Acetone

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-218.5 ± 0.59kJ/molCmWiberg, Crocker, et al., 1991ALS
Δfgas-217.1 ± 0.50kJ/molCmChao and Zwolinski, 1976ALS
Δfgas-217.5 ± 0.67kJ/molEqkBuckley and Herington, 1965ALS
Δfgas-216.4kJ/molCmPennington and Kobe, 1957ALS
Quantity Value Units Method Reference Comment
Δcgas-1821.4 ± 0.84kJ/molCcbMiles and Hunt, 1941Corresponding Δfgas = -216.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
51.73100.Chao J., 1986p=1 bar. Recommended values agree with results of statistical calculations [ Pennington R.E., 1957, Chao J., 1976] within 0.5-2.8 J/mol*K.; GT
56.18150.
61.20200.
71.09273.15
75.02 ± 0.11298.15
75.32300.
92.06400.
108.08500.
122.20600.
134.43700.
145.00800.
154.15900.
162.091000.
168.961100.
174.921200.
180.091300.
184.581400.
188.491500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
80.58 ± 0.81332.6Chao J., 1976Experimental data [ Vilcu R., 1975] differ substantially from data selected here. Their correctness seems to be doubtful (see [ Kabo G.J., 1995]). Please also see Bennewitz K., 1938, Collins B.T., 1949, Pennington R.E., 1957.; GT
80.96 ± 0.81334.
81.50 ± 0.16338.2
83.35 ± 0.83347.8
83.39 ± 0.83348.
87.03 ± 0.87363.
87.19 ± 0.17371.2
87.53 ± 0.88372.3
89.24 ± 0.89378.
91.84 ± 0.92393.
92.93 ± 0.19405.2
94.18 ± 0.94408.
93.30410.
96.8 ± 1.9422.6
99.4 ± 2.0428.
100.5 ± 2.0438.
98.66 ± 0.20439.2

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-249.4 ± 0.63kJ/molCmWiberg, Crocker, et al., 1991ALS
Quantity Value Units Method Reference Comment
Δcliquid-1772.kJ/molCcbGuinchant, 1918Corresponding Δfliquid = -267. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1804.2kJ/molCcbEmery and Benedict, 1911Corresponding Δfliquid = -233.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid200.4J/mol*KN/AKelley, 1929DH
liquid200.0J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 54.0 J/mol*K. Revision of previous data.; DH
liquid220.5J/mol*KN/AParks and Kelley, 1928Extrapolation below 70 K, 60.04 J/mol*K.; DH
liquid217.6J/mol*KN/AParks and Kelley, 1925Extrapolation below 90 K, 71.63 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
125.45298.15Malhotra and Woolf, 1991T = 278 to 323 K. Cp(liq) = 1.337 + 2.7752x10-3(T/K) kJ/kg*K (278.15 to 323.15 K).; DH
123.80298.15Costas, Yao, et al., 1989DH
126.6298.15Petrov, Peshekhodov, et al., 1989T = 258.15, 278.15, 298.15, 318.15 K.; DH
126.6298.15Al'per, Peshekhodov, et al., 1986DH
123.8298.15Costas and Patterson, 1985T = 283.15, 298.15, 313.15 K.; DH
123.8298.15Costas and Patterson, 1985, 2DH
125.9298.15Saluja, Peacock, et al., 1979DH
129.7298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
126.3293.Rastorguev and Ganiev, 1967T = 293 to 333 K.; DH
125.56298.2Low and Moelwyn-Hughes, 1962T = 253 to 308 K.; DH
128.24298.Staveley, Tupman, et al., 1955T = 288 to 323 K.; DH
128.4302.4Phillip, 1939DH
124.7298.Trew and Watkins, 1933DH
124.7298.Trew, 1932DH
124.68296.99Kelley, 1929T = 16 to 298 K. Value is unsmoothed experimental datum.; DH
124.3260.Mitsukuri and Hara, 1929T = 200 to 260 K.; DH
123.8298.4Parks and Kelley, 1928T = 70 to 289 K. Value is unsmoothed experimental datum.; DH
124.7289.4Parks and Kelley, 1925T = 70 to 290 K. Value is unsmoothed experimental datum.; DH
125.9293.2Williams and Daniels, 1925T = 20 to 40°C.; DH
121.3283.Bramley, 1916Mean value, 0 to 20°C.; DH
133.9298.von Reis, 1881T = 289 to 352 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
96.173.Maass and Walbauer, 1925T = 93 to 173 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil329.3 ± 0.3KAVGN/AAverage of 117 out of 129 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus178.7 ± 0.9KAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple178.5KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.3 K; TRC
Ttriple176.6KN/AKelley, 1929, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.15 K; deduced from appearance of a small maximum in heat capacity; TRC
Ttriple177.6KN/AParks and Kelley, 1928, 2Uncertainty assigned by TRC = 0.3 K; TRC
Ttriple177.6KN/AParks and Kelley, 1925, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc508. ± 2.KAVGN/AAverage of 19 values; Individual data points
Quantity Value Units Method Reference Comment
Pc48. ± 4.barAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
ρc4.63mol/lN/ACampbell and Chatterjee, 1969Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc4.03mol/lN/ACampbell and Chatterjee, 1968Uncertainty assigned by TRC = 0.026 mol/l; TRC
ρc4.79mol/lN/AKobe, Crawford, et al., 1955Uncertainty assigned by TRC = 0.17 mol/l; TRC
ρc4.70mol/lN/ARosenbaum, 1951Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc4.34mol/lN/AHerz and Neukirch, 1923Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap31.27kJ/molN/AMajer and Svoboda, 1985 
Δvap31.3kJ/molN/AAmbrose, Ellender, et al., 1975AC
Δvap29.7 ± 0.004kJ/molVMathews, 1926ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
329.30.027Buckingham and Donaghy, 1982BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
29.1329.3N/AMajer and Svoboda, 1985 
32.1308.N/ASoni, Ramjugernath, et al., 2008Based on data from 298. to 318. K.; AC
29.9344.AStephenson and Malanowski, 1987Based on data from 329. to 488. K.; AC
32.9228.AStephenson and Malanowski, 1987Based on data from 178. to 243. K.; AC
33.8254.AStephenson and Malanowski, 1987Based on data from 203. to 269. K.; AC
30.6338.AStephenson and Malanowski, 1987Based on data from 323. to 379. K.; AC
29.5389.AStephenson and Malanowski, 1987Based on data from 374. to 464. K.; AC
29.7472.AStephenson and Malanowski, 1987Based on data from 457. to 508. K.; AC
32.8274.AStephenson and Malanowski, 1987Based on data from 259. to 351. K. See also Ambrose, Sprake, et al., 1974 and Ambrose, Ellender, et al., 1975.; AC
32.7276.A,EBStephenson and Malanowski, 1987Based on data from 261. to 328. K. See also Boublík and Aim, 1972.; AC
31.9300.EBBaliah and Gnanasekaran, 1986Based on data from 285. to 329. K.; AC
26.1373.CDmitriev, Kachurina, et al., 1986AC
21.7423.CDmitriev, Kachurina, et al., 1986AC
15.3473.CDmitriev, Kachurina, et al., 1986AC
9.2498.CDmitriev, Kachurina, et al., 1986AC
31.8319.N/ACastellari, Francesconi, et al., 1984Based on data from 305. to 333. K.; AC
32.6285.N/ASokolov, Zhilina, et al., 1963Based on data from 278. to 293. K.; AC
31.1319.N/ABrown and Smith, 1957Based on data from 310. to 329. K.; AC
29.09338.CPennington and Kobe, 1957ALS
35.253.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC
32.1293.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC
30.7313.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
300. to 345.46.950.2826508.2Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
259.16 to 507.604.424481312.253-32.445Ambrose, Sprake, et al., 1974Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
5.715176.62Kelley, 1929DH
5.72176.6Domalski and Hearing, 1996AC
5.690177.6Parks and Kelley, 1928DH
4.770178.5Maass and Walbauer, 1925DH
5.690177.6Parks and Kelley, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
32.36176.62Kelley, 1929DH
32.0177.6Parks and Kelley, 1928DH
26.7178.5Maass and Walbauer, 1925DH
32.03177.6Parks and Kelley, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
30.4600.LN/A 
27.5300.MN/A 
27. MN/A 
23. QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
32.5800.MN/A 
35.3800.MN/AThe data from Table 1 by missing citation was used to redo the regression analysis. The data for acetone in their Table 2 is wrong.
3.03300.XN/A 
26.4800.MN/A 
30. XN/AValue given here as quoted by missing citation.
25. MN/A 
25. XN/AValue given here as quoted by missing citation.
25. MButtery, Ling, et al., 1969 
22.5000.XN/A 
3.1 RN/A 
28. MN/A 
30. RN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C3H6O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.703 ± 0.006eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)812.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity782.1kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.00152EFDDesfrancois, Abdoul-Carime, et al., 1994EA: 1.5 meV. Dipole-bound state.; B

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
>815.2Bouchoux, Buisson, et al., 2003MM
>814.3Bouchoux, Buisson, et al., 2003MM
>812.6 ± 0.2Bouchoux, Buisson, et al., 2003MM
811.5 ± 3.4Bouchoux and Salpin, 1999T = 301K; Re-evaluated thermokinetic parametric fitting by the authors using reference base GBs and PAs from Hunter and Lias, 1998; MM
811.5 ± 3.4Bouchoux and Salpin, 1999T = 298K; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
784.7Bouchoux, Buisson, et al., 2003MM
782.2Bouchoux, Buisson, et al., 2003MM
782.0 ± 0.2Bouchoux, Buisson, et al., 2003MM
782.1 ± 1.5Bouchoux and Salpin, 1999T = 301K; Re-evaluated thermokinetic parametric fitting by the authors using reference base GBs and PAs from Hunter and Lias, 1998; MM
782.1 ± 1.5Bouchoux and Salpin, 1999T = 298K; MM

Ionization energy determinations

IE (eV) Method Reference Comment
9.70PITraeger, McLouglin, et al., 1982LBLHLM
9.694 ± 0.006PITrott, Blais, et al., 1978LLK
9.68PIStaley, Wieting, et al., 1977LLK
9.709 ± 0.005PEHernandez, Masclet, et al., 1977LLK
9.71 ± 0.03EIMouvier and Hernandez, 1975LLK
9.71 ± 0.01PEMouvier and Hernandez, 1975LLK
9.71PETam, Yee, et al., 1974LLK
9.71SOgata, Kitayama, et al., 1974LLK
9.700 ± 0.001PIKnowles and Nicholson, 1974LLK
9.705SHuebner, Celotta, et al., 1973LLK
9.71 ± 0.01PIPotapov and Sorokin, 1972LLK
9.75 ± 0.025PEJohnstone and Mellon, 1972LLK
9.72PEBrundle, Robin, et al., 1972LLK
9.74EIJohnstone, Mellon, et al., 1971LLK
9.71 ± 0.01PECocksey, Eland, et al., 1971LLK
9.74 ± 0.03EIJohnstone, Mellon, et al., 1970RDSH
9.68PEDewar and Worley, 1969RDSH
9.71 ± 0.01PIPotapov, Filyugina, et al., 1968RDSH
9.7 ± 0.1EIDorman, 1965RDSH
9.68 ± 0.02PIMurad and Inghram, 1964RDSH
9.67PEAl-Joboury and Turner, 1964RDSH
9.71 ± 0.03PIVilesov, 1960RDSH
9.71 ± 0.03PIVilesov and Terenin, 1957RDSH
9.69 ± 0.01PIWatanabe, 1954RDSH
9.705SWatanabe, 1954RDSH
9.8PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
9.72PEKobayashi, 1978Vertical value; LLK
9.68PEBenoit and Harrison, 1977Vertical value; LLK
9.71 ± 0.02PEYoung and Cheng, 1976Vertical value; LLK
9.5PERao, 1975Vertical value; LLK
9.70PEKimura, Katsumata, et al., 1975Vertical value; LLK
9.709PEAue, Webb, et al., 1975Vertical value; LLK
9.71PEKelder, Cerfontain, et al., 1974Vertical value; LLK
9.72PEHentrich, Gunkel, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+15.61?PEPowis and Danby, 1979LLK
CH3+15.2?EIMajer, Olavesen, et al., 1971LLK
CH3+14.93?EIPotzinger and Bunau, 1969RDSH
CH3+15.36?EIHaney and Franklin, 1969RDSH
C2H2O+10.7 ± 0.1CH4EIShigorin, Filyugina, et al., 1966RDSH
C2H3+16.9?EIKanomata, 1961RDSH
C2H3O+10.38CH3PITraeger, McLouglin, et al., 1982LBLHLM
C2H3O+12.22CH3PEPowis and Danby, 1979LLK
C2H3O+10.52 ± 0.02CH3PITrott, Blais, et al., 1978LLK
C2H3O+10.36CH3PIStaley, Wieting, et al., 1977LLK
C2H3O+10.30CH3EIMouvier and Hernandez, 1975LLK
C2H3O+10.42 ± 0.03CH3PIPotapov and Sorokin, 1972LLK
C2H3O+10.28 ± 0.05CH3EIJohnstone and Mellon, 1972LLK
C2H3O+11.3CH3EIMajer, Olavesen, et al., 1971LLK
C2H3O+10.28CH3EIJohnstone, Mellon, et al., 1970RDSH
C2H3O+10.42CH3PIPotapov, Filyugina, et al., 1968RDSH
C2H3O+10.2 ± 0.1CH3EIDorman, 1965RDSH
C2H3O+10.37CH3PIMurad and Inghram, 1964, 2RDSH
C3H4O+15.2 ± 0.15H2EIShigorin, Filyugina, et al., 1966RDSH
C3H5O+13.1 ± 0.2HEIPotapov and Shigorin, 1966RDSH

De-protonation reactions

C3H5O- + Hydrogen cation = Acetone

By formula: C3H5O- + H+ = C3H6O

Quantity Value Units Method Reference Comment
Δr1543. ± 8.8kJ/molD-EABrinkman, Berger, et al., 1993gas phase; B
Δr1544. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1546. ± 11.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1538. ± 7.5kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1514. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1516. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Chao and Zwolinski, 1976
Chao, J.; Zwolinski, B.J., Ideal gas thermodynamic properties of propanone and 2-butanone, J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Pennington and Kobe, 1957
Pennington, R.E.; Kobe, K.A., The thermodynamic properties of acetone, J. Am. Chem. Soc., 1957, 79, 300-305. [all data]

Miles and Hunt, 1941
Miles, C.B.; Hunt, H., Heats of combustion. I. The heat of combustion of acetone, J. Phys. Chem., 1941, 45, 1346-1359. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Pennington R.E., 1957
Pennington R.E., The thermodynamic properties of acetone, J. Am. Chem. Soc., 1957, 79, 300-305. [all data]

Chao J., 1976
Chao J., Ideal gas thermodynamic properties of propanone and 2-butanone, J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]

Vilcu R., 1975
Vilcu R., Determination of heat capacities of some alcohols and ketones in vapor phase, Rev. Roum. Chim., 1975, 20, 603-609. [all data]

Kabo G.J., 1995
Kabo G.J., Thermodynamic properties, conformation, and phase transitions of cyclopentanol, J. Chem. Thermodyn., 1995, 27, 953-967. [all data]

Bennewitz K., 1938
Bennewitz K., Molar heats of vapor organic compounds, Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]

Collins B.T., 1949
Collins B.T., The heat capacity of organic vapors. VI. Acetone, J. Am. Chem. Soc., 1949, 71, 2929-2930. [all data]

Guinchant, 1918
Guinchant, M.J., Etude sur la fonction acide dans les derives metheniques et methiniques, Ann. Chem., 1918, 10, 30-84. [all data]

Emery and Benedict, 1911
Emery, A.G.; Benedict, F.G., The heat of combustion of compounds of physiological importance, Am. J. Physiol., 1911, 28, 301-307. [all data]

Kelley, 1929
Kelley, K.K., The heats capacities of isopropyl alcohol and acetone from 16 to 298 °K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 1145-1150. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Kelley, 1928
Parks, G.S.; Kelley, K.K., The application of the third law of thermodynamics to some organic reactions, J. Phys. Chem., 1928, 32, 734-750. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Malhotra and Woolf, 1991
Malhotra, R.; Woolf, L.A., Thermodynamic properties of propanone (acetone) at temperatures from 278 K to 323 K and pressures up to 400 Mpa, J. Chem. Thermodynam., 1991, 23, 867-876. [all data]

Costas, Yao, et al., 1989
Costas, M.; Yao, Z.; Patterson, D., Complex formation and self-association in ternary mixtures, J. Chem. Soc., Faraday Trans., 1989, 1 85(8), 2211-2227. [all data]

Petrov, Peshekhodov, et al., 1989
Petrov, A.N.; Peshekhodov, P.B.; Al'per, G.A., Heat capacity of non-aqueous solutions of non-electrolyts with N,N-dimethylformamide as a base, Sbornik Nauch. Trud., Termodin. Rast. neelect., Ivanovo, Inst. nevod. rast., 1989, Akad. [all data]

Al'per, Peshekhodov, et al., 1986
Al'per, G.A.; Peshekhodov, P.B.; Nikiforov, M.Yu.; Petrov, A.N.; Krestov, G.A., Specific heats and features of the intermolecular interactions in the system chloroform-acetone, Zhur. Obshchei Khim., 1986, 56(8), 1688-1691. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Heat capacities of water + organic-solvent mixtures, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 2381-2398. [all data]

Costas and Patterson, 1985, 2
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Saluja, Peacock, et al., 1979
Saluja, P.P.S.; Peacock, L.A.; Fuchs, R., Enthalpies of interaction of aliphatic ketones with polar and nonpolar solvents, J. Am. Chem. Soc., 1979, 101, 1958-1962. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Low and Moelwyn-Hughes, 1962
Low, D.I.R.; Moelwyn-Hughes, E.A., The heat capacities of acetone, methyl iodide and mixtures thereof in the liquid state, Proc. Roy. Soc. (London), 1962, A267, 384-394. [all data]

Staveley, Tupman, et al., 1955
Staveley, L.A.K.; Tupman, W.I.; Hart, K.R., Some thermodynamice properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + chloroform, and acetone + carbon disulphide, Trans. Faraday Soc., 1955, 51, 323-342. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Trew and Watkins, 1933
Trew, V.C.G.; Watkins, G.M.C., Some physical properties of mixtures of certain organic liquids, Trans. Faraday Soc., 1933, 29, 1310-1318. [all data]

Trew, 1932
Trew, V.C.G., Physical properties of mixtures of acetone and bromoform, Trans. Faraday Soc., 1932, 28, 509-514. [all data]

Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K., Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures, Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]

Williams and Daniels, 1925
Williams, J.W.; Daniels, F., The specific heats of binary mixtures, J. Am. Chem. Soc., 1925, 47, 1490-1503. [all data]

Bramley, 1916
Bramley, A., The study of binary mixtures. Part IV. Heats of reaction and specific heats, J. Chem. Soc. (London), 1916, 109, 496-515. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Kelley, 1929, 2
Kelley, K.K., The heat capacities of isopropyl alcohol and acetone from 16 to 298 K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 1145-51. [all data]

Parks and Kelley, 1928, 2
Parks, G.S.; Kelley, K.K., The application of the third law of thermodynamics to some organic reactions, J. Phys. Chem., 1928, 32, 734-50. [all data]

Parks and Kelley, 1925, 2
Parks, G.S.; Kelley, K.K., Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds, J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]

Campbell and Chatterjee, 1969
Campbell, A.N.; Chatterjee, R.M., The critical constants and orthobaric densities of acetone, chloroform benzene, and carbon tetrachloride, Can. J. Chem., 1969, 47, 3893-8. [all data]

Campbell and Chatterjee, 1968
Campbell, A.N.; Chatterjee, R.M., Orthobaric Data of Certain Pure Liquids in the Neighborhood of the Critical Point, Can. J. Chem., 1968, 46, 575-81. [all data]

Kobe, Crawford, et al., 1955
Kobe, K.A.; Crawford, H.R.; Stephenson, R.W., Critical Properties and Vapor Pressures of Some Ketones, Ind. Eng. Chem., 1955, 47, 1767-72. [all data]

Rosenbaum, 1951
Rosenbaum, M., , M.S. Thesis, Univ. Tex., Austin, TX, 1951. [all data]

Herz and Neukirch, 1923
Herz, W.; Neukirch, E., On Knowldge of the Critical State, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose, Ellender, et al., 1975
Ambrose, D.; Ellender, J.H.; Lees, E.B.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXXVIII. Vapour pressures of some aliphatic ketones, The Journal of Chemical Thermodynamics, 1975, 7, 5, 453-472, https://doi.org/10.1016/0021-9614(75)90275-X . [all data]

Mathews, 1926
Mathews, J.H., The accurate measurement of heats of vaporization of liquids, J. Am. Chem. Soc., 1926, 48, 562-576. [all data]

Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M., Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]

Soni, Ramjugernath, et al., 2008
Soni, Minal; Ramjugernath, Deresh; Raal, J. David, Vapor--Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone, J. Chem. Eng. Data, 2008, 53, 3, 745-749, https://doi.org/10.1021/je7005924 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Sprake, et al., 1974
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXXIII. The vapour pressure of acetone, The Journal of Chemical Thermodynamics, 1974, 6, 7, 693-700, https://doi.org/10.1016/0021-9614(74)90119-0 . [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Baliah and Gnanasekaran, 1986
Baliah, V.; Gnanasekaran, K., Search for hydrogen bonding in thiophenols through heats of vaporization measurements, Indian J. Chem., Sect A, 1986, 25, 7, 673. [all data]

Dmitriev, Kachurina, et al., 1986
Dmitriev, Yu.G.; Kachurina, N.S.; Wang, C.H.; Kochubei, V.V., Thermochemical properties of complex glycidol esters, Vestn. L'vov. Politekh. Inst., 1986, 201, 29. [all data]

Castellari, Francesconi, et al., 1984
Castellari, Carlo; Francesconi, Romolo; Comelli, Fabio; Ottani, Stefano, Vapor-liquid equilibria in binary systems containing 1,3-dioxolane at isobaric conditions. 6. Binary mixtures of 1,3-dioxolane with acetone, J. Chem. Eng. Data, 1984, 29, 3, 283-284, https://doi.org/10.1021/je00037a016 . [all data]

Sokolov, Zhilina, et al., 1963
Sokolov, V.V.; Zhilina, L.P.; Mischenko, K.P., Zh. Prikl. Khim. (Leningrad), 1963, 36, 750. [all data]

Brown and Smith, 1957
Brown, I.; Smith, F., Liquid-vapour equilibria viii. The systems acetoke +benzene and acetone +carbon tetrachloride at 45«65533»C, Aust. J. Chem., 1957, 10, 4, 423-621, https://doi.org/10.1071/CH9570423 . [all data]

Felsing and Durban, 1926
Felsing, W.A.; Durban, S.A., THE VAPOR PRESSURES, DENSITIES, AND SOME DERIVED QUANTITIES FOR ACETONE, J. Am. Chem. Soc., 1926, 48, 11, 2885-2893, https://doi.org/10.1021/ja01690a020 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G., Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution, J. Agric. Food Chem., 1969, 17, 385-389. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Desfrancois, Abdoul-Carime, et al., 1994
Desfrancois, C.; Abdoul-Carime, H.; Khelifa, N.; Schermann, J.P., Fork 1/r to 1/r2 Potentials: Electron Exchange between Rydberg Atoms and Polar Molecules, Phys. Rev. Lett., 1994, 73, 18, 2436, https://doi.org/10.1103/PhysRevLett.73.2436 . [all data]

Bouchoux, Buisson, et al., 2003
Bouchoux, G.; Buisson, D.A.; Bourcier, S.; Sablier, M., Application of the kinetic method to bifunctional bases. ESI tandem quadrupole experiments, Int. J. Mass Spectrom., 2003, 228, 1035. [all data]

Bouchoux and Salpin, 1999
Bouchoux, J.; Salpin, J.Y., Re-evaluated gas-phase basicity and proton affinity data from the thermokinetic method, Rapid Com. Mass Spectrom., 1999, 13, 932. [all data]

Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C., Heat of formation for acetyl cation in the gas phase, J. Am. Chem. Soc., 1982, 104, 5318. [all data]

Trott, Blais, et al., 1978
Trott, W.M.; Blais, N.C.; Walters, E.A., Molecular beam photoionization study of acetone and acetone-d6, J. Chem. Phys., 1978, 69, 3150. [all data]

Staley, Wieting, et al., 1977
Staley, R.H.; Wieting, R.D.; Beauchamp, J.L., Carbenium ion stabilities in the gas phase and solution. An ion cyclotron resonance study of bromide transfer reactions involving alkali ions, alkyl carbenium ions, acyl cations and cyclic halonium ions, J. Am. Chem. Soc., 1977, 99, 5964. [all data]

Hernandez, Masclet, et al., 1977
Hernandez, R.; Masclet, P.; Mouvier, G., Spectroscopie de photoelectrons d'aldehydes et de cetones aliphatiques, J. Electron Spectrosc. Relat. Phenom., 1977, 10, 333. [all data]

Mouvier and Hernandez, 1975
Mouvier, G.; Hernandez, R., Ionisation and appearance potentials of alkylketones, Org. Mass Spectrom., 1975, 10, 958. [all data]

Tam, Yee, et al., 1974
Tam, W.-C.; Yee, D.; Brion, C.E., Photoelectron spectra of some aldehydes and ketones, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 77. [all data]

Ogata, Kitayama, et al., 1974
Ogata, H.; Kitayama, J.; Koto, M.; Kojima, S.; Nihei, Y.; Kamada, H., Vacuum ultraviolet absorption and photoelectron spectra of aliphatic ketones, Bull. Chem. Soc. Jpn., 1974, 47, 958. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Huebner, Celotta, et al., 1973
Huebner, R.H.; Celotta, R.J.; Mielczarek, S.R.; Kuyatt, C.E., Electron energy loss spectroscopy of acetone vapor, J. Chem. Phys., 1973, 59, 5434. [all data]

Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V., Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols, Khim. Vys. Energ., 1972, 6, 387. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H., Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules, J. Am. Chem. Soc., 1972, 94, 1451. [all data]

Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., On-line computer methods used in conjunction with the measurement of ionization appearance potentials, Adv. Mass Spectrom., 1971, 5, 334. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Johnstone, Mellon, et al., 1970
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., Online acquisition of ionization efficiency data, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 241. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Potapov, Filyugina, et al., 1968
Potapov, V.K.; Filyugina, A.D.; Shigorin, D.N.; Ozerova, G.A., Photoionization of some compounds containing the carbonyl and amino groups, Dokl. Akad. Nauk SSSR, 1968, 180, 398, In original 352. [all data]

Dorman, 1965
Dorman, F.H., Fragment ions from CH3CHO and (CH3)2CO by electron impact, J. Chem. Phys., 1965, 42, 65. [all data]

Murad and Inghram, 1964
Murad, E.; Inghram, M.G., Photoionization of aliphatic ketones, J. Chem. Phys., 1964, 40, 3263. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Vilesov, 1960
Vilesov, F.I., The photoionization of vapors of compounds whose molecules contain carbonyl groups, Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]

Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N., The photoionization of the vapors of certain organic compounds, Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Kobayashi, 1978
Kobayashi, T., A new rule for photoelectron angular distributions of molecules, Phys. Lett. A, 1978, 69, 31. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Young and Cheng, 1976
Young, V.Y.; Cheng, K.L., The photoelectron spectra of halogen substituted acetones, J. Chem. Phys., 1976, 65, 3187. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T., Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects, J. Am. Chem. Soc., 1975, 97, 4137. [all data]

Kelder, Cerfontain, et al., 1974
Kelder, J.; Cerfontain, H.; Higginson, B.R.; Lloyd, D.R., Photoelectron and ultraviolet absorption spectra of cyclopropyl conjugated 1,2-diketones, Tetrahedron Lett., 1974, 739. [all data]

Hentrich, Gunkel, et al., 1974
Hentrich, G.; Gunkel, E.; Klessinger, M., Photoelektronenspektren organischer verbindungen. 4. Photoelektronenspektren ungesattigter carbonylverbindungen, J. Mol. Struct., 1974, 21, 231. [all data]

Powis and Danby, 1979
Powis, I.; Danby, C.J., The unimolecular fragmentation of energy-selected acetone ions, Int. J. Mass Spectrom. Ion Phys., 1979, 32, 27. [all data]

Majer, Olavesen, et al., 1971
Majer, J.R.; Olavesen, C.; Robb, J.C., Wavelength effect in the photolysis of halogenated ketones, J. Chem. Soc. B, 1971, 48. [all data]

Potzinger and Bunau, 1969
Potzinger, P.; Bunau, G.v., Empirische Beruksichtigung von Uberschussenergien bei der Auftrittspotentialbestimmung, Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 466. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Shigorin, Filyugina, et al., 1966
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K., Ionization and dissociation of molecules of acetaldehyde, acetone, and acetic acid on electron impact, Teor. i Eksperim. Khim., 1966, 2, 554, In original 417. [all data]

Kanomata, 1961
Kanomata, I., Mass-spectrometric study on ionization and dissociation of formaldehyde, acetaldehyde, acetone and ethyl methyl ketone by electron impact, Bull. Chem. Soc. Japan, 1961, 34, 1864. [all data]

Murad and Inghram, 1964, 2
Murad, E.; Inghram, M.G., Thermodynamic properties of the acetyl radical and bond dissociation energies in aliphatic carbonyl compounds, J. Chem. Phys., 1964, 41, 404. [all data]

Potapov and Shigorin, 1966
Potapov, V.K.; Shigorin, D.N., Relation between nature of electronic states of the acetone molecule and mechanism of its breakdown on electron bombardment, Zh. Fiz. Khim., 1966, 40, 200, In original 101. [all data]

Brinkman, Berger, et al., 1993
Brinkman, E.A.; Berger, S.; Marks, J.; Brauman, J.I., Molecular Rotation and the Observation of Dipole-Bound States of Anions, J. Chem. Phys., 1993, 99, 10, 7586, https://doi.org/10.1063/1.465688 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References