Carbon disulfide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas27.949kcal/molReviewChase, 1998Data last reviewed in December, 1976
Δfgas27.98 ± 0.19kcal/molCcrGood, Lacina, et al., 1961ALS
Quantity Value Units Method Reference Comment
Δcgas-265.8kcal/molCcbGuerin, Marthe, et al., 1949ALS
Quantity Value Units Method Reference Comment
gas,1 bar56.879cal/mol*KReviewChase, 1998Data last reviewed in December, 1976

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1000.1000. to 6000.
A 8.56929114.63980
B 12.545700.329547
C -9.760381-0.033585
D 2.8684400.002219
E -0.053736-0.775345
F 24.7378121.52750
G 63.6137071.56049
H 27.9501027.95010
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1976 Data last reviewed in December, 1976

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid21.37 ± 0.17kcal/molCcrGood, Lacina, et al., 1961ALS
Quantity Value Units Method Reference Comment
Δcliquid-403.24 ± 0.12kcal/molCcrGood, Lacina, et al., 1961Reanalyzed by Cox and Pilcher, 1970, Original value = -402.09 ± 0.12 kcal/mol; ALS
Quantity Value Units Method Reference Comment
liquid36.09cal/mol*KN/ABrown and Manov, 1937DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
18.88298.Staveley, Tupman, et al., 1955T = 286 to 317 K.; DH
17.90294.81Zhdanov, 1945T = 7 to 31°C. Value is unsmoothed experimental datum.; DH
18.6293.Mazur, 1939T = -100 to 20°C.; DH
18.2301.2Phillip, 1939DH
18.17297.43Brown and Manov, 1937T = 15 to 297 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil319.2 ± 0.6KAVGN/AAverage of 13 out of 14 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus161. ± 3.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple161.11KN/ABrown and Manov, 1937, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple161.59KN/AStull, 1937Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc552.KN/AMajer and Svoboda, 1985 
Quantity Value Units Method Reference Comment
Δvap6.6 ± 0.1kcal/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.391319.4N/AMajer and Svoboda, 1985 
6.86270.N/ADykyj, Svoboda, et al., 1999Based on data from 255. to 354. K.; AC
6.48369.N/ADykyj, Svoboda, et al., 1999Based on data from 354. to 552. K.; AC
6.81275.AStephenson and Malanowski, 1987Based on data from 260. to 353. K.; AC
6.55353.AStephenson and Malanowski, 1987Based on data from 338. to 408. K.; AC
6.45403.AStephenson and Malanowski, 1987Based on data from 388. to 497. K.; AC
6.86505.AStephenson and Malanowski, 1987Based on data from 490. to 533. K.; AC
6.86270.EBBoublík and Aim, 1972Based on data from 255. to 318. K. See also Stephenson and Malanowski, 1987.; AC
6.72292.EBWaddington, Smith, et al., 1962Based on data from 277. to 353. K.; AC
6.72 ± 0.02282.CWaddington, Smith, et al., 1962AC
6.38 ± 0.02319.CWaddington, Smith, et al., 1962AC
6.60318.N/AThomson, 1946Based on data from 303. to 358. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
282. to 319.8.8600.2264552.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
276.74 to 353.084.061121168.62-31.616Waddington, Smith, et al., 1962Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.049161.11Brown and Manov, 1937DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
6.511161.11Brown and Manov, 1937DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chlorine anion + Carbon disulfide = (Chlorine anion • Carbon disulfide)

By formula: Cl- + CS2 = (Cl- • CS2)

Quantity Value Units Method Reference Comment
Δr8.80 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Δr11.7 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr13.9cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Δr20.cal/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(Cl-)t-C4H9OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.6 ± 2.2kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B
Δr5.7 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B,M

CS2- + Carbon disulfide = (CS2- • Carbon disulfide)

By formula: CS2- + CS2 = (CS2- • CS2)

Quantity Value Units Method Reference Comment
Δr21.9 ± 1.5kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B,M
Δr4.4 ± 1.1kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B
Δr4.10 ± 0.60kcal/molLPESBowen and Eaton, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr13.0 ± 2.5kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B

(CS2- • Carbon disulfide) + Carbon disulfide = (CS2- • 2Carbon disulfide)

By formula: (CS2- • CS2) + CS2 = (CS2- • 2CS2)

Quantity Value Units Method Reference Comment
Δr4.60 ± 0.70kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B
Δr6.4 ± 1.4kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr0.1 ± 3.3kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B

S2+ + Carbon disulfide = (S2+ • Carbon disulfide)

By formula: S2+ + CS2 = (S2+ • CS2)

Quantity Value Units Method Reference Comment
Δr30.9kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr28.8kcal/molPIOno, Linn, et al., 1981gas phase; M
Δr21.9kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; equilibrium uncertain; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr17.1cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; equilibrium uncertain; M

(Fluorine anion • 2Carbon disulfide) + Carbon disulfide = (Fluorine anion • 3Carbon disulfide)

By formula: (F- • 2CS2) + CS2 = (F- • 3CS2)

Quantity Value Units Method Reference Comment
Δr5.4 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Fujimaki, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr0.3 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; Estimated entropy; single temperature measurement; B

Fluorine anion + Carbon disulfide = (Fluorine anion • Carbon disulfide)

By formula: F- + CS2 = (F- • CS2)

Quantity Value Units Method Reference Comment
Δr35.0 ± 1.5kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Δr31.3 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr28.2cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr26.5 ± 1.5kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B
Δr24.1 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B

CS2+ + Carbon disulfide = (CS2+ • Carbon disulfide)

By formula: CS2+ + CS2 = (CS2+ • CS2)

Quantity Value Units Method Reference Comment
Δr24.9kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr21.9kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Δr17.5kcal/molPIOno, Linn, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr21.9cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(CS2+ • 2Carbon disulfide) + Carbon disulfide = (CS2+ • 3Carbon disulfide)

By formula: (CS2+ • 2CS2) + CS2 = (CS2+ • 3CS2)

Quantity Value Units Method Reference Comment
Δr4.9kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M
Δr3.9kcal/molPIOno, Linn, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M

(Chlorine anion • 3Carbon disulfide) + Carbon disulfide = (Chlorine anion • 4Carbon disulfide)

By formula: (Cl- • 3CS2) + CS2 = (Cl- • 4CS2)

Quantity Value Units Method Reference Comment
Δr6.8 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; Estimated entropy; single temperature measurement; B
Quantity Value Units Method Reference Comment
Δr-0.1 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; Estimated entropy; single temperature measurement; B

CHS2+ + Carbon disulfide = (CHS2+ • Carbon disulfide)

By formula: CHS2+ + CS2 = (CHS2+ • CS2)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molPHPMSHiraoka, Fujimaki, et al., 1993, 2gas phase; M
Δr11.1kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr14.5cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993, 2gas phase; M
Δr26.4cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(Chlorine anion • 2Carbon disulfide) + Carbon disulfide = (Chlorine anion • 3Carbon disulfide)

By formula: (Cl- • 2CS2) + CS2 = (Cl- • 3CS2)

Quantity Value Units Method Reference Comment
Δr7.20 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.3cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr0.8 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Chlorine anion • Carbon disulfide) + Carbon disulfide = (Chlorine anion • 2Carbon disulfide)

By formula: (Cl- • CS2) + CS2 = (Cl- • 2CS2)

Quantity Value Units Method Reference Comment
Δr7.70 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr3.0 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Fluorine anion • Carbon disulfide) + Carbon disulfide = (Fluorine anion • 2Carbon disulfide)

By formula: (F- • CS2) + CS2 = (F- • 2CS2)

Quantity Value Units Method Reference Comment
Δr6.70 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr15.3cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr2.1 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Iodide • Carbon disulfide) + Carbon disulfide = (Iodide • 2Carbon disulfide)

By formula: (I- • CS2) + CS2 = (I- • 2CS2)

Quantity Value Units Method Reference Comment
Δr6.80 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr0.2 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Bromine anion • Carbon disulfide) + Carbon disulfide = (Bromine anion • 2Carbon disulfide)

By formula: (Br- • CS2) + CS2 = (Br- • 2CS2)

Quantity Value Units Method Reference Comment
Δr7.30 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr1.2 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

Iodide + Carbon disulfide = (Iodide • Carbon disulfide)

By formula: I- + CS2 = (I- • CS2)

Quantity Value Units Method Reference Comment
Δr7.40 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr16.7cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr2.4 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

Bromine anion + Carbon disulfide = (Bromine anion • Carbon disulfide)

By formula: Br- + CS2 = (Br- • CS2)

Quantity Value Units Method Reference Comment
Δr8.30 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr13.0cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr4.4 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(S2+ • 2Carbon disulfide) + Carbon disulfide = (S2+ • 3Carbon disulfide)

By formula: (S2+ • 2CS2) + CS2 = (S2+ • 3CS2)

Quantity Value Units Method Reference Comment
Δr5.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M

(S2- • Carbon disulfide) + Carbon disulfide = (S2- • 2Carbon disulfide)

By formula: (S2- • CS2) + CS2 = (S2- • 2CS2)

Quantity Value Units Method Reference Comment
Δr6.1kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M

(CS2+ • Carbon disulfide) + Carbon disulfide = (CS2+ • 2Carbon disulfide)

By formula: (CS2+ • CS2) + CS2 = (CS2+ • 2CS2)

Quantity Value Units Method Reference Comment
Δr6.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr4.4kcal/molPIOno, Linn, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr21.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M

Methyl cation + Carbon disulfide = (Methyl cation • Carbon disulfide)

By formula: CH3+ + CS2 = (CH3+ • CS2)

Quantity Value Units Method Reference Comment
Δr60.2kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

(CS2- • 3Carbon disulfide) + Carbon disulfide = (CS2- • 4Carbon disulfide)

By formula: (CS2- • 3CS2) + CS2 = (CS2- • 4CS2)

Quantity Value Units Method Reference Comment
Δr2.3 ± 6.7kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(CS2- • 4Carbon disulfide) + Carbon disulfide = (CS2- • 5Carbon disulfide)

By formula: (CS2- • 4CS2) + CS2 = (CS2- • 5CS2)

Quantity Value Units Method Reference Comment
Δr1.8 ± 6.6kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(CS2- • 2Carbon disulfide) + Carbon disulfide = (CS2- • 3Carbon disulfide)

By formula: (CS2- • 2CS2) + CS2 = (CS2- • 3CS2)

Quantity Value Units Method Reference Comment
Δr-23.40kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(S2+ • Carbon disulfide) + Carbon disulfide = (S2+ • 2Carbon disulfide)

By formula: (S2+ • CS2) + CS2 = (S2+ • 2CS2)

Quantity Value Units Method Reference Comment
Δr8.3kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M

(CHS2+ • Carbon disulfide) + Carbon disulfide = (CHS2+ • 2Carbon disulfide)

By formula: (CHS2+ • CS2) + CS2 = (CHS2+ • 2CS2)

Quantity Value Units Method Reference Comment
Δr4.7kcal/molPHPMSHiraoka, Fujimaki, et al., 1993, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr14.3cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993, 2gas phase; M

S2- + Carbon disulfide = (S2- • Carbon disulfide)

By formula: S2- + CS2 = (S2- • CS2)

Quantity Value Units Method Reference Comment
Δr19.1kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr29.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M

C6H6+ + Carbon disulfide = (C6H6+ • Carbon disulfide)

By formula: C6H6+ + CS2 = (C6H6+ • CS2)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

(CS2+ • 3Carbon disulfide) + Carbon disulfide = (CS2+ • 4Carbon disulfide)

By formula: (CS2+ • 3CS2) + CS2 = (CS2+ • 4CS2)

Quantity Value Units Method Reference Comment
Δr2.6kcal/molPIOno, Linn, et al., 1980gas phase; M

(Iron ion (1+) • Carbon disulfide) + Carbon disulfide = (Iron ion (1+) • 2Carbon disulfide)

By formula: (Fe+ • CS2) + CS2 = (Fe+ • 2CS2)

Quantity Value Units Method Reference Comment
Δr44.9 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

CS+ + Carbon disulfide = (CS+ • Carbon disulfide)

By formula: CS+ + CS2 = (CS+ • CS2)

Quantity Value Units Method Reference Comment
Δr36.0kcal/molPIOno, Linn, et al., 1981gas phase; M

Sulfur cation + Carbon disulfide = (Sulfur cation • Carbon disulfide)

By formula: S+ + CS2 = (S+ • CS2)

Quantity Value Units Method Reference Comment
Δr39.7kcal/molPIGress, Linn, et al., 1980gas phase; M

trithiocarbonic acid = Carbon disulfide + Hydrogen sulfide

By formula: CH2S3 = CS2 + H2S

Quantity Value Units Method Reference Comment
Δr10.6 ± 0.3kcal/molCmGattow and Krebes, 1963liquid phase; ALS

Iron ion (1+) + Carbon disulfide = (Iron ion (1+) • Carbon disulfide)

By formula: Fe+ + CS2 = (Fe+ • CS2)

Quantity Value Units Method Reference Comment
Δr39.7 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Vanadium ion (1+) + Carbon disulfide = (Vanadium ion (1+) • Carbon disulfide)

By formula: V+ + CS2 = (V+ • CS2)

Quantity Value Units Method Reference Comment
Δr27.2 ± 3.0kcal/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

Molybdenum ion (1+) + Carbon disulfide = (Molybdenum ion (1+) • Carbon disulfide)

By formula: Mo+ + CS2 = (Mo+ • CS2)

Quantity Value Units Method Reference Comment
Δr16.1 ± 3.0kcal/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to CS2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.073 ± 0.005eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)163.0kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity157.2kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.5525 ± 0.0013N/ACavanagh, Gibson, et al., 2012poor Franck-Condon overlap makes previous LPES studies too bound; B
0.580 ± 0.050LPESMisaizu, Tsunoyama, et al., 2004Vertical Detachment Energy: 1.27±0.10 eV; B
0.51 ± 0.10IMREChowdhury, Heinis, et al., 1986ΔGea(423 K) = -12.7 kcal/mol; ΔSea (estimated) = +2.0 eu.; B
<0.799982LPESScheidt and Weinkauf, 1997B
0.000694N/ACompton, Dunning, et al., 1996Quadrupole-bound state; B
0.60 ± 0.10ECDChen and Wentworth, 1983B
0.50 ± 0.20EndoHughes, Lifschitz, et al., 1973B
1.460 ± 0.020LPESTsukuda, Hirose, et al., 1997EA given is Vertical Detachment Energy. Poor Franck-Condon overlap; B
0.89 ± 0.20LPESOakes and Ellison, 1986The discrepancy with equilibrium has not been resolved. Poor Franck-Condon overlap.; B
1.00 ± 0.20NBIECompton, Reinhardt, et al., 1975B
0.94 ± 0.32IMRBKraus, Muller-Duysing, et al., 1961Between NH2-, C-; B

Ionization energy determinations

IE (eV) Method Reference Comment
10.078TEFischer, Lochschmidt, et al., 1993LL
10.080 ± 0.002PEWang, Reutt, et al., 1988LL
10.077PEReineck, Wannberg, et al., 1984LBLHLM
10. ± 1.EICarnovale, Hitchcock, et al., 1982LBLHLM
10.06PEKimura, Katsumata, et al., 1981LLK
10.079 ± 0.003PEPotts and Fattahallah, 1980LLK
10.0685 ± 0.0020SOno, Linn, et al., 1980LLK
10.05 ± 0.08EIMiletic, Eres, et al., 1980LLK
10.06 ± 0.025EIHubin-Franskin, Marmet, et al., 1980LLK
10.074PEHubin-Franskin, Delwiche, et al., 1980LLK
10.125PITrott, Blais, et al., 1979LLK
10.076 ± 0.005PICoppens, Reynaert, et al., 1979LLK
10.077PIFrey, Gotchev, et al., 1978LLK
10.074 ± 0.005PIDrowart, Smets, et al., 1978LLK
10.1 ± 0.1EIHildenbrand, 1975LLK
10.06PENatalis, 1973LLK
10.06 ± 0.01PEFrost, Lee, et al., 1973LLK
10.06PEKroto and Suffolk, 1972LLK
10.07 ± 0.10EIHildenbrand, 1972LLK
10.068 ± 0.005PEBrundle and Turner, 1969RDSH
10.122 ± 0.005PEBrundle and Turner, 1969RDSH
10.13PIMomigny and Delwiche, 1968RDSH
10.075PIMomigny and Delwiche, 1968RDSH
10.08 ± 0.01PEEland and Danby, 1968RDSH
10.14 ± 0.01PEEland and Danby, 1968RDSH
10.059 ± 0.008PIDibeler and Walker, 1967RDSH
10.112 ± 0.008PIDibeler and Walker, 1967RDSH
10.080STanaka, Jursa, et al., 1960RDSH
10.134STanaka, Jursa, et al., 1960RDSH
10.079SPrice and Simpson, 1938RDSH
10.133SPrice and Simpson, 1938RDSH
10.09PESchweig and Thiel, 1974Vertical value; LLK
10.10PEPotts and Williams, 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+10. ± 1.?EICarnovale, Hitchcock, et al., 1982LBLHLM
C+20.0 ± 0.1S2EIFerreira and Fronteira_e_Silva, 1970RDSH
C+19.9 ± 0.6S2EICuthbert, Farren, et al., 1968RDSH
C+24.0 ± 0.52SEICuthbert, Farren, et al., 1968RDSH
CS+16. ± 1.SEICarnovale, Hitchcock, et al., 1982LBLHLM
CS+14.10 ± 0.08SEIMiletic, Eres, et al., 1980LLK
CS+15.75 ± 0.02SPICoppens, Reynaert, et al., 1979LLK
CS+15.94 ± 0.07SEIHubin-Franskin, Huard, et al., 1978LLK
CS+13.9 ± 0.1S(-)EIHubin-Franskin, Huard, et al., 1978LLK
CS+15.75 ± 0.02SPIDrowart, Smets, et al., 1978LLK
CS+13.64 ± 0.02S(-)PIDrowart, Smets, et al., 1978LLK
CS+14.5S(-)EIHubin-Franskin, Locht, et al., 1976LLK
CS+14.7SEIHubin-Franskin, Locht, et al., 1976LLK
CS+16. ± 1.SEIMomigny, Mathieu, et al., 1973LLK
CS+16.15 ± 0.10SEIMomigny and Delwiche, 1968RDSH
CS+9.6 ± 0.6SEICuthbert, Farren, et al., 1968RDSH
CS+16.16 ± 0.01SPIDibeler and Walker, 1967RDSH
S+15. ± 1.CSEICarnovale, Hitchcock, et al., 1982LBLHLM
S+13.40 ± 0.08CSEIMiletic, Eres, et al., 1980LLK
S+14.80 ± 0.02CSPICoppens, Reynaert, et al., 1979LLK
S+14.88 ± 0.05CSEIHubin-Franskin, Huard, et al., 1978LLK
S+14.80 ± 0.02CSPIDrowart, Smets, et al., 1978LLK
S+13.35CSEIHubin-Franskin, Locht, et al., 1976LLK
S+15. ± 1.CSEIMomigny, Mathieu, et al., 1973LLK
S+17. ± 1.CSEIMomigny, Mathieu, et al., 1973LLK
S+14.8CSPIDibeler and Walker, 1967RDSH
S2+17. ± 1.CEICarnovale, Hitchcock, et al., 1982LBLHLM
S2+16.82 ± 0.02CPICoppens, Reynaert, et al., 1979LLK
S2+16.88 ± 0.02CPIDrowart, Smets, et al., 1978LLK
S2+14.9 ± 0.3CEIFerreira and Fronteira_e_Silva, 1970RDSH
S2+18.2 ± 0.9CEICuthbert, Farren, et al., 1968RDSH
S2+9.6 ± 0.6CEICuthbert, Farren, et al., 1968RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Carbon disulfide = (Bromine anion • Carbon disulfide)

By formula: Br- + CS2 = (Br- • CS2)

Quantity Value Units Method Reference Comment
Δr8.30 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr13.0cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr4.4 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Bromine anion • Carbon disulfide) + Carbon disulfide = (Bromine anion • 2Carbon disulfide)

By formula: (Br- • CS2) + CS2 = (Br- • 2CS2)

Quantity Value Units Method Reference Comment
Δr7.30 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr1.2 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

CHS2+ + Carbon disulfide = (CHS2+ • Carbon disulfide)

By formula: CHS2+ + CS2 = (CHS2+ • CS2)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molPHPMSHiraoka, Fujimaki, et al., 1993, 2gas phase; M
Δr11.1kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr14.5cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993, 2gas phase; M
Δr26.4cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(CHS2+ • Carbon disulfide) + Carbon disulfide = (CHS2+ • 2Carbon disulfide)

By formula: (CHS2+ • CS2) + CS2 = (CHS2+ • 2CS2)

Quantity Value Units Method Reference Comment
Δr4.7kcal/molPHPMSHiraoka, Fujimaki, et al., 1993, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr14.3cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993, 2gas phase; M

Methyl cation + Carbon disulfide = (Methyl cation • Carbon disulfide)

By formula: CH3+ + CS2 = (CH3+ • CS2)

Quantity Value Units Method Reference Comment
Δr60.2kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

CS+ + Carbon disulfide = (CS+ • Carbon disulfide)

By formula: CS+ + CS2 = (CS+ • CS2)

Quantity Value Units Method Reference Comment
Δr36.0kcal/molPIOno, Linn, et al., 1981gas phase; M

CS2+ + Carbon disulfide = (CS2+ • Carbon disulfide)

By formula: CS2+ + CS2 = (CS2+ • CS2)

Quantity Value Units Method Reference Comment
Δr24.9kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr21.9kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Δr17.5kcal/molPIOno, Linn, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr21.9cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(CS2+ • Carbon disulfide) + Carbon disulfide = (CS2+ • 2Carbon disulfide)

By formula: (CS2+ • CS2) + CS2 = (CS2+ • 2CS2)

Quantity Value Units Method Reference Comment
Δr6.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr4.4kcal/molPIOno, Linn, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr21.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M

(CS2+ • 2Carbon disulfide) + Carbon disulfide = (CS2+ • 3Carbon disulfide)

By formula: (CS2+ • 2CS2) + CS2 = (CS2+ • 3CS2)

Quantity Value Units Method Reference Comment
Δr4.9kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M
Δr3.9kcal/molPIOno, Linn, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M

(CS2+ • 3Carbon disulfide) + Carbon disulfide = (CS2+ • 4Carbon disulfide)

By formula: (CS2+ • 3CS2) + CS2 = (CS2+ • 4CS2)

Quantity Value Units Method Reference Comment
Δr2.6kcal/molPIOno, Linn, et al., 1980gas phase; M

CS2- + Carbon disulfide = (CS2- • Carbon disulfide)

By formula: CS2- + CS2 = (CS2- • CS2)

Quantity Value Units Method Reference Comment
Δr21.9 ± 1.5kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B,M
Δr4.4 ± 1.1kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B
Δr4.10 ± 0.60kcal/molLPESBowen and Eaton, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr13.0 ± 2.5kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B

(CS2- • Carbon disulfide) + Carbon disulfide = (CS2- • 2Carbon disulfide)

By formula: (CS2- • CS2) + CS2 = (CS2- • 2CS2)

Quantity Value Units Method Reference Comment
Δr4.60 ± 0.70kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B
Δr6.4 ± 1.4kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr0.1 ± 3.3kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B

(CS2- • 2Carbon disulfide) + Carbon disulfide = (CS2- • 3Carbon disulfide)

By formula: (CS2- • 2CS2) + CS2 = (CS2- • 3CS2)

Quantity Value Units Method Reference Comment
Δr-23.40kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(CS2- • 3Carbon disulfide) + Carbon disulfide = (CS2- • 4Carbon disulfide)

By formula: (CS2- • 3CS2) + CS2 = (CS2- • 4CS2)

Quantity Value Units Method Reference Comment
Δr2.3 ± 6.7kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(CS2- • 4Carbon disulfide) + Carbon disulfide = (CS2- • 5Carbon disulfide)

By formula: (CS2- • 4CS2) + CS2 = (CS2- • 5CS2)

Quantity Value Units Method Reference Comment
Δr1.8 ± 6.6kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

C6H6+ + Carbon disulfide = (C6H6+ • Carbon disulfide)

By formula: C6H6+ + CS2 = (C6H6+ • CS2)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

Chlorine anion + Carbon disulfide = (Chlorine anion • Carbon disulfide)

By formula: Cl- + CS2 = (Cl- • CS2)

Quantity Value Units Method Reference Comment
Δr8.80 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Δr11.7 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr13.9cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Δr20.cal/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(Cl-)t-C4H9OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.6 ± 2.2kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B
Δr5.7 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B,M

(Chlorine anion • Carbon disulfide) + Carbon disulfide = (Chlorine anion • 2Carbon disulfide)

By formula: (Cl- • CS2) + CS2 = (Cl- • 2CS2)

Quantity Value Units Method Reference Comment
Δr7.70 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr3.0 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Chlorine anion • 2Carbon disulfide) + Carbon disulfide = (Chlorine anion • 3Carbon disulfide)

By formula: (Cl- • 2CS2) + CS2 = (Cl- • 3CS2)

Quantity Value Units Method Reference Comment
Δr7.20 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.3cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr0.8 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Chlorine anion • 3Carbon disulfide) + Carbon disulfide = (Chlorine anion • 4Carbon disulfide)

By formula: (Cl- • 3CS2) + CS2 = (Cl- • 4CS2)

Quantity Value Units Method Reference Comment
Δr6.8 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; Estimated entropy; single temperature measurement; B
Quantity Value Units Method Reference Comment
Δr-0.1 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; Estimated entropy; single temperature measurement; B

Fluorine anion + Carbon disulfide = (Fluorine anion • Carbon disulfide)

By formula: F- + CS2 = (F- • CS2)

Quantity Value Units Method Reference Comment
Δr35.0 ± 1.5kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Δr31.3 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr28.2cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr26.5 ± 1.5kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B
Δr24.1 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B

(Fluorine anion • Carbon disulfide) + Carbon disulfide = (Fluorine anion • 2Carbon disulfide)

By formula: (F- • CS2) + CS2 = (F- • 2CS2)

Quantity Value Units Method Reference Comment
Δr6.70 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr15.3cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr2.1 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Fluorine anion • 2Carbon disulfide) + Carbon disulfide = (Fluorine anion • 3Carbon disulfide)

By formula: (F- • 2CS2) + CS2 = (F- • 3CS2)

Quantity Value Units Method Reference Comment
Δr5.4 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Fujimaki, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr0.3 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; Estimated entropy; single temperature measurement; B

Iron ion (1+) + Carbon disulfide = (Iron ion (1+) • Carbon disulfide)

By formula: Fe+ + CS2 = (Fe+ • CS2)

Quantity Value Units Method Reference Comment
Δr39.7 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • Carbon disulfide) + Carbon disulfide = (Iron ion (1+) • 2Carbon disulfide)

By formula: (Fe+ • CS2) + CS2 = (Fe+ • 2CS2)

Quantity Value Units Method Reference Comment
Δr44.9 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Iodide + Carbon disulfide = (Iodide • Carbon disulfide)

By formula: I- + CS2 = (I- • CS2)

Quantity Value Units Method Reference Comment
Δr7.40 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr16.7cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr2.4 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

(Iodide • Carbon disulfide) + Carbon disulfide = (Iodide • 2Carbon disulfide)

By formula: (I- • CS2) + CS2 = (I- • 2CS2)

Quantity Value Units Method Reference Comment
Δr6.80 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr0.2 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1993gas phase; B

Molybdenum ion (1+) + Carbon disulfide = (Molybdenum ion (1+) • Carbon disulfide)

By formula: Mo+ + CS2 = (Mo+ • CS2)

Quantity Value Units Method Reference Comment
Δr16.1 ± 3.0kcal/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

Sulfur cation + Carbon disulfide = (Sulfur cation • Carbon disulfide)

By formula: S+ + CS2 = (S+ • CS2)

Quantity Value Units Method Reference Comment
Δr39.7kcal/molPIGress, Linn, et al., 1980gas phase; M

S2+ + Carbon disulfide = (S2+ • Carbon disulfide)

By formula: S2+ + CS2 = (S2+ • CS2)

Quantity Value Units Method Reference Comment
Δr30.9kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr28.8kcal/molPIOno, Linn, et al., 1981gas phase; M
Δr21.9kcal/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; equilibrium uncertain; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr17.1cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; equilibrium uncertain; M

(S2+ • Carbon disulfide) + Carbon disulfide = (S2+ • 2Carbon disulfide)

By formula: (S2+ • CS2) + CS2 = (S2+ • 2CS2)

Quantity Value Units Method Reference Comment
Δr8.3kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M

(S2+ • 2Carbon disulfide) + Carbon disulfide = (S2+ • 3Carbon disulfide)

By formula: (S2+ • 2CS2) + CS2 = (S2+ • 3CS2)

Quantity Value Units Method Reference Comment
Δr5.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M

S2- + Carbon disulfide = (S2- • Carbon disulfide)

By formula: S2- + CS2 = (S2- • CS2)

Quantity Value Units Method Reference Comment
Δr19.1kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr29.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M

(S2- • Carbon disulfide) + Carbon disulfide = (S2- • 2Carbon disulfide)

By formula: (S2- • CS2) + CS2 = (S2- • 2CS2)

Quantity Value Units Method Reference Comment
Δr6.1kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994, 2gas phase; Entropy change calculated or estimated; M

Vanadium ion (1+) + Carbon disulfide = (Vanadium ion (1+) • Carbon disulfide)

By formula: V+ + CS2 = (V+ • CS2)

Quantity Value Units Method Reference Comment
Δr27.2 ± 3.0kcal/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 118705

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-5100.564.4Miller and Bruno, 200330. m/0.25 mm/0.1 μm
CapillaryDB-5120.576.0Miller and Bruno, 200330. m/0.25 mm/0.1 μm
CapillaryDB-560.558.0Miller and Bruno, 200330. m/0.25 mm/0.1 μm
CapillaryDB-580.557.3Miller and Bruno, 200330. m/0.25 mm/0.1 μm
PackedSE-3042.539.Rudenko, Mal'tsev, et al., 1985Column length: 3. m

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-1512.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20733.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5544.Insausti, Goñi, et al., 200550. m/0.32 mm/1.05 μm, He, 35. C @ 15. min, 8. K/min, 220. C @ 5. min
CapillaryCP Sil 8 CB538.Elmore, Mottram, et al., 200060. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5568.Beaulieu and Grimm, 200130. m/0.25 mm/0.25 μm, He; Program: 50C (1min) => 5C/min => 100C => 10C/min => 250C (9min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax745.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10701.Bianchi, Cantoni, et al., 200730. m/0.25 mm/0.25 μm; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 220C(1min)
CapillarySupelcowax-10701.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryCP-Wax 52CB751.Condurso, Verzera, et al., 200660. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C
CapillaryCarbowax 20M780.Whitfield, Shea, et al., 1981Column length: 150. m; Column diameter: 0.75 mm; Program: not specified

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPolydimethyl siloxane with 5 % Ph groups100.564.Safa and Hadjmohannadi, 200530. m/0.25 mm/0.10 μm, Nitrogen
CapillaryPolydimethyl siloxane with 5 % Ph groups60.558.Safa and Hadjmohannadi, 200530. m/0.25 mm/0.10 μm, Nitrogen
CapillaryPolydimethyl siloxane with 5 % Ph groups80.557.Safa and Hadjmohannadi, 200530. m/0.25 mm/0.10 μm, Nitrogen

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB517.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryHP-5 MS536.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min
CapillaryOV-101530.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryPONA537.Yang, Wang, et al., 200350. m/0.20 mm/0.50 μm, 2. K/min; Tstart: 30. C; Tend: 150. C
CapillaryPONA537.Yang, Yang, et al., 200350. m/0.20 mm/0.50 μm, Helium, 2. K/min; Tstart: 30. C; Tend: 170. C
CapillarySPB-5533.Pérès, Begnaud, et al., 200260. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 200. C @ 5. min
CapillaryHP-5536.García, Martín, et al., 200060. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 240. C
CapillaryDB-1517.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C
CapillaryOV-101512.del Rosario, de Lumen, et al., 1984He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS540.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryVF-5569.Shivashankar, Roy, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: 50 0C (2 min) 3 0C/min -> 200 0C (3 min) 10 0C/min -> 220 0C (8 min)
CapillaryVF-5568.Shivashankar, Roy, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-5544.Pugliese, Sirtori, et al., 200950. m/0.32 mm/1.05 μm, Helium; Program: not specified
CapillaryHP-1515.Barra, Baldovini, et al., 200750. m/0.2 mm/0.33 μm, He; Program: 40C(2min) => 2C/min => 200C => 15C/min => 250C (30min)
CapillaryDB-5 MS517.Liu, Xu, et al., 200760. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 6 0C/min -> 100 0C 4 0C/min -> 180 0C 8 0C/min -> 250 0C (12 min)
CapillaryHP-5534.Garcia-Estaban, Ansorena, et al., 200450. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C(5min)
CapillaryDB-5534.Garcia-Estaban, Ansorena, et al., 2004, 250. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C (5min)
CapillaryBPX-5549.Machiels, Istasse, et al., 200460. m/0.32 mm/1. μm, He; Program: 40C (4min) => 2C/min => 90C => 4C/min => 130C => 8C/min => 250 C (10min)
CapillaryRTX-5 MS549.Machiels and Istasse, 200360. m/0.25 mm/0.5 μm, He; Program: 35C (3min) => 10C/min => 50C => 4C/min => 200C => 50C/min => 250C (10min)
CapillaryPONA537.Yang, Wang, et al., 200350. m/0.20 mm/0.50 μm; Program: not specified
CapillaryMethyl phenyl siloxane (not specified)536.Poligne, Collignan, et al., 2002Program: not specified
CapillaryDB-5 MS561.Luo and Agnew, 200130. m/0.25 mm/1.0 μm, Helium; Program: not specified
CapillaryPolydimethyl siloxanes530.Zenkevich, 2001Program: not specified
CapillarySPB-1527.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1518.Nedjma and Maujean, 199530. m/0.32 mm/4. μm, H2; Program: 35(1)-10 -> 55-25 ->250
CapillaryMethyl Silicone524.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-1513.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified
CapillaryDB-1514.Ciccioli, Brancaleoni, et al., 199360. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min
CapillarySPB-1527.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1524.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB539.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryOV-1524.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax710.Ganeko, Shoda, et al., 20084. K/min; Column length: 60. m; Column diameter: 0.35 mm; Tstart: 40. C; Tend: 200. C
CapillaryTC-Wax735.Ishikawa, Ito, et al., 200460. m/0.25 mm/0.5 μm, He, 40. C @ 8. min, 3. K/min; Tend: 230. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPolyethylene Glycol748.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryCarbowax 20M745.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Good, Lacina, et al., 1961
Good, W.D.; Lacina, J.L.; McCullough, J.P., Methanethiol and carbon disulfide: Heats of combustion and formation by rotating-bomb calorimetry, J. Phys. Chem., 1961, 65, 2229-2231. [all data]

Guerin, Marthe, et al., 1949
Guerin, M.H.; Marthe, M.; Bastick, J.; Adam-Gironne, J., Sur la chaleur de combustion du sulfure de carbon, Compt. Rend., 1949, 228, 87-89. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Brown and Manov, 1937
Brown, O.L.I.; Manov, G.G., The heat capacity of carbon disulfide from 15 to 300°K. The entropy and heat of fusion of carbon disulfide, J. Am. Chem. Soc., 1937, 59, 500-502. [all data]

Staveley, Tupman, et al., 1955
Staveley, L.A.K.; Tupman, W.I.; Hart, K.R., Some thermodynamice properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + chloroform, and acetone + carbon disulphide, Trans. Faraday Soc., 1955, 51, 323-342. [all data]

Zhdanov, 1945
Zhdanov, A.K., On the thermal capacity of some pure liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1945, 15, 895-902. [all data]

Mazur, 1939
Mazur, J., Über die spezifische Wärme des Äthyläthers, des Nitrobenzols und des Schwefelkohlenstoffs, Z. Physik., 1939, 113, 710-720. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Brown and Manov, 1937, 2
Brown, O.L.I.; Manov, G.G., The heat capacity of carbon disulfide from 15 to 300 k: the entropy and heat of fusion of carbon disulfide, J. Am. Chem. Soc., 1937, 59, 500. [all data]

Stull, 1937
Stull, D.R., A Semi-micro Calorimeter for Measuring Heat Capacities at Low Temp., J. Am. Chem. Soc., 1937, 59, 2726. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R., Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Waddington, Smith, et al., 1962
Waddington, Guy; Smith, J.C.; Williamson, K.D.; Scott, D.W., CARBON DISULFIDE AS A REFERENCE SUBSTANCE FOR VAPOR-FLOW CALORIMETRY; THE CHEMICAL THERMODYNAMIC PROPERTIES, J. Phys. Chem., 1962, 66, 6, 1074-1077, https://doi.org/10.1021/j100812a025 . [all data]

Thomson, 1946
Thomson, George Wm., The Antoine Equation for Vapor-pressure Data., Chem. Rev., 1946, 38, 1, 1-39, https://doi.org/10.1021/cr60119a001 . [all data]

Hiraoka, Fujimaki, et al., 1993
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Bond Strengths of the Gas-Phase Cluster Ions X-(CS2)n (X = F, Cl, Br and I), Chem. Phys. Lett., 1993, 208, 5-6, 491, https://doi.org/10.1016/0009-2614(93)87178-6 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Hiraoka, Fujimaki, et al., 1994
Hiraoka, K.; Fujimaki, S.; Aruga, K., Frontier-controlled Structures of the Gas Phas Clusters A+/-(CS2)n, A+/- = S2+, CS2+, S2-, and CS2-, J. Phys. Chem. (1994), 1994, 98, 7, 1802-1809, https://doi.org/10.1021/j100058a014 . [all data]

Tsukuda, Hirose, et al., 1997
Tsukuda, T.; Hirose, T.; Nagata, T., Negative-ion photoelectron spectroscopy of (CS2)(n)(-): coexistence of electronic isomers, Chem. Phys. Lett., 1997, 279, 3-4, 179-184, https://doi.org/10.1016/S0009-2614(97)01021-X . [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]

Hiraoka, Fujimaki, et al., 1994, 2
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Frontier-Controlled Structures of the Gas-Phase A+-(CS2)n Clusters ,A+- = S2+, CS2+, S2-, and CS2-, J. Phys. Chem., 1994, 98, 7, 1802, https://doi.org/10.1021/j100058a014 . [all data]

Ono, Linn, et al., 1981
Ono, Y.; Linn, S.H.; Prest, H.F.; Gress, M.E.; Ng, C.Y., A Study of the High Rydberg State and Ion - Molecule Reactions of Carbon Disulfide Using the Molecular Beam Photoionization Method, J. Chem. Phys., 1981, 74, 2, 1125, https://doi.org/10.1063/1.441219 . [all data]

Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H., Proton Affinity and Ion - Molecule Clustering in CO2 and CS2. Applications in Martian Ionospheric Chemistry, J. Chem. Phys., 1977, 66, 10, 4527, https://doi.org/10.1063/1.433706 . [all data]

Ono, Linn, et al., 1980
Ono, Y.; Linn, S.H.; Prest, H.F.; Gress, M.E.; Ng, C.Y., Molecular beam photoionization study of carbon disulfide, carbon disulfide dimer and clusters, J. Chem. Phys., 1980, 73, 2523. [all data]

Hiraoka, Fujimaki, et al., 1993, 2
Hiraoka, K.; Fujimaki, S.; Aruga, K., Proton-Held Dimer and Trimer of Carbon Disulfide, Chem. Phys. Lett., 1993, 202, 1-2, 167, https://doi.org/10.1016/0009-2614(93)85367-W . [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Gress, Linn, et al., 1980
Gress, M.E.; Linn, S.H.; Ono, Y.; Prest, H.F.; Ng, C.Y., A Study of the Chemiionization Process CS2*(n) + CS2 ---> CS3+ + CS + e- Using the Molecular Beam Photoionization Method, J. Chem. Phys., 1980, 72, 7, 4242, https://doi.org/10.1063/1.439656 . [all data]

Gattow and Krebes, 1963
Gattow, V.G.; Krebes, B., Das kohlenstoffsulfid-di-(hydrogensulfid) SC(SH)2 und das system H2S-CS2. 2. Thermochemie des SC(SH)2, Z. Anorg. Allg. Chem., 1963, 322, 113. [all data]

Schroeder, Kretzschmar, et al., 2003
Schroeder, D.; Kretzschmar, I.; Schwarz; Armentrout, P.B., Structure, Thermochemistry, and Reactivityof MSn+ Cations (M=V,Mo; n=1-3) in the Gas Phase, Int. J. Mass Spectrom., 2003, 228, 2-3, 439, https://doi.org/10.1016/S1387-3806(03)00137-4 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Cavanagh, Gibson, et al., 2012
Cavanagh, S.J.; Gibson, S.T.; Lewis, B.R., High-resolution photoelectron spectroscopy of linear - bent polyatomic photodetachment transitions: The electron affinity of CS2, J. Chem. Phys., 2012, 137, 14, 144304, https://doi.org/10.1063/1.4757726 . [all data]

Misaizu, Tsunoyama, et al., 2004
Misaizu, F.; Tsunoyama, H.; Yasumura, Y.; Ohshimo, K.; Ohno, K., Photoelectron spectroscopy and density functional theory calculation of Na-n(CS2)(-) cluster negative ions for n=1 and 2, Chem. Phys. Lett., 2004, 389, 4-6, 241-246, https://doi.org/10.1016/j.cplett.2004.03.098 . [all data]

Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P., Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-, J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037 . [all data]

Scheidt and Weinkauf, 1997
Scheidt, J.; Weinkauf, R., Photodetachment photoelectron spectroscopy of Perylene and CS2: Two Extreme Cases., Chem. Phys. Lett., 1997, 274, 1-3, 18, https://doi.org/10.1016/S0009-2614(97)00648-9 . [all data]

Compton, Dunning, et al., 1996
Compton, R.N.; Dunning, F.B.; Nordlander, P., On the binding of Electrons to CS2: Possible Role of Quadrupole-Bound States, Chem. Phys. Lett., 1996, 253, 1-2, 8, https://doi.org/10.1016/0009-2614(96)00243-6 . [all data]

Chen and Wentworth, 1983
Chen, E.C.M.; Wentworth, W.E., Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state, J. Phys. Chem., 1983, 87, 45. [all data]

Hughes, Lifschitz, et al., 1973
Hughes, B.M.; Lifschitz, C.; Tiernan, T.O., Electron affinities from endothermic negative-ion charge-transfer reactions. III. NO, NO2, S2, CS2, Cl2, Br2, I2, and C2H, J. Chem. Phys., 1973, 59, 3162. [all data]

Oakes and Ellison, 1986
Oakes, J.M.; Ellison, G.B., Photoelectron spectroscopy of radical anions, Tetrahedron, 1986, 42, 6263. [all data]

Compton, Reinhardt, et al., 1975
Compton, R.N.; Reinhardt, P.W.; Cooper, C.D., Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities, J. Chem. Phys., 1975, 63, 3821. [all data]

Kraus, Muller-Duysing, et al., 1961
Kraus, K.; Muller-Duysing, W.; Neuert, H., Uber Stosse Langsamer Negativer Ionen mit Ladungsubertragung, Z. Naturfor., 1961, 16A, 1385. [all data]

Fischer, Lochschmidt, et al., 1993
Fischer, I.; Lochschmidt, A.; Strobel, A.; Niedner-Schatteburg, G.; Muller-Dethlefs, K.; Bondybey, V.E., The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2, Chem. Phys. Lett., 1993, 202, 542. [all data]

Wang, Reutt, et al., 1988
Wang, L.; Reutt, J.E.; Lee, Y.T.; Shirley, D.A., High resolution UV photoelectron spectroscopy of CO2, COS, and CS2 using supersonic molecular beams, J. Electron Spectrosc. Relat. Phenom., 1988, 47, 167. [all data]

Reineck, Wannberg, et al., 1984
Reineck, I.; Wannberg, B.; Veenhuizen, H.; Nohre, C.; Maripuu, R.; Norell, K.-E.; Mattsson, L.; Karlsson, L.; Siegbahn, K., Inelastic scattering and satellite fine structure in the high-resolution UV photoelectron spectrum of CS2, J. Electron Spectrosc. Relat. Phenom., 1984, 34, 235. [all data]

Carnovale, Hitchcock, et al., 1982
Carnovale, F.; Hitchcock, A.P.; Cook, J.P.D.; Brion, C.E., Absolute dipole oscillator strengths for molecular and dissociative photoionization of Cos(10 - 50eV) and CS2(10 - 40eV), Chem. Phys., 1982, 66, 249. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Potts and Fattahallah, 1980
Potts, A.W.; Fattahallah, G.H., High-resolution ultraviolet photoelectron spectroscopy of CO2, COS and CS2, J. Phys. B:, 1980, 13, 2545. [all data]

Miletic, Eres, et al., 1980
Miletic, M.; Eres, D.; Veljkovic, M.; Zmbov, K.F., Mass spectrometric study of the ionization and fragmentation of carbon disulphide by monoenergetic electron impact, Int. J. Mass Spectrom. Ion Phys., 1980, 35, 231. [all data]

Hubin-Franskin, Marmet, et al., 1980
Hubin-Franskin, M.-J.; Marmet, P.; Huard, D., Excitation and ionization of OCS and CS2 by electron impact, Int. J. Mass Spectrom. Ion Phys., 1980, 33, 311. [all data]

Hubin-Franskin, Delwiche, et al., 1980
Hubin-Franskin, M.-J.; Delwiche, J.; Natalis, P.; Caprace, G.; Roy, D., On the photoelectron spectrum of CS2, J. Electron Spectrosc. Relat. Phenom., 1980, 18, 295. [all data]

Trott, Blais, et al., 1979
Trott, W.M.; Blais, N.C.; Walters, E.A., Photoionization of carbon disulfide monomers and dimers in a supersonic molecular beam, J. Chem. Phys., 1979, 71, 1692. [all data]

Coppens, Reynaert, et al., 1979
Coppens, P.; Reynaert, J.C.; Drowart, J., Mass spectrometric study of the photoionization of carbon disulphide in the wavelength interval 125-60nm, J. Chem. Soc. Faraday Trans. 2, 1979, 75, 292. [all data]

Frey, Gotchev, et al., 1978
Frey, R.; Gotchev, B.; Peatman, W.B.; Pollak, H.; Schlag, E.W., Photoionization resonance study of the X(2π), A(2π), B(2Σ+) and C(2Σ+) states of CS2+ and COS+, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 137. [all data]

Drowart, Smets, et al., 1978
Drowart, J.; Smets, J.; Reynaert, J.C.; Coppens, P., Mass spectrometric study of the photoionization of inorganic gases vapours, Adv. Mass Spectrom., 1978, 7, 647. [all data]

Hildenbrand, 1975
Hildenbrand, D.L., Vertical ionization potential of the CF2 radical, Chem. Phys. Lett., 1975, 32, 30. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Frost, Lee, et al., 1973
Frost, D.C.; Lee, S.T.; McDowell, C.A., Photoelectron spectra of OCSe, SCSe, and CSe2, J. Chem. Phys., 1973, 59, 5484. [all data]

Kroto and Suffolk, 1972
Kroto, H.W.; Suffolk, R.J., The photoelectron spectrum of an unstable species in the pyrolysis products of dimethyldisulphide, Chem. Phys. Lett., 1972, 15, 545. [all data]

Hildenbrand, 1972
Hildenbrand, D.L., Thermochemistry of the molecules CS and CS+, Chem. Phys. Lett., 1972, 15, 379. [all data]

Brundle and Turner, 1969
Brundle, C.R.; Turner, D.W., Studies on the photoionisation of the linear triatomic molecules: N2O, COS, CS2 and CO2 using high-resolution photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 195. [all data]

Momigny and Delwiche, 1968
Momigny, J.; Delwiche, J., Photoionisation et impact electronique dans le disulfure de carbone, J. Chim. Phys., 1968, 65, 1213. [all data]

Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J., Photoelectron spectra and ionic structure of carbon dioxide, carbon disulphide and sulphur dioxide, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 111. [all data]

Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A., Mass spectrometric study of the photoionization of small polyatomic molecules, Advan. Mass Spectrom., 1967, 4, 767. [all data]

Tanaka, Jursa, et al., 1960
Tanaka, Y.; Jursa, A.S.; LeBlanc, F.J., Higher ionization potentials of linear triatomic molecules. II. CS2, COS, and N2O, J. Chem. Phys., 1960, 32, 1205. [all data]

Price and Simpson, 1938
Price, W.C.; Simpson, D.M., The absorption spectra of sulphur dioxide and carbon disulphide in the vacuum ultra-violet, Proc. Roy. Soc. (London), 1938, A165, 272. [all data]

Schweig and Thiel, 1974
Schweig, A.; Thiel, W., Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds, Mol. Phys., 1974, 27, 265. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Ferreira and Fronteira_e_Silva, 1970
Ferreira, M.A.A.; Fronteira_e_Silva, M.E., Ionizacao e dissociacao do di-sulfureto decarbono por impacto electonico, Rev. Port. Quim., 1970, 12, 70. [all data]

Cuthbert, Farren, et al., 1968
Cuthbert, J.; Farren, J.; PrahalladaRao, B.S.; Preece, E.R., Sequential mass spectrometry. III. Ions and fragments from carbon dioxide anddisulphide, J. Phys. B:, 1968, 1, 62. [all data]

Hubin-Franskin, Huard, et al., 1978
Hubin-Franskin, M.J.; Huard, D.; Marmet, P., On the heat of formation of CS from CS2 and OCS, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 263. [all data]

Hubin-Franskin, Locht, et al., 1976
Hubin-Franskin, M.-J.; Locht, R.; Katihabwa, J., Dissociative ionization of carbon disulphide in the gas phase. Heat of formation of the CS radical, Chem. Phys. Lett., 1976, 37, 488. [all data]

Momigny, Mathieu, et al., 1973
Momigny, J.; Mathieu, G.; Wankenne, H.; Ferreira, M.A.A., Collision and non-collision induced predissociation in the appearance of S+ and CS+ ions from CS2 under electron impact, Chem. Phys. Lett., 1973, 21, 606. [all data]

Miller and Bruno, 2003
Miller, K.E.; Bruno, T.J., Isothermal Kováts retention indices of sulfur compounds on a poly(5% diphenyl-95% dimethylsiloxane) stationary phase, J. Chromatogr. A, 2003, 1007, 1-2, 117-125, https://doi.org/10.1016/S0021-9673(03)00958-0 . [all data]

Rudenko, Mal'tsev, et al., 1985
Rudenko, G.I.; Mal'tsev, V.V.; Studenichnik, V.N.; Ustinov, E.P., Gas chromatographic analysis of volatile substances evolved into atmosphere from polymer materials, Zh. Anal. Khim., 1985, 40, 6, 1119-1127. [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Insausti, Goñi, et al., 2005
Insausti, K.; Goñi, V.; Petri, E.; Gorraiz, C.; Beriain, M.J., Effect of weight at slaughter on the volatile compounds of cooked beef from Spanish cattle breeds, Meat Sci., 2005, 70, 1, 83-90, https://doi.org/10.1016/j.meatsci.2004.12.003 . [all data]

Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Hierro, E., Two-fibre solid-phase microextraction combined with gas chromatography-mass spectrometry for the analysis of volatile aroma compounds in cooked pork, J. Chromatogr. A, 2000, 905, 1-2, 233-240, https://doi.org/10.1016/S0021-9673(00)00990-0 . [all data]

Beaulieu and Grimm, 2001
Beaulieu, J.C.; Grimm, C.C., Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction, J. Agric. Food Chem., 2001, 49, 3, 1345-1352, https://doi.org/10.1021/jf0005768 . [all data]

Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O., Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses, Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007 . [all data]

Bianchi, Cantoni, et al., 2007
Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A., Characterization of the aromatic profile for the authentication and differentiation of typical Italian dry-sausages, Talanta, 2007, 72, 4, 1552-1563, https://doi.org/10.1016/j.talanta.2007.02.019 . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Condurso, Verzera, et al., 2006
Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Trozzi, A.; Ragusa, S., The leaf volatile constituents of Isatis tinctoria by solid-phase microextraction and gas chromatography/mass spectrometry, Planta Medica, 2006, 72, 10, 924-928, https://doi.org/10.1055/s-2006-946679 . [all data]

Whitfield, Shea, et al., 1981
Whitfield, F.B.; Shea, S.R.; Gillen, K.J.; Shaw, K.J., Volatile components from the roots of Acacia pulchella R.Br. and their effect on Phytophthora cinnamomi rands, Aust. J. Bot., 1981, 29, 2, 195-208, https://doi.org/10.1071/BT9810195 . [all data]

Safa and Hadjmohannadi, 2005
Safa, F.; Hadjmohannadi, M.R., Use of topological indices of organic sulfur compounds in quantitative structure-retention relationship study, QSAR Comb. Sci., 2005, 24, 9, 1026-1032, https://doi.org/10.1002/qsar.200530008 . [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Yang, Wang, et al., 2003
Yang, Y.-T.; Wang, Z.; Han. J.-H.; Tian, H.-P.; Yang, H.-Y., Determination of sulfur compounds in gasoline fraction of microreactor products by gas chromatography - Atomic emission detector, Petrochemical Technology (Shiyou Huagong), 2003, 32, 11, 995-998. [all data]

Yang, Yang, et al., 2003
Yang, Y.T.; Yang, H.Y.; Zong, B.N.; Lu, W.Z., determination and distribution of sulfur compounds in gasoline by gas chromatography-atomic emission detector, Chinise J. Anal. Chem. (Fenxi Huaxue), 2003, 31, 10, 1153-1158. [all data]

Pérès, Begnaud, et al., 2002
Pérès, C.; Begnaud, F.; Berdagué, J.-L., Fast characterization of Camembert cheeses by static headspace-mass spectrometry, Sens. Actuators, 2002, 87, 3, 491-497, https://doi.org/10.1016/S0925-4005(02)00298-8 . [all data]

García, Martín, et al., 2000
García, C.; Martín, A.; Timón, M.L.; Córdoba, J.J., Microbial populations and volatile compounds in the 'bone taint' spoilage of dry cured ham, Lett. Appl. Microbiol., 2000, 30, 1, 61-66, https://doi.org/10.1046/j.1472-765x.2000.00663.x . [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R., Comparison of headspace volatiles from winged beans and soybeans, J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015 . [all data]

Shivashankar, Roy, et al., 2012
Shivashankar, S.; Roy, T.K.; Moorthy, P.N.R., Headspace solid phase micro extraction and GC/MS analysis of the volatile components in seed and cake of Azadirachta indica A. juss, Chem. Bull. of Politechnika Univ. Timisoara, Romania, 2012, 57(71), 1, 1-6. [all data]

Pugliese, Sirtori, et al., 2009
Pugliese, C.; Sirtori, F.; Ruiz, J.; Martin, D.; Parenti, S.; Franci, O., Effect of pasture on chestnut or acorn on fatty acid composition and aromatic profile of fat of China Senece dry-cured ham, Gracas y Aceites, 2009, 60, 3, 271-276, https://doi.org/10.3989/gya.130208 . [all data]

Barra, Baldovini, et al., 2007
Barra, A.; Baldovini, N.; Loiseau, A.-M.; Albino, L.; Lesecq, C.; Cuvelier, L.L., Chemical analysis of French beans (Phaseolus vulgaris L.) by headspace solid phase microextraction (HS-SPME) and simultaneous distillation/extraction (SDE), Food Chem., 2007, 101, 3, 1279-1284, https://doi.org/10.1016/j.foodchem.2005.12.027 . [all data]

Liu, Xu, et al., 2007
Liu, Y.; Xu, X.-L.; Zhou, G.-H., Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques, Int. J. Food Sci. Technol., 2007, 42, 5, 543-550, https://doi.org/10.1111/j.1365-2621.2006.01264.x . [all data]

Garcia-Estaban, Ansorena, et al., 2004
Garcia-Estaban, M.; Ansorena, D.; Astiasaran, I.; Martin, D.; Ruiz, J., Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham, J. Sci. Food Agric., 2004, 84, 11, 1364-1370, https://doi.org/10.1002/jsfa.1826 . [all data]

Garcia-Estaban, Ansorena, et al., 2004, 2
Garcia-Estaban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J., Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME), Talanta, 2004, 64, 2, 458-466, https://doi.org/10.1016/j.talanta.2004.03.007 . [all data]

Machiels, Istasse, et al., 2004
Machiels, D.; Istasse, L.; van Ruth, S.M., Gas chromatography-olfactometry analysis of beef meat originating from differently fed Belgian Blue, Limousin and Aberdeen Angus bulls, Food Chem., 2004, 86, 3, 377-383, https://doi.org/10.1016/j.foodchem.2003.09.011 . [all data]

Machiels and Istasse, 2003
Machiels, D.; Istasse, L., Evaluation of two commercial solid-phase microextraction fibres for the analysis of target aroma compounds in cooked beef meat, Talanta, 2003, 61, 4, 529-537, https://doi.org/10.1016/S0039-9140(03)00319-9 . [all data]

Poligne, Collignan, et al., 2002
Poligne, I.; Collignan, A.; Trystram, G., Effects of salting, drying, cooking, and smoking operations on volatile compound formation and collor patterns in pork, Food Eng. Physical Properties, 2002, 67, 8, 2976-2986. [all data]

Luo and Agnew, 2001
Luo, J.; Agnew, M.P., Gas characteristics before and after biofiltration treating odorous emissions from animal rendering processes, Environ. Technol., 2001, 22, 9, 1091-1103, https://doi.org/10.1080/09593332208618220 . [all data]

Zenkevich, 2001
Zenkevich, I.G., Encyclopedia of Chromatography. Derivatization of Amines, Amino Acids, Amides and Imides for GC Analysis, Marcel Dekker, Inc, New York - Basel, 2001, 224. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Nedjma and Maujean, 1995
Nedjma, M.; Maujean, A., Improved chromatographic analysis of volatile sulfur compounds by the static headspace technique on water-alcohol solutions and brandies with chemiluminescence detection, J. Chromatogr. A, 1995, 704, 2, 495-502, https://doi.org/10.1016/0021-9673(95)00218-C . [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M., Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry, J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Ganeko, Shoda, et al., 2008
Ganeko, N.; Shoda, M.; Hirohara, I.; Bhadra, A.; Ishida, T.; Matsuda, H.; Takamura, H.; Matoba, T., Analysis of volatile flavor compounds of sardine (Sardinops melanostica) by solid phase microextraction, J. Food Sci., 2008, 73, 1, s83-s88, https://doi.org/10.1111/j.1750-3841.2007.00608.x . [all data]

Ishikawa, Ito, et al., 2004
Ishikawa, M.; Ito, O.; Ishizaki, S.; Kurobayashi, Y.; Fujita, A., Solid-phase aroma concentrate extraction (SPACE ): a new headspace technique for more sensitive analysis of volatiles, Flavour Fragr. J., 2004, 19, 3, 183-187, https://doi.org/10.1002/ffj.1322 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References