± 0.4 | K | AVG | N/A | Average of 20 out of 21 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 154. ± 7. | K | AVG | N/A | Average of 13 out of 14 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 156.92 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 149.86 | K | N/A | Counsell, Lee, et al., 1971, 2 | Crystal phase 2 phase; Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 156.92 | K | N/A | Counsell, Lee, et al., 1971, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 156.8 | K | N/A | Parks and Huffman, 1926, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 467. ± 2. | K | AVG | N/A | Average of 29 out of 30 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 36. ± 1. | bar | AVG | N/A | Average of 16 out of 17 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.274 | l/mol | N/A | Kobe, Ravicz, et al., 1956 | Uncertainty assigned by TRC = 0.005 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.5 ± 0.4 | mol/l | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 27.1 ± 0.5 | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
26.52 | 307.6 | N/A | Majer and Svoboda, 1985 | |
27.530 | 285.0 | N/A | Keyes and Beattie, 1924 | P = 101.325 kPa; DH |
28.1 | 301. | A | Stephenson and Malanowski, 1987 | Based on data from 286. to 329. K.; AC |
26.9 | 322. | A | Stephenson and Malanowski, 1987 | Based on data from 307. to 457. K.; AC |
27.5 | 320. | A | Stephenson and Malanowski, 1987 | Based on data from 305. to 360. K.; AC |
26.7 | 432. | A | Stephenson and Malanowski, 1987 | Based on data from 417. to 467. K.; AC |
29.5 | 265. | A | Stephenson and Malanowski, 1987 | Based on data from 250. to 329. K. See also Ambrose, Sprake, et al., 1972 and Ambrose, Ellender, et al., 1976.; AC |
27.247 ± 0.005 | 295.63 | V | Counsell, Lee, et al., 1971, 3 | ALS |
28.4 | 278. | N/A | Taylor and Smith, 1922 | Based on data from 213. to 293. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
281. to 313. | 43.01 | 0.2786 | 466.7 | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
96.60 | 285.0 | Keyes and Beattie, 1924 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
250.04 to 328.57 | 4.0220 | 1062.64 | -44.93 | Ambrose, Sprake, et al., 1972 | Coefficents calculated by NIST from author's data. |
350.14 to 466.73 | 4.46988 | 1354.913 | -5.537 | Ambrose, Sprake, et al., 1972 | Coefficents calculated by NIST from author's data. |
212.4 to 293.02 | 4.13377 | 1102.878 | -40.46 | Taylor and Smith, 1922 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
7.19 | 156.9 | Counsell, Lee, et al., 1971, 3 | AC |
7.301 | 156.8 | Parks and Huffman, 1926 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
46.6 | 156.8 | Parks and Huffman, 1926 | DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
6.820 | 149.86 | crystaline, II | liquid | Counsell, Lee, et al., 1971 | DH |
7.190 | 156.92 | crystaline, I | liquid | Counsell, Lee, et al., 1971 | Metastable crystal.; DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
45.5 | 149.86 | crystaline, II | liquid | Counsell, Lee, et al., 1971 | DH |
45.82 | 156.92 | crystaline, I | liquid | Counsell, Lee, et al., 1971 | Metastable; DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
1.2 | M | N/A | ||
0.77 | Q | N/A | Several references are given in the list of Henry's law constants but not assigned to specific species. | |
0.78 | 5300. | X | N/A | |
0.79 | M | N/A | ||
1.1 | V | N/A | ||
1.1 | V | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.51 ± 0.03 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 828.4 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 801. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.52 ± 0.07 | EI | Bowen and Maccoll, 1984 | LBLHLM |
9.60 ± 0.01 | PI | Botter, Pechine, et al., 1977 | LLK |
9.41 | PE | Behan, Dean, et al., 1976 | LLK |
9.50 ± 0.01 | PE | Cocksey, Eland, et al., 1971 | LLK |
9.51 | PE | Dewar and Worley, 1969 | RDSH |
9.53 ± 0.02 | PI | Watanabe, 1957 | RDSH |
9.61 | PE | Ohno, Imai, et al., 1985 | Vertical value; LBLHLM |
9.66 | PE | Aue and Bowers, 1979 | Vertical value; LLK |
9.59 | PE | Benoit and Harrison, 1977 | Vertical value; LLK |
9.701 | PE | Aue, Webb, et al., 1975 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3O+ | 12.28 ± 0.05 | C2H4+CH3 | EI | Selim and Helal, 1981 | LLK |
CH3O+ | 11.92 | ? | EI | Holmes, Rye, et al., 1979 | LLK |
CH3O+ | 12.1 | ? | EI | Harrison, Ivko, et al., 1966 | RDSH |
C2H5+ | 12.0 ± 0.1 | ? | EI | Williams and Hamill, 1968 | RDSH |
C2H5O+ | 11.85 | C2H5 | EI | Lossing, 1977 | LLK |
C2H5O+ | 11.83 | C2H5 | EI | Phillips, Russell, et al., 1975 | LLK |
C2H5O+ | 11.8 | C2H5 | EI | Harrison, Ivko, et al., 1966 | RDSH |
C3H5+ | 11.6 | ? | EI | Tsang and Harrison, 1970 | RDSH |
C3H7O+ | 10.26 ± 0.08 | CH3 | EI | Bowen and Maccoll, 1984 | LBLHLM |
C3H7O+ | 10.26 | CH3 | EI | Lossing, 1977 | LLK |
C3H7O+ | 10.3 | CH3 | EI | Harrison, Ivko, et al., 1966 | RDSH |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pihlaja and Heikkil, 1968
Pihlaja, K.; Heikkil, J.,
Heats of combustion. Diethyl ether and 1,1-diethoxyethane,
Acta Chem. Scand., 1968, 22, 2731-2732. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Pilcher, Skinner, et al., 1963
Pilcher, G.; Skinner, H.A.; Pell, A.S.; Pope, A.E.,
Measurements of heats of combustion by flame calorimetry. Part 1.-Diethyl ether, ethyl vinyl ether and divinyl ether,
Trans. Faraday Soc., 1963, 59, 316-330. [all data]
Murrin and Goldhagen, 1957
Murrin, J.W.; Goldhagen, S.,
Determination of the C-O bond energy from the heats of combustion of four aliphatic ethers,
NAVORD Report No. 5491, U.S. Naval Powder Factory Res. & Dev. Dept., 1957, 1-14. [all data]
Counsell J.F., 1971
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether,
J. Chem. Soc. A, 1971, 313-316. [all data]
Cope C.S., 1959
Cope C.S.,
Equilibria in the hydration of ethylene at elevated pressures and temperatures,
A. I. Ch. E. Journal, 1959, 5, 10-16. [all data]
Stull D.R., 1969
Stull D.R., Jr.,
The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Jennings W.H., 1934
Jennings W.H.,
Specific heat of furan and ethyl ether vapors,
J. Phys. Chem., 1934, 38, 747-751. [all data]
Jatkar S.K.K., 1939
Jatkar S.K.K.,
Supersonic velocity in gases and vapors. V. Heat capacity of vapors of acetone, benzene, cyclohexane, hexane and methyl, ethyl and propyl ethers,
J. Indian Inst. Sci., 1939, A22, 19-37. [all data]
Valentin F.H.H., 1950
Valentin F.H.H.,
Equilibrium and thermodynamic relation in the vapor-phase catalytic dehydration of ethyl alcohol to ethyl ether,
J. Chem. Soc., 1950, 498-500. [all data]
Counsell, Lee, et al., 1971
Counsell, J.F.; Lee, D.A.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether, 1971, J. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Parks and Huffman, 1926
Parks, G.S.; Huffman, H.M.,
Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulcitol,
J. Am. Chem. Soc., 1926, 48, 2788-2793. [all data]
Mazur, 1939
Mazur, J.,
Über die spezifische Wärme des Äthyläthers,
Acta Phys. Pol., 1939, 7, 318-326. [all data]
Mazur, 1939, 2
Mazur, J.,
Über die spezifische Wärme des Äthyläthers, des Nitrobenzols und des Schwefelkohlenstoffs,
Z. Physik., 1939, 113, 710-720. [all data]
Kurnakov and Voskresenskaya, 1936
Kurnakov, N.S.; Voskresenskaya, N.K.,
Calorimetry of liquid binary systems, Izv. Akad. Nauk SSSR,
Otdel. Mat. i Estestv. Nauk. Ser. Khim, 1936, 1936, 439-461. [all data]
Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E.,
Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature,
Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]
Bennewitz and Wendroth, 1927
Bennewitz, K.; Wendroth, H.,
Untersuchungen im kritischen Gebiet. II. Bestimmung der wahren spezifischen Wärme Cp des flüssigne Äthyläthers oberund unterhalb der kritischen Temperatur,
Z. Phys. Chem., 1927, 125, 111-134. [all data]
Keyes and Beattie, 1924
Keyes, F.G.; Beattie, J.A.,
A calorimeter for measuring specific heats and heats of vaporization of liquids. The specific heat and heat of vaporization of liquid ethyl ether at 0° and 12°,
J. Am. Chem. Soc., 1924, 46, 1753-1760. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Counsell, Lee, et al., 1971, 2
Counsell, J.F.; Lee, D.A.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds: xxvi diethyl ether,
J. Chem. Soc. A, 1971, 1971, 313-6. [all data]
Parks and Huffman, 1926, 2
Parks, G.S.; Huffman, H.M.,
Thermal data on organic compounds: IV the heat capacites, entropies, and free energies of normal propyl alcohol, ethyl ether, and dulcitol,
J. Am. Chem. Soc., 1926, 48, 2788-93. [all data]
Kobe, Ravicz, et al., 1956
Kobe, K.A.; Ravicz, A.E.; Vohra, S.P.,
Critical Properties and Vapor Pressures of Some Ethers and Heterocyclic Compounds,
J. Chem. Eng. Data, 1956, 1, 50. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Sprake, et al., 1972
Ambrose, D.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds XXIX. The vapour pressure of diethyl ether,
The Journal of Chemical Thermodynamics, 1972, 4, 2, 247-254, https://doi.org/10.1016/0021-9614(72)90063-8
. [all data]
Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers,
The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2
. [all data]
Counsell, Lee, et al., 1971, 3
Counsell, J.F.; Lee, D.A.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether,
J. Chem. Soc. A, 1971, 313. [all data]
Taylor and Smith, 1922
Taylor, Robert S.; Smith, Leighton B.,
THE VAPOR PRESSURES, DENSITIES AND SOME DERIVED QUANTITIES FOR ETHER AT LOW TEMPERATURES,
J. Am. Chem. Soc., 1922, 44, 11, 2450-2463, https://doi.org/10.1021/ja01432a012
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Botter, Pechine, et al., 1977
Botter, R.; Pechine, J.M.; Rosenstock, H.M.,
Photoionization of dimethyl ether and diethyl ether,
Int. J. Mass Spectrom. Ion Phys., 1977, 25, 7. [all data]
Behan, Dean, et al., 1976
Behan, J.M.; Dean, F.M.; Johnstone, R.A.W.,
Photoelectron spectra of cyclic aromatic ethers. The question of the Mills-Nixon effect,
Tetrahedron, 1976, 32, 167. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Ohno, Imai, et al., 1985
Ohno, K.; Imai, K.; Harada, Y.,
Variations in reactivity of lone-pair electrons due to intramolecular hydrogen bonding as observed by penning ionization electron spectroscopy,
J. Am. Chem. Soc., 1985, 107, 8078. [all data]
Aue and Bowers, 1979
Aue, D.H.; Bowers, M.T.,
Chapter 9. Stabilities of positive ions from equilibrium gas phase basicity measurements
in Ions Chemistry,, ed. M.T. Bowers, 1979. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T.,
Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects,
J. Am. Chem. Soc., 1975, 97, 4137. [all data]
Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I.,
Heat of formation of CH2=OH+ fragment ion,
Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]
Holmes, Rye, et al., 1979
Holmes, J.L.; Rye, R.T.B.; Terlouw, J.K.,
On the loss of ethylene from [C3H7O]+ ions of structure CH3CH2CHOH,
Org. Mass Spectrom., 1979, 14, 606. [all data]
Harrison, Ivko, et al., 1966
Harrison, A.G.; Ivko, A.; Van Raalte, D.,
Energetics of formation of some oxygenated ions and the proton affinities of carbonyl compounds,
Can. J. Chem., 1966, 44, 1625. [all data]
Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H.,
Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer,
J. Chem. Phys., 1968, 49, 4467. [all data]
Lossing, 1977
Lossing, F.P.,
Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability,
J. Am. Chem. Soc., 1977, 99, 7526. [all data]
Phillips, Russell, et al., 1975
Phillips, G.R.; Russell, M.E.; Solka, B.H.,
The structure of the [C2H5O]+ ion in the mass spectrum of diethyl ether,
Org. Mass Spectrom., 1975, 10, 819. [all data]
Tsang and Harrison, 1970
Tsang, C.W.; Harrison, A.G.,
Four-centred rearrangements in the mass spectra of aliphatic ethers,
Org. Mass Spectrom., 1970, 3, 647. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.