Acetic acid
- Formula: C2H4O2
- Molecular weight: 60.0520
- IUPAC Standard InChIKey: QTBSBXVTEAMEQO-UHFFFAOYSA-N
- CAS Registry Number: 64-19-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ethanoic acid; Ethylic acid; Glacial acetic acid; Methanecarboxylic acid; Vinegar acid; CH3COOH; Acetasol; Acide acetique; Acido acetico; Azijnzuur; Essigsaeure; Octowy kwas; Acetic acid, glacial; Kyselina octova; UN 2789; Aci-jel; Shotgun; Ethanoic acid monomer; NSC 132953
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -483.52 ± 0.36 | kJ/mol | Ccb | Steele, Chirico, et al., 1997 | ALS |
ΔfH°liquid | -484.5 ± 0.2 | kJ/mol | Ccb | Lebedeva, 1964 | ALS |
ΔfH°liquid | -484.1 ± 0.4 | kJ/mol | Ccb | Evans and Skinner, 1959 | ALS |
ΔfH°liquid | -487.0 | kJ/mol | Cm | Carson and Skinner, 1949 | Unpublished result by Rossini; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -875.16 ± 0.34 | kJ/mol | Ccb | Steele, Chirico, et al., 1997 | Corresponding ΔfHºliquid = -483.52 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -874.2 ± 0.2 | kJ/mol | Ccb | Lebedeva, 1964 | Corresponding ΔfHºliquid = -484.47 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -874.5 ± 0.4 | kJ/mol | Ccb | Evans and Skinner, 1959 | Corresponding ΔfHºliquid = -484.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -872.4 | kJ/mol | Ccb | Schjanberg, 1935 | Corresponding ΔfHºliquid = -486.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 158.0 | J/mol*K | N/A | Martin and Andon, 1982 | DH |
S°liquid | 193.7 | J/mol*K | N/A | Parks and Kelley, 1925 | Extrapolation below 90 K. 76.82 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
123.1 | 298.15 | Martin and Andon, 1982 | T = 13 to 450 K. Data also given by equation.; DH |
139.7 | 332. | Swietoslawski and Zielenkiewicz, 1958 | Mean value 22 to 96°C.; DH |
120.5 | 298. | Radulescu and Jula, 1934 | DH |
121.3 | 297.1 | Neumann, 1932 | T = 23.9 to 80.5°C. Value is unsmoothed experimental datum.; DH |
159.8 | 298.1 | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 42.68 J/mol*K. Revision of previous data.; DH |
123.4 | 294.7 | Parks and Kelley, 1925 | T = 87 to 295 K. Value is unsmoothed experimental datum.; DH |
137. | 287. to 335. | Pickering, 1895 | T = 260 to 335 K.; DH |
123.5 | 298. | von Reis, 1881 | T = 292 to 358 K.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 391.2 ± 0.6 | K | AVG | N/A | Average of 80 out of 90 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 289.6 ± 0.5 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 289.8 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 289.69 | K | N/A | Martin and Andon, 1982, 2 | Uncertainty assigned by TRC = 0.04 K; TRC |
Ttriple | 289.8 | K | N/A | Parks and Kelley, 1925, 2 | Uncertainty assigned by TRC = 0.15 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 593. ± 3. | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 57.81 | bar | N/A | Andereya and Chase, 1990 | Uncertainty assigned by TRC = 0.20 bar; TRC |
Pc | 58.2901 | bar | N/A | D'Souza and Teja, 1987 | Uncertainty assigned by TRC = 0.90 bar; Ambrose's procedure; TRC |
Pc | 57.86 | bar | N/A | Ambrose, Ellender, et al., 1977 | Uncertainty assigned by TRC = 0.08 bar; TRC |
Pc | 57.87 | bar | N/A | Young, 1910 | Uncertainty assigned by TRC = 1.0132 bar; TRC |
Pc | 57.867 | bar | N/A | Young, 1891 | Uncertainty assigned by TRC = 0.2666 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 5.84 | mol/l | N/A | Vandana and Teja, 1995 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
ρc | 5.838 | mol/l | N/A | Young, 1910 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 50.3 | kJ/mol | CGC | Verevkin, 2000 | Based on data from 303. to 378. K.; AC |
ΔvapH° | 51.6 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 51.6 ± 1.5 | kJ/mol | C | Konicek and Wadso, 1970 | ALS |
ΔvapH° | 51.6 ± 1.6 | kJ/mol | C | Konicek, Wadsö, et al., 1970 | AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
23.7 | 391.1 | N/A | Majer and Svoboda, 1985 | |
39.1 | 360. | EB | Muñoz and Krähenbühl, 2001 | Based on data from 345. to 383. K.; AC |
40.9 | 335. | N/A | Vercher, Vázquez, et al., 2001 | Based on data from 320. to 395. K.; AC |
37.9 | 406. | A | Stephenson and Malanowski, 1987 | Based on data from 391. to 550. K.; AC |
42.0 | 305. | A | Stephenson and Malanowski, 1987 | Based on data from 290. to 396. K.; AC |
38.7 | 406. | A | Stephenson and Malanowski, 1987 | Based on data from 391. to 447. K.; AC |
38.1 | 452. | A | Stephenson and Malanowski, 1987 | Based on data from 437. to 535. K.; AC |
38.8 | 540. | A | Stephenson and Malanowski, 1987 | Based on data from 525. to 593. K.; AC |
41.6 | 304. | A | Stephenson and Malanowski, 1987 | Based on data from 289. to 392. K. See also Dykyj, 1970.; AC |
43.0 | 308. | N/A | Tamir, Dragoescu, et al., 1983 | AC |
40.3 | 340. | N/A | McDonald, Shrader, et al., 1959 | Based on data from 325. to 391. K.; AC |
41.6 | 318. | MM | Potter and Ritter, 1954 | Based on data from 303. to 399. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 392. |
---|---|
A (kJ/mol) | 22.84 |
α | 0.0184 |
β | -0.0454 |
Tc (K) | 592.7 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference |
---|---|---|---|---|
290.26 to 391.01 | 4.68206 | 1642.54 | -39.764 | McDonald, Shrader, et al., 1959 |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
67. ± 1. | 223. | TE,ME | Calis-Van Ginkel, Calis, et al., 1978 | Based on data from 213. to 230. K.; AC |
70. ± 1. | 213. | TE,ME | Calis-Van Ginkel, Calis, et al., 1978 | Based on data from 213. to 230. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
11.72 | 298.7 | Domalski and Hearing, 1996 | See also Martin and Andon, 1982.; AC |
11.728 | 289.9 | Parks and Kelley, 1925 | DH |
10.83 | 289.8 | Louguinine and Dupont, 1911 | AC |
11.52 | 283.7 | Meyer, 1910 | AC |
11.126 | 290.06 | Pickering, 1895 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
40.47 | 289.9 | Parks and Kelley, 1925 | DH |
38.36 | 290.06 | Pickering, 1895 | DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
11.720 | 298.69 | crystaline, I | liquid | Martin and Andon, 1982 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
40.5 | 298.69 | crystaline, I | liquid | Martin and Andon, 1982 | DH |
Henry's Law data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
4100. | 6300. | M | N/A | |
5200. | C | N/A | ||
5400. | 6300. | Q | N/A | |
5200. | C | N/A | ||
8600. | C | N/A | ||
5500. | M | N/A | ||
820. | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
9300. | M | N/A | The value given here was measured at a liquid phase volume mixing ratio of 1 ppmv. missing citation found that the Henry's law constant changes at higher concentrations. | |
8800. | 6400. | T | N/A | |
6400. | T | N/A | ||
8800. | T | N/A | ||
10000. | X | N/A | Value given here as quoted by missing citation. | |
970. | 4900. | X | N/A | |
3300. | Q | N/A | ||
3400. | c | N/A |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman
View reactions leading to C2H4O2+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.65 ± 0.02 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 783.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 752.8 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.63 | PI | Traeger, McLouglin, et al., 1982 | LBLHLM |
10.66 | EI | Holmes, Fingas, et al., 1981 | LLK |
10.66 ± 0.05 | EI | Holmes and Lossing, 1980 | LLK |
10.66 | EI | Holmes and Lossing, 1980, 2 | LLK |
10.66 ± 0.05 | PI | Akopyan and Villem, 1976 | LLK |
10.664 ± 0.003 | PI | Watanabe, Yokoyama, et al., 1974 | LLK |
10.644 ± 0.002 | PI | Knowles and Nicholson, 1974 | LLK |
10.65 | PE | Watanabe, Yokoyama, et al., 1973 | LLK |
10.69 ± 0.03 | PE | Thomas, 1972 | LLK |
10.70 | PE | Sweigart and Turner, 1972 | LLK |
10.37 ± 0.03 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
10.38 ± 0.03 | PI | Vilesov, 1960 | RDSH |
10.35 ± 0.03 | PI | Watanabe, 1957 | RDSH |
10.9 | PE | Von Niessen, Bieri, et al., 1980 | Vertical value; LLK |
10.84 | PE | Carnovale, Gan, et al., 1980 | Vertical value; LLK |
10.63 | PE | Benoit and Harrison, 1977 | Vertical value; LLK |
11.5 | PE | Rao, 1975 | Vertical value; LLK |
10.87 | PE | Kimura, Katsumata, et al., 1975 | Vertical value; LLK |
10.8 | PE | Green and Hayes, 1975 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C+ | 22.0 ± 0.5 | H2+HCOOH | EI | Stepanov, Perov, et al., 1988 | LL |
CHO2+ | 12.27 ± 0.05 | CH3 | EI | Haney and Franklin, 1969 | RDSH |
CHO2+ | 12.9 ± 0.1 | CH3 | EI | Shigorin, Filyugina, et al., 1966 | RDSH |
CH3+ | 14.0 ± 0.15 | ? | EI | Haney and Franklin, 1969 | RDSH |
CH3O+ | 12.05 ± 0.10 | CHO | EI | Selim and Helal, 1981 | LLK |
CO+ | 15.3 ± 0.1 | CH3OH | EI | Shigorin, Filyugina, et al., 1966 | RDSH |
C2H3O+ | 11.54 | OH | PI | Traeger, McLouglin, et al., 1982 | LBLHLM |
C2H3O+ | 11.75 | OH | EI | Haney and Franklin, 1969 | RDSH |
C2H3O+ | 11.4 ± 0.15 | OH | EI | Shigorin, Filyugina, et al., 1966 | RDSH |
OH+ | 15.1 | ? | EI | Majer, Patrick, et al., 1961 | RDSH |
De-protonation reactions
By formula: C2H3O2- + H+ = C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1457. ± 5.9 | kJ/mol | CIDC | Angel and Ervin, 2006 | gas phase; B |
ΔrH° | 1456. ± 9.2 | kJ/mol | G+TS | Taft and Topsom, 1987 | gas phase; B |
ΔrH° | 1459. ± 8.8 | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
ΔrH° | 1459. ± 9.2 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1435.9 ± 2.9 | kJ/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1427. ± 8.4 | kJ/mol | IMRE | Taft and Topsom, 1987 | gas phase; B |
ΔrG° | 1429. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | 1430. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
C2H3O2- + =
By formula: C2H3O2- + H+ = C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1540. ± 13. | kJ/mol | G+TS | Grabowski and Cheng, 1989 | gas phase; B |
ΔrH° | 1539. ± 19. | kJ/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1511. ± 13. | kJ/mol | IMRB | Grabowski and Cheng, 1989 | gas phase; B |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Steele, Chirico, et al., 1997
Steele, W.V.; Chirico, R.D.; Cowell, A.B.; Knipmeyer, S.E.; Nguyen, A.,
Thermodynamic properties and ideal-gas enthalpies of formation for 2-aminoisobutyric acid (2-methylalanine), acetic acid, (4-methyl-3-penten-2-one), 4-methylpent-1-ene, 2,2'-bis(phenylthio)propane, and glycidyl phenyl ether (1,2-epoxy-3-phenoxypropane),
J. Chem. Eng. Data, 1997, 42, 1052-1066. [all data]
Lebedeva, 1964
Lebedeva, N.D.,
Heats of combustion of monocarboxylic acids,
Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]
Evans and Skinner, 1959
Evans, F.W.; Skinner, H.A.,
The heat of combustion of acetic acid,
Trans. Faraday Soc., 1959, 55, 260-261. [all data]
Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A.,
201. Carbon-halogen bond energies in the acetyl halides,
J. Chem. Soc., 1949, 936-939. [all data]
Schjanberg, 1935
Schjanberg, E.,
Die Verbrennungswarmen und die Refraktionsdaten einiger chlorsubstituierter Fettsauren und Ester.,
Z. Phys. Chem. Abt. A, 1935, 172, 197-233. [all data]
Martin and Andon, 1982
Martin, J.F.; Andon, R.J.L.,
Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids,
J. Chem. Thermodynam., 1982, 14, 679-688. [all data]
Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K.,
Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds,
J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]
Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat of some ternary azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]
Radulescu and Jula, 1934
Radulescu, D.; Jula, O.,
Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen,
Z. Phys. Chem., 1934, B26, 390-393. [all data]
Neumann, 1932
Neumann, M.B.,
Die Untersuchung der Wärmekapazität vom binären System CH3COOH + H2O bei verschiedenen Temperaturen,
Z. Phys. Chem., 1932, A158, 258-264. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Pickering, 1895
Pickering, S.U.,
A comparison of some properties of acetic acid and its chloro- and bromo-derivatives,
J. Chem. Soc., 1895, 67, 664-684. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Martin and Andon, 1982, 2
Martin, J.F.; Andon, R.J.L.,
Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids.,
J. Chem. Thermodyn., 1982, 14, 679-88. [all data]
Parks and Kelley, 1925, 2
Parks, G.S.; Kelley, K.K.,
Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds,
J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]
Andereya and Chase, 1990
Andereya, E.; Chase, J.D.,
Chem. Eng. Technol., 1990, 13, 304-12. [all data]
D'Souza and Teja, 1987
D'Souza, R.; Teja, A.S.,
The prediction of the vapor pressures of carboxylic acids,
Chem. Eng. Commun., 1987, 61, 13. [all data]
Ambrose, Ellender, et al., 1977
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermo. Prop. of Org. Oxygen Compounds XLV. The Vapor Pressure of Acetic Acid,
J. Chem. Thermodyn., 1977, 9, 735. [all data]
Young, 1910
Young, S.,
The Internal Heat of Vaporization constants of thirty pure substances,
Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]
Young, 1891
Young, S.,
J. Chem. Soc., 1891, 59, 903. [all data]
Vandana and Teja, 1995
Vandana, V.; Teja, A.S.,
The critical temperatures and densities of acetic acid-water mixtures,
Fluid Phase Equilib., 1995, 103, 113-18. [all data]
Verevkin, 2000
Verevkin, S.P.,
Measurement and Prediction of the Monocarboxylic Acids Thermochemical Properties,
J. Chem. Eng. Data, 2000, 45, 5, 953-960, https://doi.org/10.1021/je990282m
. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Konicek and Wadso, 1970
Konicek, J.; Wadso, I.,
Enthalpies of vaporization of organic compounds. VII. Some carboxylic acids,
Acta Chem. Scand., 1970, 24, 2612-26. [all data]
Konicek, Wadsö, et al., 1970
Konicek, Jiri; Wadsö, Ingemar; Munch-Petersen, J.; Ohlson, Ragnar; Shimizu, Akira,
Enthalpies of Vaporization of Organic Compounds. VII. Some Carboxylic Acids.,
Acta Chem. Scand., 1970, 24, 2612-2616, https://doi.org/10.3891/acta.chem.scand.24-2612
. [all data]
Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina,
Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid,
J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u
. [all data]
Vercher, Vázquez, et al., 2001
Vercher, Ernesto; Vázquez, M. Isabel; Martínez-Andreu, Antoni,
Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Lithium Acetate,
J. Chem. Eng. Data, 2001, 46, 6, 1584-1588, https://doi.org/10.1021/je010106p
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1970
Dykyj, J.,
Petrochemica, 1970, 10, 2, 51. [all data]
Tamir, Dragoescu, et al., 1983
Tamir, Abraham; Dragoescu, Claudia; Apelblat, Alexander; Wisniak, Jaime,
Heats of vaporization and vapor-liquid equilibria in associated solutions containing formic acid, acetic acid, propionic acid and carbon tetrachloride,
Fluid Phase Equilibria, 1983, 10, 1, 9-42, https://doi.org/10.1016/0378-3812(83)80002-8
. [all data]
McDonald, Shrader, et al., 1959
McDonald, R.A.; Shrader, S.A.; Stull, D.R.,
Vapor Pressures and Freezing Points of Thirty Pure Organic Compounds.,
J. Chem. Eng. Data, 1959, 4, 4, 311-313, https://doi.org/10.1021/je60004a009
. [all data]
Potter and Ritter, 1954
Potter, Andrew E.; Ritter, H.L.,
The Vapor Pressure of Acetic Acid and Acetic-d 3 Acid-d. The Liquid Density of Acetic-d 3 Acid-d,
J. Phys. Chem., 1954, 58, 11, 1040-1042, https://doi.org/10.1021/j150521a025
. [all data]
Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J.,
Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids,
The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Louguinine and Dupont, 1911
Louguinine, W.; Dupont, G.,
Bull. Soc. Chim. Fr., 1911, 9, 219. [all data]
Meyer, 1910
Meyer, J.,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1910, 72, 225. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C.,
Heat of formation for acetyl cation in the gas phase,
J. Am. Chem. Soc., 1982, 104, 5318. [all data]
Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P.,
Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations,
Can. J. Chem., 1981, 59, 80. [all data]
Holmes and Lossing, 1980
Holmes, J.L.; Lossing, F.P.,
Thermochemistry and unimolecular reactions of ionized acetic acid and its enol in the gas phase.,
J. Am. Chem. Soc., 1980, 102, 3732. [all data]
Holmes and Lossing, 1980, 2
Holmes, J.L.; Lossing, F.P.,
Gas-phase heats of formation of keto and enol ions of carbonyl compounds.,
J. Am. Chem. Soc., 1980, 102, 1591. [all data]
Akopyan and Villem, 1976
Akopyan, M.E.; Villem, Ya.Ya.,
Ion-molecule reactions in the photoionization of formic and acetic acid vapors,
High Energy Chem., 1976, 10, 24. [all data]
Watanabe, Yokoyama, et al., 1974
Watanabe, I.; Yokoyama, Y.; Ikeda, S.,
Vibrational structures in the He(I) photoelectron spectra of carboxylic acids,
Bull. Chem. Soc. Jpn., 1974, 47, 627. [all data]
Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C.,
Ionization energies of formic and acetic acid monomers,
J. Chem. Phys., 1974, 60, 1180. [all data]
Watanabe, Yokoyama, et al., 1973
Watanabe, I.; Yokoyama, Y.; Ikeda, S.,
Lone pair ionization potentials of carboxylic acids determined by He(I) photoelectron spectroscopy,
Bull. Chem. Soc. Jpn., 1973, 46, 1959. [all data]
Thomas, 1972
Thomas, R.K.,
Photoelectron spectroscopy of hydrogen-bonded systems: spectra of monomers, dimers and mixed complexes of carboxylic acides,
Proc. R. Soc. London A:, 1972, 331, 249. [all data]
Sweigart and Turner, 1972
Sweigart, D.A.; Turner, D.W.,
Lone pair orbitals and their interactions studied by photoelectron spectroscopy. I. Carboxylic acids and their derivatives,
J. Am. Chem. Soc., 1972, 94, 5592. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Vilesov, 1960
Vilesov, F.I.,
The photoionization of vapors of compounds whose molecules contain carbonyl groups,
Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L.,
30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O),
J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]
Carnovale, Gan, et al., 1980
Carnovale, F.; Gan, T.H.; Peel, J.B.,
Photoelectron spectroscopic studies of the monomers and dimers of acetic and trifluoracetic acids,
J. Electron Spectrosc. Relat. Phenom., 1980, 20, 53. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Rao, 1975
Rao, C.N.R.,
Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules,
Indian J. Chem., 1975, 13, 950. [all data]
Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H.,
UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure,
J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]
Green and Hayes, 1975
Green, J.C.; Hayes, A.J.,
Ionization energies of an Mo-Mo quadruple bond; a He(I) photoelectron study of some molybdenum-dycarboxylate dimers,
Chem. Phys. Lett., 1975, 31, 306. [all data]
Stepanov, Perov, et al., 1988
Stepanov, A.N.; Perov, A.A.; Kabanov, S.P.; Simonov, A.P.,
Formation of long-lived, highly excited atoms during dissociative excitation of CH3CN, CH3CH2OH, CH3COOH, HCOOH, and C4H4S molecules on electron impact,
Russ. J. Phys. Chem., 1988, 22, 81. [all data]
Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L.,
Excess energies in mass spectra of some oxygen-containing organic compounds,
J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]
Shigorin, Filyugina, et al., 1966
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K.,
Ionization and dissociation of molecules of acetaldehyde, acetone, and acetic acid on electron impact,
Teor. i Eksperim. Khim., 1966, 2, 554, In original 417. [all data]
Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I.,
Heat of formation of CH2=OH+ fragment ion,
Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]
Majer, Patrick, et al., 1961
Majer, J.R.; Patrick, C.R.; Robb, J.C.,
Appearance potentials of the acetyl radical-ion,
J. Chem. Soc. Faraday Trans., 1961, 57, 14. [all data]
Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M.,
Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid,
J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426
. [all data]
Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D.,
The Nature and Analysis of Substituent Effects,
Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A.,
Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry,
Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C
. [all data]
Grabowski and Cheng, 1989
Grabowski, J.J.; Cheng, X.,
Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction,
J. Am. Chem. Soc., 1989, 111, 8, 3106, https://doi.org/10.1021/ja00190a078
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.