Naphthalene
- Formula: C10H8
- Molecular weight: 128.1705
- IUPAC Standard InChIKey: UFWIBTONFRDIAS-UHFFFAOYSA-N
- CAS Registry Number: 91-20-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Albocarbon; Dezodorator; Moth flakes; Naphthalin; Naphthaline; Naphthene; Tar camphor; White tar; Camphor tar; Moth balls; Naftalen; NCI-C52904; Mighty 150; Mighty RD1; Rcra waste number U165; UN 1334; UN 2304; NSC 37565
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 150. ± 10. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
36.18 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Selected values of S(T) and Cp(T) agree with those calculated by statistical thermodynamics method [ Dorofeeva O.V., 1986, Dorofeeva O.V., 1988] within 1.2 J/mol*K. Discrepancies with other calculations [ Barrow G.M., 1951, McClellan A.L., 1955, 79CHE/KUD, Lielmezs J., 1981] reach 2-3 J/mol*K.; GT |
47.50 | 100. | ||
63.89 | 150. | ||
84.99 | 200. | ||
120.52 | 273.15 | ||
133.02 | 298.15 | ||
133.94 | 300. | ||
181.16 | 400. | ||
220.70 | 500. | ||
252.37 | 600. | ||
277.77 | 700. | ||
298.43 | 800. | ||
315.50 | 900. | ||
329.77 | 1000. | ||
341.8 | 1100. | ||
352.0 | 1200. | ||
360.8 | 1300. | ||
368.2 | 1400. | ||
374.7 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
201.6 ± 2.0 | 451.0 | Barrow G.M., 1951 | GT |
226.7 ± 2.3 | 522.7 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 490. ± 5. | K | AVG | N/A | Average of 10 out of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 353.2 ± 0.7 | K | AVG | N/A | Average of 55 out of 57 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 353.39 ± 0.09 | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 748. ± 6. | K | AVG | N/A | Average of 13 out of 14 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 41. ± 1. | bar | AVG | N/A | Average of 10 out of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.407 | l/mol | N/A | Tsonopoulos and Ambrose, 1995 | |
Vc | 0.409 | l/mol | N/A | Cheng, 1963 | Uncertainty assigned by TRC = 0.06 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.46 ± 0.05 | mol/l | N/A | Tsonopoulos and Ambrose, 1995 | |
ρc | 2.497 | mol/l | N/A | Chirico, Knipmeyer, et al., 1993 | Uncertainty assigned by TRC = 0.078 mol/l; TRC |
ρc | 2.450 | mol/l | N/A | Schroeer, 1941 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
ρc | 2.456 | mol/l | N/A | Zhuravlev, 1937 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 54.6 | kJ/mol | CGC | Zhao, Unhannanant, et al., 2008 | AC |
ΔvapH° | 60.3 ± 1.1 | kJ/mol | GC | Haftka, Parsons, et al., 2006 | Based on data from 333. to 403. K.; AC |
ΔvapH° | 53.4 | kJ/mol | CGC | Chickos, Hesse, et al., 1998 | AC |
ΔvapH° | 56.6 | kJ/mol | CGC | Chickos, Hosseini, et al., 1995 | Based on data from 403. to 453. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 71. ± 5. | kJ/mol | AVG | N/A | Average of 17 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
70.850 | 323. | N/A | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
56.1 | 398. | GC | Lei, Chankalal, et al., 2002 | Based on data from 323. to 473. K.; AC |
47.6 ± 1.8 | 491. to 747. | DSC | Boller and Wiedemann, 1998 | AC |
45.4 | 475. | DSC | Back, Grzyll, et al., 1996 | Based on data from 460. to 647. K.; AC |
48.7 ± 0.3 | 400. | EB | Chirico, Knipmeyer, et al., 1993, 2 | AC |
46.4 | 440. | EB | Chirico, Knipmeyer, et al., 1993, 2 | AC |
44.0 | 480. | EB | Chirico, Knipmeyer, et al., 1993, 2 | AC |
41.5 | 520. | EB | Chirico, Knipmeyer, et al., 1993, 2 | AC |
44.4 | 528. | N/A | Lee and Holder, 1993 | Based on data from 513. to 613. K.; AC |
47.9 | 423. | EB | Ambrose, Ewing, et al., 1990 | Based on data from 418. to 613. K.; AC |
50.6 | 367. | A | Stephenson and Malanowski, 1987 | Based on data from 352. to 500. K.; AC |
44.8 | 506. | A | Stephenson and Malanowski, 1987 | Based on data from 491. to 565. K.; AC |
43.2 | 578. | A | Stephenson and Malanowski, 1987 | Based on data from 563. to 663. K.; AC |
43.3 | 676. | A | Stephenson and Malanowski, 1987 | Based on data from 661. to 750. K.; AC |
50.3 ± 0.2 | 370. | N/A | de Kruif, Kuipers, et al., 1981 | Based on data from 353. to 388. K.; AC |
44.7 | 466. | N/A | Wilson, Johnston, et al., 1981 | Based on data from 441. to 727. K.; AC |
50.7 | 369. | N/A | Fowler, Trump, et al., 1968 | Based on data from 354. to 453. K.; AC |
49.0 | 414. | N/A | Camin and Rossini, 1955 | Based on data from 399. to 491. K.; AC |
46.4 | 441. | C | Barrow and McClellan, 1951 | AC |
48.3 | 379. | I | Cramer, 1943 | AC |
47.2 | 423. | I | Mortimer and Murphy, 1923 | Based on data from 373. to 473. K.; AC |
47.7 | 427. | I | NELSON and SENSEMAN, 1922 | Based on data from 360. to 494. K.; AC |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
219.3 | 323. | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
353.48 to 452.30 | 4.27117 | 1831.571 | -61.329 | Fowler, Trump, et al., 1968 | Coefficents calculated by NIST from author's data. |
399.47 to 491.79 | 3.97067 | 1606.529 | -85.923 | Camin and Rossini, 1955 |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
72.320 | 298.15 | N/A | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
72.8 | 327. | GS | Grayson and Fosbraey, 2006 | Based on data from 302. to 352. K.; AC |
64. ± 0.5 | 281. to 290. | LE | McEachern and Sandoval, 2001 | AC |
88.0 ± 2.5 | 267. to 303. | ME | Boller and Wiedemann, 1998 | AC |
71.7 | 333. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 353. K.; AC |
73.7 ± 1.0 | 258. | GS | Wania, Shiu, et al., 1994 | Based on data from 243. to 273. K.; AC |
78. ± 1. | 337. to 352. | GC | Khudyakov, 1988 | AC |
71. ± 4. | 323. | DSC | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | AC |
73.4 | 315. | GS | SATO, INOMATA, et al., 1986 | Based on data from 299. to 331. K.; AC |
72.3 ± 0.8 | 293. to 331. | QR | Glukhova, Arkhangelova, et al., 1985 | AC |
69.9 | 333. to 393. | GS | Matsubara and Kuwamoto, 1985 | AC |
75.8 ± 1.1 | 303. | GS | Sonnefeld, Zoller, et al., 1983 | Based on data from 283. to 323. K.; AC |
72.8 ± 0.3 | 271. to 285. | ME | Colomina, Jimenez, et al., 1982 | AC |
72.5 ± 0.1 | 274. to 353. | DM | de Kruif, Kuipers, et al., 1981 | AC |
72.6 ± 0.6 | 253. to 273. | TE | Kruif, 1980 | AC |
76.0 ± 2.0 | 328. to 398. | DSC | Murray, Cavell, et al., 1980 | AC |
71.3 | 293. | GS | Macknick and Prausnitz, 1979 | Based on data from 280. to 305. K.; AC |
74.8 ± 0.4 | 253. to 273. | TE | De Kruif and Van Ginkel, 1977 | AC |
73.9 ± 0.2 | 253. to 273. | ME | De Kruif and Van Ginkel, 1977 | AC |
72.5 ± 0.3 | 263. to 343. | DM | Ambrose, Lawrenson, et al., 1975 | AC |
67.8 ± 3.5 | 280. | HSA | Chickos, 1975 | AC |
74.4 ± 1.7 | 303. to 329. | TSGC | McEachern, Sandoval, et al., 1975 | AC |
72.7 ± 1.7 | 283. | V | Radchenko and Kitaigorodskii, 1974 | ALS |
72.7 | 283. to 323. | ME | Radchenko, 1971 | AC |
66.53 ± 0.84 | 283. | V | Karyakin, Rabinovich, et al., 1968 | ALS |
72.7 ± 0.3 | 230. to 260. | KG | Miller, 1963 | See also Cox and Pilcher, 1970.; AC |
66.3 ± 2.3 | 354.7 | V | Aihara, 1959 | crystal phase; ALS |
66.3 | 276. to 283. | V | Aihara, 1959, 2 | AC |
69.2 | 268. | N/A | Hoyer and Peperle, 1958 | Based on data from 253. to 283. K.; AC |
65.8 | 293. | Effusion | Sklyarenko, Markin, et al., 1958 | Based on data from 283. to 303. K.; AC |
72.1 | 292. | N/A | Sherwood and Bryant, 1957 | Based on data from 273. to 311. K.; AC |
72.4 | 279. to 294. | N/A | Bradley and Cleasby, 1953 | See also Jones, 1960 and Sears and Hopke, 1954.; AC |
72.383 | 279.7 | V | Bradley and Cleasby, 1953, 2 | ALS |
65.7 | 297. | Effusion | Zibberman-Granovskaya, 1940 | Based on data from 288. to 306. K.; AC |
76.6 | 237. to 276. | N/A | Andrews, 1925 | AC |
82.0 | 293. | ME | Swan and Mack, 1925 | Based on data from 283. to 303. K.; AC |
Entropy of sublimation
ΔsubS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
242.6 | 298.15 | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
18.811 | 353.44 | N/A | Mastrangelo, 1957 | DH |
18.226 | 353.43 | N/A | McCullough, Finke, et al., 1957 | DH |
19.200 | 353.0 | N/A | Spaght, Thomas, et al., 1932 | DH |
19.1 | 353.5 | DSC | Sharma, Gupta, et al., 2008 | AC |
16.44 | 353.8 | DSC | Hafsaoui and Mahmoud, 2007 | AC |
19.55 | 354.7 | DSC | Khimeche and Dahmani, 2006 | AC |
19.55 | 354.7 | DSC | Khimeche and Dahmani, 2006, 2 | AC |
19.0 | 353.4 | AC | Chirico, Knipmeyer, et al., 2002 | Based on data from 5. to 440. K.; AC |
19.1 | 353.4 | N/A | Acree, 1991 | AC |
19.020 | 354.1 | N/A | Syunyaev, Tumanyan, et al., 1984 | Relative error in determination ± 5%.; DH |
19.100 | 353.5 | N/A | Rastogi and Bassi, 1964 | DH |
18.785 | 353. | N/A | Ueberreiter and Orthmann, 1950 | DH |
18.790 | 353.4 | N/A | Eibert, 1944 | DH |
19.040 | 353.4 | N/A | Schmidt, 1941 | DH |
19.000 | 353.1 | N/A | Andrews, Lynn, et al., 1926 | DH |
19.250 | 353. | N/A | David, 1964 | Temperature not measured.; DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
51.57 | 353.43 | McCullough, Finke, et al., 1957 | DH |
54.4 | 353.0 | Spaght, Thomas, et al., 1932 | DH |
53.7 | 354.1 | Syunyaev, Tumanyan, et al., 1984 | Relative; DH |
54.0 | 353.5 | Rastogi and Bassi, 1964 | DH |
53.2 | 353. | Ueberreiter and Orthmann, 1950 | DH |
53.2 | 353.4 | Eibert, 1944 | DH |
53.9 | 353.4 | Schmidt, 1941 | DH |
53.8 | 353.1 | Andrews, Lynn, et al., 1926 | DH |
55. | 353. | David, 1964 | Temperature; DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
19.046 | 353.376 | crystaline, I | liquid | Andon and Connett, 1980 | DH |
19.000 | 353.8 | crystaline, I | liquid | Radomska and Radomski, 1980 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
53.90 | 353.376 | crystaline, I | liquid | Andon and Connett, 1980 | DH |
53.70 | 353.8 | crystaline, I | liquid | Radomska and Radomski, 1980 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.80 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
2.0 | X | N/A | ||
2.1 | 3600. | X | N/A | |
2.4 | L | N/A | ||
2.1 | M | Mackay, Shiu, et al., 1979 | ||
2.1 | T | Mackay, Shiu, et al., 1979 | ||
2.4 | V | N/A | ||
1.9 | V | Bohon and Claussen, 1951 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C10H8+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.144 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 802.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 779.4 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
-0.2 | LPES | Lyapustina, Xu, et al., 2000 | Extrapolated from EAs of solvation series naphthalene-...(H2O)n; B |
-0.18 | N/A | Song, Han, et al., 2002 | Extrapolated from LPES EAs of (naphthalene)n; B |
-0.200 ± 0.050 | LPES | Schiedt, Knott, et al., 2000 | Extrapolated from EAs of (H2O)n..naphthalene-. series; B |
-0.1908 | ETS | Burrow, Michejda, et al., 1987 | The question of whether the naphthalene radical anion is bound or not has not been settled; B |
0.140 ± 0.050 | ECD | Zlatkis, Lee, et al., 1983 | However, see Heinis, Chowdhury, et al., 1993 for a discussion; it may not be bound.; B |
<0.134 ± 0.043 | ECD | Wojnarovits and Foldiak, 1981 | EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.3 eV, anion unbound.; B |
0.1480 ± 0.0060 | ECD | Becker and Chen, 1966 | B |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
800.0 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
774.5 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
C10H7- + =
By formula: C10H7- + H+ = C10H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1649. ± 5.0 | kJ/mol | Bran | Reed and Kass, 2000 | gas phase; B |
ΔrH° | 1649. ± 5.0 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrH° | 1648. ± 21. | kJ/mol | CIDC | Lardin, Squires, et al., 2001 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1613. ± 5.4 | kJ/mol | H-TS | Reed and Kass, 2000 | gas phase; B |
ΔrG° | 1606. ± 5.0 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrG° | 1613. ± 21. | kJ/mol | H-TS | Lardin, Squires, et al., 2001 | gas phase; B |
C10H7- + =
By formula: C10H7- + H+ = C10H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1655. ± 5.4 | kJ/mol | Bran | Reed and Kass, 2000 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1619. ± 5.9 | kJ/mol | H-TS | Reed and Kass, 2000 | gas phase; B |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1986, 102, 59-66. [all data]
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Barrow G.M., 1951
Barrow G.M.,
The thermodynamic properties of naphthalene,
J. Am. Chem. Soc., 1951, 73, 573-575. [all data]
McClellan A.L., 1955
McClellan A.L.,
Vibrational assignment and thermodynamic properties of naphthalene,
J. Chem. Phys., 1955, 23, 245-248. [all data]
Lielmezs J., 1981
Lielmezs J., Jr.,
Thermodynamic functions for naphthalene,
Thermochim. Acta, 1981, 47, 287-308. [all data]
Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D.,
Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons,
J. Chem. Eng. Data, 1995, 40, 547-558. [all data]
Cheng, 1963
Cheng, D.C.H.,
Critical temperatures and volumes of some binary systems,
Chem. Eng. Sci., 1963, 18, 715. [all data]
Chirico, Knipmeyer, et al., 1993
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V.,
The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene,
J. Chem. Thermodyn., 1993, 25, 1461-94. [all data]
Schroeer, 1941
Schroeer, E.,
Critical State VI. Vapor-pressure Curve of Naphthalene Up To the Critical Point,
Z. Phys. Chem., Abt. B, 1941, 49, 271-8. [all data]
Zhuravlev, 1937
Zhuravlev, D.I.,
Crit. Temp. and Orthobaric Density of Diphenyl Ether and Napphthalene naphthalene,
Zh. Fiz. Khim., 1937, 9, 875. [all data]
Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S.,
Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects,
J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s
. [all data]
Haftka, Parsons, et al., 2006
Haftka, Joris J.H.; Parsons, John R.; Govers, Harrie A.J.,
Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography,
Journal of Chromatography A, 2006, 1135, 1, 91-100, https://doi.org/10.1016/j.chroma.2006.09.050
. [all data]
Chickos, Hesse, et al., 1998
Chickos, James; Hesse, Donald; Hosseini, Sarah; Nichols, Gary; Webb, Paul,
Sublimation enthalpies at 298.15K using correlation gas chromatography and differential scanning calorimetry measurements,
Thermochimica Acta, 1998, 313, 2, 101-110, https://doi.org/10.1016/S0040-6031(97)00432-2
. [all data]
Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G.,
Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times,
Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3
. [all data]
Torres-Gomez, Barreiro-Rodriguez, et al., 1988
Torres-Gomez, L.A.; Barreiro-Rodriguez, G.; Galarza-Mondragon, A.,
A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry,
Thermochim. Acta, 1988, 124, 229-233. [all data]
Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank,
Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons,
J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148
. [all data]
Boller and Wiedemann, 1998
Boller, A.; Wiedemann, H.G.,
Journal of Thermal Analysis and Calorimetry, 1998, 53, 2, 431-439, https://doi.org/10.1023/A:1010133106907
. [all data]
Back, Grzyll, et al., 1996
Back, Dwight D.; Grzyll, Lawrence R.; Corrigan, Mary,
DSC enthalpy of vaporization measurements of high temperature two-phase working fluids,
Thermochimica Acta, 1996, 272, 53-63, https://doi.org/10.1016/0040-6031(95)02615-0
. [all data]
Chirico, Knipmeyer, et al., 1993, 2
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V.,
The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene,
J. Chem. Thermodyn., 1993, 25, 1461-1494. [all data]
Lee and Holder, 1993
Lee, Chang Ha; Holder, Gerald D.,
Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene,
J. Chem. Eng. Data, 1993, 38, 2, 320-323, https://doi.org/10.1021/je00010a034
. [all data]
Ambrose, Ewing, et al., 1990
Ambrose, D.; Ewing, M.B.; Ghiassee, N.B.; Sanchez Ochoa, J.C.,
The ebulliometric method of vapour-pressure measurement: vapour pressures of benzene, hexafluorobenzene, and naphthalene,
The Journal of Chemical Thermodynamics, 1990, 22, 6, 589-605, https://doi.org/10.1016/0021-9614(90)90151-F
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
de Kruif, Kuipers, et al., 1981
de Kruif, C.G.; Kuipers, T.; van Miltenburg, J.C.; Schaake, R.C.F.; Stevens, G.,
The vapour pressure of solid and liquid naphthalene,
The Journal of Chemical Thermodynamics, 1981, 13, 11, 1081-1086, https://doi.org/10.1016/0021-9614(81)90006-9
. [all data]
Wilson, Johnston, et al., 1981
Wilson, Grant M.; Johnston, Robert H.; Hwang, Shuen-Cheng.; Tsonopoulos, Constantine.,
Volatility of coal liquids at high temperatures and pressures,
Ind. Eng. Chem. Proc. Des. Dev., 1981, 20, 1, 94-104, https://doi.org/10.1021/i200012a015
. [all data]
Fowler, Trump, et al., 1968
Fowler, Lewis.; Trump, Walter N.; Vogler, Carl E.,
Vapor pressure of naphthalene. Measurements between 40.deg. and 180.deg.,
J. Chem. Eng. Data, 1968, 13, 2, 209-210, https://doi.org/10.1021/je60037a020
. [all data]
Camin and Rossini, 1955
Camin, David L.; Rossini, Frederick D.,
Physical Properties of Fourteen API Research Hydrocarbons, C 9 to C 15,
J. Phys. Chem., 1955, 59, 11, 1173-1179, https://doi.org/10.1021/j150533a014
. [all data]
Barrow and McClellan, 1951
Barrow, Gordon M.; McClellan, A.L.,
The Thermodynamic Properties of Naphthalene,
J. Am. Chem. Soc., 1951, 73, 2, 573-575, https://doi.org/10.1021/ja01146a020
. [all data]
Cramer, 1943
Cramer, K.S.N.,
Chem. Zentr. II, 1943, 2234. [all data]
Mortimer and Murphy, 1923
Mortimer, F. Spencer.; Murphy, Ray v.,
The Vapor Pressures of Some Substances Found in Coal Tar.,
Ind. Eng. Chem., 1923, 15, 11, 1140-1142, https://doi.org/10.1021/ie50167a012
. [all data]
NELSON and SENSEMAN, 1922
NELSON, O.A.; SENSEMAN, C.E.,
Vapor Pressure Determinations on Naphthalene, Anthracene, Phecanthrene, and Anthraquinone between Their Melting and Boiling Points,
J. Ind. Eng. Chem., 1922, 14, 1, 58-62, https://doi.org/10.1021/ie50145a028
. [all data]
Grayson and Fosbraey, 2006
Grayson, B. Terence; Fosbraey, Lynda A.,
Determination of the vapour pressure of pesticides,
Pestic. Sci., 2006, 13, 3, 269-278, https://doi.org/10.1002/ps.2780130308
. [all data]
McEachern and Sandoval, 2001
McEachern, D.M.; Sandoval, O.,
A molecular flow evaporation apparatus for measuring vapour pressures and heats of sublimation of organic compounds,
J. Phys. E: Sci. Instrum., 2001, 6, 2, 155-161, https://doi.org/10.1088/0022-3735/6/2/026
. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Wania, Shiu, et al., 1994
Wania, Frank; Shiu, Wan-Ying; Mackay, Donald,
Measurement of the Vapor Pressure of Several Low-Volatility Organochlorine Chemicals at Low Temperatures with a Gas Saturation Method,
J. Chem. Eng. Data, 1994, 39, 3, 572-577, https://doi.org/10.1021/je00015a039
. [all data]
Khudyakov, 1988
Khudyakov, V.L.,
Russ. J. Phys. Chem., 1988, 62, 1743. [all data]
SATO, INOMATA, et al., 1986
SATO, NOBUYUKI; INOMATA, HIROSHI; ARAI, KUNIO; SAITO, SHOZABURO,
Measurement of vapor pressures for coal-related aromatic compounds by gas saturation method.,
J. Chem. Eng. Japan / JCEJ, 1986, 19, 2, 145-147, https://doi.org/10.1252/jcej.19.145
. [all data]
Glukhova, Arkhangelova, et al., 1985
Glukhova, O.T.; Arkhangelova, N.M.; Teplitsky, A.B.; Sukhodub, L.F.; Yanson, I.K.; Kaminski, Miron,
The low-temperature quartz resonator method for determination of the enthalpy of sublimation,
Thermochimica Acta, 1985, 95, 1, 133-138, https://doi.org/10.1016/0040-6031(85)80041-1
. [all data]
Matsubara and Kuwamoto, 1985
Matsubara, Norio; Kuwamoto, Tooru,
Vapor pressure measurements in carrier gas containing ligand vapor using the transpiration technique,
Thermochimica Acta, 1985, 83, 2, 193-202, https://doi.org/10.1016/0040-6031(85)87003-9
. [all data]
Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E.,
Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons,
Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022
. [all data]
Colomina, Jimenez, et al., 1982
Colomina, M.; Jimenez, P.; Turrion, C.,
Vapour pressures and enthalpies of sublimation of naphthalene and benzoic acid,
J. Chem. Thermodyn., 1982, 14, 779-784. [all data]
Kruif, 1980
Kruif, C.G.,
Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons,
J. Chem. Thermodyn., 1980, 12, 243-248. [all data]
Murray, Cavell, et al., 1980
Murray, J.P.; Cavell, K.J.; Hill, J.O.,
A DSC study of benzoic acid: a suggested calibrant compound,
Thermochimica Acta, 1980, 36, 1, 97-101, https://doi.org/10.1016/0040-6031(80)80114-6
. [all data]
Macknick and Prausnitz, 1979
Macknick, A. Brian; Prausnitz, John M.,
Vapor pressures of high-molecular-weight hydrocarbons,
J. Chem. Eng. Data, 1979, 24, 3, 175-178, https://doi.org/10.1021/je60082a012
. [all data]
De Kruif and Van Ginkel, 1977
De Kruif, C.G.; Van Ginkel, C.H.D.,
Torsion-weighing effusion vapour-pressure measurements on organic compounds,
The Journal of Chemical Thermodynamics, 1977, 9, 8, 725-730, https://doi.org/10.1016/0021-9614(77)90015-5
. [all data]
Ambrose, Lawrenson, et al., 1975
Ambrose, D.; Lawrenson, I.J.; Sprake, C.H.S.,
The vapour pressure of naphthalene,
The Journal of Chemical Thermodynamics, 1975, 7, 12, 1173-1176, https://doi.org/10.1016/0021-9614(75)90038-5
. [all data]
Chickos, 1975
Chickos, James Speros,
A simple equilibrium method for determining heats of sublimation,
J. Chem. Educ., 1975, 52, 2, 134-39, https://doi.org/10.1021/ed052p134
. [all data]
McEachern, Sandoval, et al., 1975
McEachern, D.M.; Sandoval, O.; Iniguez, J.C.,
Vapor pressures, derived enthalpies of sublimation, enthalpies of fusion, and resonance energies of acridine and phenazine,
J. Chem. Thermodyn., 1975, 7, 299-306. [all data]
Radchenko and Kitaigorodskii, 1974
Radchenko, L.G.; Kitaigorodskii, A.I.,
The vapour pressures and heats of sublimation of naphthalene, biphenyl, octafluoronaphthalene, decafluorobiphenyl, acenaphthene and α-nitronaphthalene,
Russ. J. Phys. Chem. (Engl. Transl.), 1974, 48, 1595. [all data]
Radchenko, 1971
Radchenko, L.G.,
Zh. Fiz. Khim., 1971, 45, 5, 1310. [all data]
Karyakin, Rabinovich, et al., 1968
Karyakin, N.V.; Rabinovich, I.B.; Pakhomov, L.G.,
Heats of sublimation of naphthalene and its monosubstituted β-derivatives,
Russ. J. Phys. Chem. (Engl. Transl.), 1968, 42, 954. [all data]
Miller, 1963
Miller, George A.,
Vapor Pressure of Naphthalene. Thermodynamic Consistency with Proposed Frequency Assignments.,
J. Chem. Eng. Data, 1963, 8, 1, 69-72, https://doi.org/10.1021/je60016a019
. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]
Aihara, 1959
Aihara, A.,
Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy,
Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]
Aihara, 1959, 2
Aihara, Ariyuki,
Estimation of the Energy of Hydrogen Bonds Formed in Crystals. I. Sublimation Pressures of Some Organic Molecular Crystals and the Additivity of Lattice Energy,
Bull. Chem. Soc. Jpn., 1959, 32, 11, 1242-1248, https://doi.org/10.1246/bcsj.32.1242
. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Sklyarenko, Markin, et al., 1958
Sklyarenko, S.I.; Markin, B.I.; Belyaeva, L.B.,
Zh. Fiz. Khim., 1958, 32, 1916. [all data]
Sherwood and Bryant, 1957
Sherwood, T.K.; Bryant, J.H., Jr.,
Can. J. Chem. Eng., 1957, 35, 51. [all data]
Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G.,
346. The vapour pressure and lattice energy of hydrogen-bonded crystals. Part I. Oxamide, oxamic acid, and rubeanic acid,
J. Chem. Soc., 1953, 1681, https://doi.org/10.1039/jr9530001681
. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Sears and Hopke, 1954
Sears, G.W.; Hopke, E.R.,
The Vapor Pressure of Naphthalene,
J. Am. Chem. Soc., 1954, 76, 7, 2026-2026, https://doi.org/10.1021/ja01636a099
. [all data]
Bradley and Cleasby, 1953, 2
Bradley, R.S.; Cleasby, T.G.,
The vapour pressure and lattice energy of some aromatic ring compounds,
J. Am. Chem. Soc., 1953, 1690-16. [all data]
Zibberman-Granovskaya, 1940
Zibberman-Granovskaya, A.A.,
Russ. J. Phys. Chem., 1940, 14, 759. [all data]
Andrews, 1925
Andrews, Mary R.,
Vapor Pressure of Naphthalene at Low Temperatures,
J. Phys. Chem., 1925, 30, 11, 1497-1500, https://doi.org/10.1021/j150269a005
. [all data]
Swan and Mack, 1925
Swan, Thomas H.; Mack, Edward,
VAPOR PRESSURES OF ORGANIC CRYSTALS BY AN EFFUSION METHOD,
J. Am. Chem. Soc., 1925, 47, 8, 2112-2116, https://doi.org/10.1021/ja01685a005
. [all data]
Mastrangelo, 1957
Mastrangelo, S.V.R.,
Adiabatic calorimeter for determination of cryoscopic data,
Anal. Chem., 1957, 29(5), 841-845. [all data]
McCullough, Finke, et al., 1957
McCullough, J.P.; Finke, H.L.; Messerly, J.F.; Kincheloe, T.C.; Waddington, G.,
The low temperature thermodynamic properties of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,3,4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene,
J. Phys. Chem., 1957, 61, 1105-1116. [all data]
Spaght, Thomas, et al., 1932
Spaght, M.E.; Thomas, S.B.; Parks, G.S.,
Some heat capacity data on organic compounds obtained with a radiation calorimeter,
J. Phys. Chem., 1932, 36, 882-888. [all data]
Sharma, Gupta, et al., 2008
Sharma, B.L.; Gupta, S.; Tandon, S.; Kant, R.,
Physico-mechanical properties of naphthalene--acenaphthene eutectic system by different modes of solidification,
Materials Chemistry and Physics, 2008, 111, 2-3, 423-430, https://doi.org/10.1016/j.matchemphys.2008.04.049
. [all data]
Hafsaoui and Mahmoud, 2007
Hafsaoui, S.L.; Mahmoud, R.,
Solid-liquid equilibria of binary systems containing n-tetracosane with naphthalene or dibenzofuran,
J Therm Anal Calorim, 2007, 88, 2, 565-570, https://doi.org/10.1007/s10973-006-8084-2
. [all data]
Khimeche and Dahmani, 2006
Khimeche, Kamel; Dahmani, Abdallah,
Solid-Liquid Equilibria of Naphthalene + Alkanediamine Mixtures,
J. Chem. Eng. Data, 2006, 51, 2, 382-385, https://doi.org/10.1021/je0502851
. [all data]
Khimeche and Dahmani, 2006, 2
Khimeche, K.; Dahmani, A.,
Determination by DSC of solid--liquid diagrams for polyaromatic -- 4,4'diaminodiphenylmethane binary systems,
J Therm Anal Calorim, 2006, 84, 1, 47-52, https://doi.org/10.1007/s10973-005-7167-9
. [all data]
Chirico, Knipmeyer, et al., 2002
Chirico, R.D.; Knipmeyer, S.E.; Steele, W.V.,
Heat capacities, enthalpy increments, and derived thermodynamic functions for naphthalene between the temperatures 5K and 440K,
The Journal of Chemical Thermodynamics, 2002, 34, 11, 1873-1884, https://doi.org/10.1016/S0021-9614(02)00262-8
. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Syunyaev, Tumanyan, et al., 1984
Syunyaev, Z.I.; Tumanyan, B.P.; Kolesnikov, S.I.; Zhokhova, N.I.,
Some anomalies in melting points of binary mixtures of solid hydrocarbons,
Zhur. Prikl. Khim. (Leningrad), 1984, 57, 666-669. [all data]
Rastogi and Bassi, 1964
Rastogi, R.P.; Bassi, P.S.,
Mechanism of eutectic crystallization,
J. Phys. Chem., 1964, 68, 2398-2406. [all data]
Ueberreiter and Orthmann, 1950
Ueberreiter, K.; Orthmann, H.-J.,
Specifische Wärme, spezifisches Volumen, Temperatur- und Wärme-leittähigkeit einiger disubstituierter Benzole und polycyclischer Systeme,
Z. Natursforsch. 5a, 1950, 101-108. [all data]
Eibert, 1944
Eibert, J.,
Thesis Washington University (St. Louis), 1944. [all data]
Schmidt, 1941
Schmidt, W.R.,
Thesis Washington University (St. Louis), 1941. [all data]
Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J.,
The heat capacities and heat of crystallization of some isomeric aromatic compounds,
J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]
David, 1964
David, D.J.,
Determination of specific heat and heat of fusion by differential thermal analysis. Study of theory and operating parameters,
Anal. Chem., 1964, 36, 2162-2166. [all data]
Andon and Connett, 1980
Andon, R.J.L.; Connett, J.E.,
Calibrants for thermal analysis. Measurement of their enthalpies of fusion by adiabatic calorimetry,
Thermochim. Acta, 1980, 42, 241-247. [all data]
Radomska and Radomski, 1980
Radomska, M.; Radomski, R.,
Calorimetric studies of binary systems of 1,3,5-trinitrobenzene with naphthalene, anthracene, and carbazole. I. Phase transitions and heat capacities of the pure components and charge-transfer complexes,
Thermochim. Acta, 1980, 40, 405-414. [all data]
Mackay, Shiu, et al., 1979
Mackay, D.; Shiu, W.-Y.; Sutherland, R.P.,
Determination of Air-Water Henry's Law Constants for Hydrophobic Pollutants,
Environ. Sci. Technol., 1979, 13, 333-337. [all data]
Bohon and Claussen, 1951
Bohon, R.L.; Claussen, W.F.,
The solubility of aromatic hydrocarbons in water,
J. Am. Chem. Soc., 1951, 73, 1571-1578. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Lyapustina, Xu, et al., 2000
Lyapustina, S.A.; Xu, S.K.; Nilles, J.M.; Bowen, K.H.,
Solvent-induced stabilization of the naphthalene anion by water molecules: A negative cluster ion photoelectron spectroscopic study,
J. Chem. Phys., 2000, 112, 15, 6643-6648, https://doi.org/10.1063/1.481237
. [all data]
Song, Han, et al., 2002
Song, J.K.; Han, S.Y.; Chu, I.H.; Kim, J.H.; Kim, S.K.; Lyapustina, S.A.; Xu, S.J.; Nilles, J.M.; Bowen, K.H.,
Photoelectron spectroscopy of naphthalene cluster anions,
J. Chem. Phys., 2002, 116, 11, 4477-4481, https://doi.org/10.1063/1.1449869
. [all data]
Schiedt, Knott, et al., 2000
Schiedt, J.; Knott, W.J.; Le Barbu, K.; Schlag, E.W.; Weinkauf, R.,
Microsolvation of similar-sized aromatic molecules: Photoelectron spectroscopy of bithiophene-, azulene-, and naphthalene-water anion clusters,
J. Chem. Phys., 2000, 113, 21, 9470-9478, https://doi.org/10.1063/1.1319874
. [all data]
Burrow, Michejda, et al., 1987
Burrow, P.D.; Michejda, J.A.; Jordan, K.D.,
Electron Transmission Study of the Temporary Negative Ion States of Selected Benzenoid and Conjugated Aromatic Hydrocarbons.,
J. Chem. Phys., 1987, 86, 1, 9, https://doi.org/10.1063/1.452598
. [all data]
Zlatkis, Lee, et al., 1983
Zlatkis, A.; Lee, C.K.; Wentworth, W.E.; Chen, E.C.M.,
Constant current linearization for determination of electron capture mechanisms,
Anal. Chem., 1983, 55, 1596. [all data]
Heinis, Chowdhury, et al., 1993
Heinis, T.; Chowdhury, S.; Kebarle, P.,
Electron Affinities of Naphthalene, Anthracene and Substituted Naphthalenes and Anthracenes,
Org. Mass Spectrom., 1993, 28, 4, 358, https://doi.org/10.1002/oms.1210280416
. [all data]
Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G.,
Electron capture detection of aromatic hydrocarbons,
J. Chromatogr. Sci., 1981, 206, 511. [all data]
Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E.,
Experimental Determination of Electron Affinities of Organic Molecules,
Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]
Becker and Chen, 1966
Becker, R.S.; Chen, E.,
Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons,
J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Gotkis, Oleinikova, et al., 1993
Gotkis, Y.; Oleinikova, M.; Naor, M.; Lifshitz, C.,
Time-independent mass spectra and breakdown graphs. 17. Naphthalene and phenanthrene,
J. Phys. Chem., 1993, 97, 12282. [all data]
Cockett, Ozeki, et al., 1993
Cockett, M.C.R.; Ozeki, H.; Okuyama, K.; Kimura, K.,
Vibronic coupling in the ground cationic state of naphthalene: A laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study,
J. Chem. Phys., 1993, 98, 7763. [all data]
Jochims, Rasekh, et al., 1992
Jochims, H.-W.; Rasekh, H.; Ruhl, E.; Baumgartel, H.; Leach, S.,
The photofragmentation of naphthalene and azulene monocations in the energy range 7-22 eV,
Chem. Phys., 1992, 168, 159. [all data]
Stahl and Maquin, 1984
Stahl, D.; Maquin, F.,
Charge-stripping mass spectrometry of molecular ions from polyacenes and molecular orbital theory,
Chem. Phys. Lett., 1984, 108, 613. [all data]
Duncan, Dietz, et al., 1981
Duncan, M.A.; Dietz, T.G.; Smalley, R.E.,
Two-color photoionization of naphthalene and benzene at threshold,
J. Chem. Phys., 1981, 75, 2118. [all data]
Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M.,
Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite,
J. Phys. Chem., 1980, 84, 2716. [all data]
Schafer, Schweig, et al., 1975
Schafer, W.; Schweig, A.; Vermeer, H.; Bickel-haupt, F.; De Graaf, H.,
On the nature of the "free electron pair" on phosphorus in aromatic phosphorus compounds: the photoelectron spectrum of 2-phosphanaphthalene,
J. Electron Spectrosc. Relat. Phenom., 1975, 6, 91. [all data]
Schafer, Schweig, et al., 1973
Schafer, W.; Schweig, A.; Markl, G.; Heier, K.-H.,
Zur elektronenstruktur der lambda3- und lambda5-phosphanaphthaline--ungewohnlich grosse MO destabilisierungen,
Tetrahedron Lett., 1973, 3743. [all data]
Pitt, 1973
Pitt, C.G.,
Hyperconjugation and its role in group IV chemistry,
J. Organomet. Chem., 1973, 61, 49. [all data]
Clark, Brogli, et al., 1972
Clark, P.A.; Brogli, F.; Heilbronner, E.,
The π-orbital energies of the acenes,
Helv. Chim. Acta, 1972, 55, 1415. [all data]
Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.,
Perfluoro effect in photoelectron spectroscopy. II. Aromatic molecules,
J. Am. Chem. Soc., 1972, 94, 1466. [all data]
Brogli, Heilbronner, et al., 1972
Brogli, F.; Heilbronner, E.; Kobayashi, T.,
Photoelectron spectra of azabenzenes and azanaphthalenes: II. A reinvestigation of azanaphthalenes by high-resolution photoelectron spectroscopy,
Helv. Chim. Acta, 1972, 55, 274. [all data]
Johnstone, Mellon, et al., 1970
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D.,
Online acquisition of ionization efficiency data,
Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 241. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Yencha and El-Sayed, 1968
Yencha, A.J.; El-Sayed, M.A.,
Lowest ionization potentials of some nitrogen heterocyclics,
J. Chem. Phys., 1968, 48, 3469. [all data]
Kitagawa, 1968
Kitagawa, T.,
Absorption spectra and photoionization of polycyclic aromatics in vacuum ultraviolet region,
J. Mol. Spectry., 1968, 26, 1. [all data]
Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J.,
Inner ionization potentials of aromatic compounds,
Z. Naturforsch., 1968, 23a, 355. [all data]
Angus, Christ, et al., 1968
Angus, J.G.; Christ, B.J.; Morris, G.C.,
Absorption spectra in the vacuum ultraviolet and the ionization potentials of naphthalene and naphthalene-d, molecules,
Australian J. Chem., 1968, 21, 2153. [all data]
Bonnier, Gelus, et al., 1965
Bonnier, J.-M.; Gelus, M.; Nounou, P.,
Contribution a l'etude de l'effet inductif et de l'effet d'hyperconjugaison dans quelques methylaromatiques,
J. Chim. Phys., 1965, 10, 1191. [all data]
Kuroda, 1964
Kuroda, H.,
Ionization potentials of polycyclic aromatic hydrocarbons,
Nature, 1964, 201, 1214. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Terenin, 1961
Terenin, A.,
Charge transfer in organic solids, induced by light,
Proc. Chem. Soc., London, 1961, 321. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N.,
The photoionization of the vapors of certain organic compounds,
Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Kaim, Tesmann, et al., 1980
Kaim, W.; Tesmann, H.; Bock, H.,
Me3C-, Me3Si-, Me3Ge-, Me3Sn- und Me3Pb-substituierte benzol- und naphthalin-derivate und ihre radikalanionen,
Chem. Ber., 1980, 113, 3221. [all data]
Schmidt, 1977
Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series,
J. Chem. Phys., 1977, 66, 828. [all data]
Heilbronner, Hoshi, et al., 1976
Heilbronner, E.; Hoshi, T.; von Rosenberg, J.L.; Hafner, K.,
Alkyl-induced, natural hypsochromic shifts of the 2A←2X and 2B←2X transitions of azulene and naphthalene radical cations,
Nouv. J. Chim., 1976, 1, 105. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Marschner and Goetz, 1974
Marschner, F.; Goetz, H.,
Korrelation zwischen photoelektronen- und elektronen-spektren. II. Untersuchung aromatischer π-systeme mit modifizierten PPP-SCF-CI-parametern,
Tetrahedron, 1974, 30, 3159. [all data]
Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J.,
Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten,
Chem. Ber., 1972, 105, 3850. [all data]
Bock and Wagner, 1972
Bock, H.; Wagner, G.,
Electron lone pairs in organic sulfides and disulfides,
Angew. Chem. Int. Ed. Engl., 1972, 11, 119. [all data]
Jochims, Rasekh, et al., 1993
Jochims, H.-W.; Rasekh, H.; Ruhl, E.; Baumgartel, H.; Leach, S.,
Deuterium isotope effects in the photofragmentation of naphthalene monocations,
J. Phys. Chem., 1993, 97, 1312. [all data]
VanBrunt and Wacks, 1964
VanBrunt, R.J.; Wacks, M.E.,
Electron-impact studies of aromatic hydrocarbons. III. Azulene and naphthalene,
J. Chem. Phys., 1964, 41, 3195. [all data]
Reed and Kass, 2000
Reed, D.R.; Kass, S.R.,
Experimental determination of the alpha and beta C-H bond dissociation energies in naphthalene,
J. Mass Spectrom., 2000, 35, 4, 534-539, https://doi.org/10.1002/(SICI)1096-9888(200004)35:4<534::AID-JMS964>3.0.CO;2-T
. [all data]
Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A.,
Ionic Probes of Aromaticity in Annelated Rings,
J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001
. [all data]
Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B.,
Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine,
J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z
. [all data]
Lardin, Squires, et al., 2001
Lardin, H.A.; Squires, R.R.; Wenthold, P.G.,
Determination of the electron affinities of alpha- and beta- naphthyl radicals using the kinetic method with full entropy analysis. The C-H bond dissociation energies of naphthalene,
J. Mass Spectrom., 2001, 36, 6, 607-615, https://doi.org/10.1002/jms.159
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas EA Electron affinity IE (evaluated) Recommended ionization energy Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔsubS Entropy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.