Neopentane
- Formula: C5H12
- Molecular weight: 72.1488
- IUPAC Standard InChIKey: CRSOQBOWXPBRES-UHFFFAOYSA-N
- CAS Registry Number: 463-82-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Propane, 2,2-dimethyl-; tert-Pentane; Tetramethylcarbon; Tetramethylmethane; 1,1,1-Trimethylethane; 2,2-Dimethylpropane; Neo-C5H12; UN 2044; Dimethylpropane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -167.9 ± 0.63 | kJ/mol | Ccb | Good, 1970 | ALS |
ΔfH°gas | -168.5 ± 1.0 | kJ/mol | Cm | Pilcher and Chadwick, 1967 | ALS |
ΔfH°gas | -166.0 ± 1.0 | kJ/mol | Ccb | Prosen and Rossini, 1945 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -3514.1 ± 0.96 | kJ/mol | Cm | Pilcher and Chadwick, 1967 | Corresponding ΔfHºgas = -168.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
120.82 ± 0.25 | 298.15 | Hossenlopp I.A., 1981 | GT |
129.58 ± 0.26 | 323.15 | ||
138.41 ± 0.28 | 348.15 | ||
147.06 ± 0.29 | 373.15 | ||
155.46 ± 0.31 | 398.15 | ||
163.52 ± 0.32 | 423.15 | ||
171.46 ± 0.34 | 448.15 | ||
178.95 ± 0.36 | 473.15 | ||
186.42 ± 0.37 | 498.15 | ||
193.38 ± 0.39 | 523.15 |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
80.54 | 200. | Scott D.W., 1974 | Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1946].; GT |
111.63 | 273.15 | ||
120.83 ± 0.25 | 298.15 | ||
121.55 | 300. | ||
155.98 | 400. | ||
186.98 | 500. | ||
214.64 | 600. | ||
238.91 | 700. | ||
261.08 | 800. | ||
280.33 | 900. | ||
297.90 | 1000. | ||
313.38 | 1100. | ||
327.19 | 1200. | ||
338.90 | 1300. | ||
351.46 | 1400. | ||
359.82 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -190.3 ± 0.63 | kJ/mol | Ccb | Good, 1970 | ALS |
ΔfH°liquid | -188.2 ± 1.0 | kJ/mol | Ccb | Prosen and Rossini, 1945 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3492.4 ± 0.59 | kJ/mol | Ccb | Good, 1970 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -3492.2 ± 0.50 kJ/mol; Corresponding ΔfHºliquid = -190.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -3494.4 ± 1.0 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Corresponding ΔfHºliquid = -188.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 216.81 | J/mol*K | N/A | Enokida, Shinoda, et al., 1969 | At normal boiling point.; DH |
S°liquid | 218.8 | J/mol*K | N/A | Aston and Messerly, 1936 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
153.09 | 259.93 | Enokida, Shinoda, et al., 1969 | T = 4 to 260 K. Value is unsmoothed experimental datum.; DH |
163.89 | 278.92 | Aston and Messerly, 1936 | T = 13 to 283 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 282.6 ± 0.5 | K | AVG | N/A | Average of 17 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 255. ± 3. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 256.76 | K | N/A | Enokido, Shinoda, et al., 1969 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 256.77 | K | N/A | Streiff, 1964 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.03 K; TRC |
Ttriple | 256.53 | K | N/A | Aston and Messerly, 1936, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 433.8 ± 0.1 | K | N/A | Daubert, 1996 | |
Tc | 433.8 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 433.8 | K | N/A | Dawson, Silberberg, et al., 1973 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tc | 433.75 | K | N/A | Partington, Rowlinson, et al., 1960 | Uncertainty assigned by TRC = 0.1 K; Visual, THg; TRC |
Tc | 433.75 | K | N/A | Beattie, Douslin, et al., 1951 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 32.0 ± 0.1 | bar | N/A | Daubert, 1996 | |
Pc | 31.963 | bar | N/A | Dawson, Silberberg, et al., 1973 | Uncertainty assigned by TRC = 0.1013 bar; TRC |
Pc | 31.99 | bar | N/A | Beattie, Douslin, et al., 1951 | Uncertainty assigned by TRC = 0.2027 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.307 | l/mol | N/A | Daubert, 1996 | |
Vc | 0.304 | l/mol | N/A | Beattie, Douslin, et al., 1951 | Uncertainty assigned by TRC = 0.004 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.26 ± 0.01 | mol/l | N/A | Daubert, 1996 | |
ρc | 3.214 | mol/l | N/A | Dawson, Silberberg, et al., 1973 | Uncertainty assigned by TRC = 0.03 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 22.39 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 21.8 | kJ/mol | C | Hossenlopp and Scott, 1981 | AC |
ΔvapH° | 21.85 | kJ/mol | N/A | Reid, 1972 | AC |
ΔvapH° | 22.4 ± 0.59 | kJ/mol | V | Good, 1970 | ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
22.74 | 282.7 | N/A | Majer and Svoboda, 1985 | |
22.753 | 282.61 | N/A | Aston and Messerly, 1936 | P = 101.325 kPa; DH |
24.3 | 272. | N/A | Höpfner, Parekh, et al., 2010 | Based on data from 257. to 293. K. See also Boublik, Fried, et al., 1984.; AC |
24.0 | 283. | A | Stephenson and Malanowski, 1987 | Based on data from 268. to 313. K.; AC |
23.1 | 327. | A | Stephenson and Malanowski, 1987 | Based on data from 312. to 385. K.; AC |
23.1 | 397. | A | Stephenson and Malanowski, 1987 | Based on data from 382. to 433. K.; AC |
22.2 | 290. | N/A | Das, Reed, et al., 1977 | AC |
19.5 | 330. | N/A | Das, Reed, et al., 1977 | AC |
16.2 | 370. | N/A | Das, Reed, et al., 1977 | AC |
11.1 | 410. | N/A | Das, Reed, et al., 1977 | AC |
22.8 | 358. | N/A | Dawson, Silberberg, et al., 1973 | Based on data from 343. to 433. K. See also Boublik, Fried, et al., 1984.; AC |
22.8 ± 0.1 | 283. | N/A | Aston and Messerly, 1936 | AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
264. to 303. | 36.76 | 0.2813 | 433.8 | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
80.50 | 282.61 | Aston and Messerly, 1936 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
205.7 to 293.16 | 3.28533 | 695.152 | -70.679 | Hopfner, Parekh, et al., 1975 | Coefficents calculated by NIST from author's data. |
268.02 to 313.20 | 3.86373 | 950.318 | -36.329 | Osborn and Douslin, 1974 | Coefficents calculated by NIST from author's data. |
343. to 433. | 4.61616 | 1478.868 | 41.256 | Dawson, Silberberg, et al., 1973 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
28.2 | 241. | N/A | Stephenson and Malanowski, 1987 | Based on data from 223. to 256. K.; AC |
23.9 | 210. | A | Stull, 1947 | Based on data from 171. to 249. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
3.26 | 256.5 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
18.41 | 140. | Domalski and Hearing, 1996 | CAL |
12.69 | 256.5 |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
2.630 | 140.5 | crystaline, II | crystaline, I | Chang and Westrum, 1970 | DH |
3.096 | 256.76 | crystaline, I | liquid | Chang and Westrum, 1970 | DH |
2.6305 | 140. to 142. | crystaline, II | crystaline, I | Enokida, Shinoda, et al., 1969 | DH |
3.0962 | 256.76 | crystaline, I | liquid | Enokida, Shinoda, et al., 1969 | DH |
2.577 | 140.0 | crystaline, II | crystaline, I | Aston and Messerly, 1936 | DH |
3.255 | 256.53 | crystaline, I | liquid | Aston and Messerly, 1936 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
18.70 | 140.5 | crystaline, II | crystaline, I | Chang and Westrum, 1970 | DH |
12.05 | 256.76 | crystaline, I | liquid | Chang and Westrum, 1970 | DH |
18.70 | 140. to 142. | crystaline, II, Second | crystaline, I, order transition, 140 to 142 K | Enokida, Shinoda, et al., 1969 | DH |
12.06 | 256.76 | crystaline, I | liquid | Enokida, Shinoda, et al., 1969 | DH |
18.41 | 140.0 | crystaline, II | crystaline, I | Aston and Messerly, 1936 | DH |
12.68 | 256.53 | crystaline, I | liquid | Aston and Messerly, 1936 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C5H11- + =
By formula: C5H11- + H+ = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1711. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrH° | 1720. ± 42. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1674. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
C10H22Mg (cr) + (g) + (l) = 2 (l) + Br2Mg (cr)
By formula: C10H22Mg (cr) + H2 (g) + Br2 (l) = 2C5H12 (l) + Br2Mg (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -669.6 ± 6.6 | kJ/mol | RSC | Akkerman, Schat, et al., 1983 | MS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | ≤10.30 ± 0.08 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.21 ± 0.04 | PE | Jonas, Schweitzer, et al., 1973 | LLK |
10.3 ± 0.1 | PE | Evans, Green, et al., 1972 | LLK |
10.40 | PE | Dewar and Worley, 1969 | RDSH |
10.35 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
10.90 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
10.9 ± 0.1 | PE | Bieri, Burger, et al., 1977 | Vertical value; LLK |
11.3 | PE | Schmidt and Wilkins, 1972 | Vertical value; LLK |
11.3 | PE | Murrell and Schmidt, 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3+ | 29.5 ± 0.2 | ? | EI | Olmsted, Street, et al., 1964 | RDSH |
CH3+ | 13.14 | ? | EI | Lampe and Field, 1959 | RDSH |
C2H3+ | 17.95 | ? | EI | Lampe and Field, 1959 | RDSH |
C2H5+ | 13.81 | ? | EI | Lampe and Field, 1959 | RDSH |
C3H3+ | 17.08 | ? | EI | Lampe and Field, 1959 | RDSH |
C3H5+ | 13.13 | ? | EI | Lampe and Field, 1959 | RDSH |
C4H8+ | 10.39 ± 0.02 | CH4 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H9+ | 10.35 | CH3 | PI | Chesnavich, Su, et al., 1978 | LLK |
C4H9+ | 10.56 | CH3 | EI | Lossing and Semeluk, 1970 | RDSH |
C4H9+ | 10.57 ± 0.02 | CH3 | PI | Steiner, Giese, et al., 1961 | RDSH |
De-protonation reactions
C5H11- + =
By formula: C5H11- + H+ = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1711. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrH° | 1720. ± 42. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1674. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Squalane | 100. | 413. | Heinzen, Soares, et al., 1999 | |
Capillary | Squalane | 50. | 412.5 | Bajus, Veselý, et al., 1979 | Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 60. | 413. | Chretien and Dubois, 1976 | |
Packed | Apolane | 110. | 408.8 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Apolane | 130. | 409.8 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Apolane | 150. | 410.6 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Apolane | 170. | 411.3 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Apolane | 190. | 411.8 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Apolane | 210. | 412.1 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Apolane | 230. | 412.3 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Apolane | 90. | 407.6 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Capillary | Squalane | 50. | 412. | Rijks and Cramers, 1974 | N2; Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 70. | 413. | Rijks and Cramers, 1974 | N2; Column length: 100. m; Column diameter: 0.25 mm |
Packed | Squalane | 27. | 411. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 49. | 413. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 67. | 413. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 86. | 413. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Capillary | Squalane | 30. | 411. | Tourres, 1967 | H2; Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 50. | 412. | Tourres, 1967 | H2; Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 70. | 413. | Tourres, 1967 | H2; Column length: 100. m; Column diameter: 0.25 mm |
Packed | Squalane | 26. | 412. | Zulaïca and Guiochon, 1966 | Column length: 10. m |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH-100 | 415.3 | Haagen-Smit Laboratory, 1997 | He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min) |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 408.4 | Censullo, Jones, et al., 2003 | 50. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Methyl Silicone | 50. | 412. | N/A | N2; Column length: 74.6 m; Column diameter: 0.28 mm |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxane: CP-Sil 5 CB | 414. | Bramston-Cook, 2013 | 60. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min |
Capillary | Petrocol DH | 414. | Supelco, 2012 | 100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min |
Capillary | HP-5 MS | 412. | Zenkevich, Makarov A.A., et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium, 2. K/min, 220. C @ 10. min; Tstart: 50. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 413. | Chen and Feng, 2007 | Program: not specified |
Capillary | Methyl Silicone | 412. | Feng and Mu, 2007 | Program: not specified |
Capillary | OV-101 | 413. | Du and Liang, 2003 | Program: not specified |
Capillary | Polydimethyl siloxane | 413. | Junkes, Castanho, et al., 2003 | Program: not specified |
Capillary | PONA | 415. | Perkin Elmer Instruments, 2002 | Column length: 100. m; Phase thickness: 0.50 μm; Program: not specified |
Capillary | SPB-1 | 409. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | SPB-1 | 409. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Packed | SE-30 | 415. | Robinson and Odell, 1971 | N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold) |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good, 1970
Good, W.D.,
The enthalpies of combustion and formation of the isomeric pentanes,
J. Chem. Thermodyn., 1970, 2, 237-244. [all data]
Pilcher and Chadwick, 1967
Pilcher, G.; Chadwick, J.D.M.,
Measurements of heats of combustion by flame calorimetry. Part 4.-n-Pentane, isopentane, neopentane,
Trans. Faraday Soc., 1967, 63, 2357-2361. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Hossenlopp I.A., 1981
Hossenlopp I.A.,
Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons,
J. Chem. Thermodyn., 1981, 13, 415-421. [all data]
Scott D.W., 1974
Scott D.W.,
Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]
Scott D.W., 1974, 2
Scott D.W.,
Correlation of the chemical thermodynamic properties of alkane hydrocarbons,
J. Chem. Phys., 1974, 60, 3144-3165. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Enokida, Shinoda, et al., 1969
Enokida, H.; Shinoda, T.; Mashiko, Y.,
Thermodynamic properties of neopentane from 4K to the melting point and comparison with spectroscopic data,
Bull. Chem. Soc. Japan, 1969, 42, 84-91. [all data]
Aston and Messerly, 1936
Aston, J.G.; Messerly, G.H.,
Heat capacities and entropies of organic compounds. II. Thermal and vapor pressure data for tetramethylmethane from 13.22°K to the boiling point. The entropy from its Raman spectrum,
J. Am. Chem. Soc., 1936, 58, 2354-2361. [all data]
Enokido, Shinoda, et al., 1969
Enokido, H.; Shinoda, T.; Mashiko, Y.-I.,
Thermodynamic Properties of Neopentane from 4 K to the Melting Point and Comparison with Spectroscopic Data,
Bull. Chem. Soc. Jpn., 1969, 42, 84. [all data]
Streiff, 1964
Streiff, A.J.,
, Am. Pet. Inst. Res. Proj. 58B Unpublished, 1964. [all data]
Aston and Messerly, 1936, 2
Aston, J.G.; Messerly, G.H.,
Heat Capacities and Entropies of Organic Compounds II. Thermal and Vapor Pressure Data for Tetramethylmethane from 13.22K to the Boiling Point. The Entropy from its Raman Spectrum,
J. Am. Chem. Soc., 1936, 58, 2354. [all data]
Daubert, 1996
Daubert, T.E.,
Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes,
J. Chem. Eng. Data, 1996, 41, 365-372. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Dawson, Silberberg, et al., 1973
Dawson, Perry P.; Silberberg, I. Harold; McKetta, John J.,
Volumetric behavior, vapor pressures, and critical properties of neopentane,
J. Chem. Eng. Data, 1973, 18, 1, 7-15, https://doi.org/10.1021/je60056a007
. [all data]
Partington, Rowlinson, et al., 1960
Partington, E.J.; Rowlinson, J.S.; Weston, J.F.,
The Gas-Liquid Critical Temperatures of Binary Mixtures. Part 1.,
Trans. Faraday Soc., 1960, 56, 479. [all data]
Beattie, Douslin, et al., 1951
Beattie, J.A.; Douslin, D.R.; Levine, S.W.,
The vapor pressure and critical constants of neopentane.,
J. Chem. Phys., 1951, 19, 948. [all data]
Hossenlopp and Scott, 1981
Hossenlopp, I.A.; Scott, D.W.,
Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons,
J. Chem. Thermodyn., 1981, 13, 415-421. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Höpfner, Parekh, et al., 2010
Höpfner, A.; Parekh, N.; Hörner, Ch.; Abdel-Hamid, A.,
Der Dampfdruck-Isotopie-Effekt von deuterierten Neopentanen,
Berichte der Bunsengesellschaft für physikalische Chemie, 2010, 79, 2, 216-222, https://doi.org/10.1002/bbpc.19750790217
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Das, Reed, et al., 1977
Das, Tarun R.; Reed, Charles O.; Eubank, Philip T.,
PVT surface and thermodynamic properties of isopentane,
J. Chem. Eng. Data, 1977, 22, 1, 9-15, https://doi.org/10.1021/je60072a015
. [all data]
Hopfner, Parekh, et al., 1975
Hopfner, A.; Parekh, N.; Horner, Ch.; Abdel-Hamid, A.,
Der Dampfdruck-Isotopie-Effekt von deuterierten Neopentanen,
Ber. Bunsen-Ges. Phys. Chem., 1975, 79, 2, 216-222, https://doi.org/10.1002/bbpc.19750790217
. [all data]
Osborn and Douslin, 1974
Osborn, Ann G.; Douslin, Donald R.,
Vapor-pressure relations for 15 hydrocarbons,
J. Chem. Eng. Data, 1974, 19, 2, 114-117, https://doi.org/10.1021/je60061a022
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Chang and Westrum, 1970
Chang, E.T.; Westrum,
E.F., Heat capacities and thermodynamic properties of globular molecules. XV. The binary system tetramethylmethane-tetrachloromethane,
J. Phys. Chem., 1970, 74, 2528-2538. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Akkerman, Schat, et al., 1983
Akkerman, O.S.; Schat, G.; Evers, E.A.I.M.; Bickelhaupt, F.,
Recl. Trav. Chim. Pays-Bas, 1983, 102, 109. [all data]
Jonas, Schweitzer, et al., 1973
Jonas, A.E.; Schweitzer, G.K.; Grimm, F.A.; Carlson, T.A.,
The photoelectron spectra of the tetrafluoro and tetramethyl compounds of the group IV elements,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 29. [all data]
Evans, Green, et al., 1972
Evans, S.; Green, J.C.; Joachim, P.J.; Orchard, A.F.; Turner, D.W.; Maier, J.P.,
Electronic structures of the Group IVB tetramethyls by helium-(I) photoelectron spectroscopy,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 905. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Schmidt and Wilkins, 1972
Schmidt, W.; Wilkins, B.T.,
Das "Equivalent Orbital" (EO)-verfahren zur interpretation von photoelektronen(PE)-spektren: Neopentan,
Angew. Chem., 1972, 84, 168. [all data]
Murrell and Schmidt, 1972
Murrell, J.N.; Schmidt, W.,
Photoelectron spectroscopic correlation of the molecular orbitals of methane, ethane, propane, isobutane and neopentane,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1709. [all data]
Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S.,
Excess-kinetic-energy ions in organic mass spectra,
J. Chem. Phys., 1964, 40, 2114. [all data]
Lampe and Field, 1959
Lampe, F.W.; Field, F.H.,
The decomposition of neopentane under electron impact,
J. Am. Chem. Soc., 1959, 81, 3238. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Chesnavich, Su, et al., 1978
Chesnavich, W.J.; Su, T.; Bowers, M.T.,
Reactions of vibrationally excited ions. A theoretical and experimental analysis of the reaction (C4H9+) + NH3 Ü NH4+ + C4H8,
J. Am. Chem. Soc., 1978, 100, 4362. [all data]
Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P.,
Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals,
Can. J. Chem., 1970, 48, 955. [all data]
Heinzen, Soares, et al., 1999
Heinzen, V.E.F.; Soares, M.F.; Yunes, R.A.,
Semi-empirical topological method for the prediction of the chromatographic retention of cis- and trans-alkene isomers and alkanes,
J. Chromatogr. A, 1999, 849, 2, 495-506, https://doi.org/10.1016/S0021-9673(99)00530-0
. [all data]
Bajus, Veselý, et al., 1979
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A.,
Steam cracking of hydrocarbons. 1. Pyrolysis of heptane,
Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 1, 30-37, https://doi.org/10.1021/i360069a007
. [all data]
Chretien and Dubois, 1976
Chretien, J.R.; Dubois, J.-E.,
New Perspectives in the Prediction of Kovats Indices,
J. Chromatogr., 1976, 126, 171-189, https://doi.org/10.1016/S0021-9673(01)84071-1
. [all data]
Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz.,
A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography,
J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2
. [all data]
Rijks and Cramers, 1974
Rijks, J.A.; Cramers, C.A.,
High precision capillary gas chromatography of hydrocarbons,
Chromatographia, 1974, 7, 3, 99-106, https://doi.org/10.1007/BF02269819
. [all data]
Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E.,
Variation of the retention index with temperature on squalane substrates,
J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203
. [all data]
Tourres, 1967
Tourres, D.A.,
Structure moléculaire et rétention en chromatographie en phase gazeuse. Influence de la température sur l'indice de rétention d'alcanes isomères,
J. Chromatogr., 1967, 30, 357-377, https://doi.org/10.1016/S0021-9673(00)84168-0
. [all data]
Zulaïca and Guiochon, 1966
Zulaïca, J.; Guiochon, G.,
Analyse des hauts polymères par chromatographie en phase gazeuse de leurs produits de pyrolyse. II. Application à quelques hydrocarbures macromoléculaires purs,
Bull. Soc. Chim. Fr., 1966, 4, 1351-1363. [all data]
Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory,
Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]
Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T.,
Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography,
J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922
. [all data]
Bramston-Cook, 2013
Bramston-Cook, R.,
Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]
Supelco, 2012
Supelco, CatalogNo. 24160-U,
Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]
Zenkevich, Makarov A.A., et al., 2009
Zenkevich, I.G.; Makarov A.A.; Schrader, S.; Moeder, M.,
A new version of an additive scheme for the prediction of gas chromatographic retention indices of the 211 structural isomers of 4-nonylphenol,
J. Chromatogr. A, 2009, 1216, 18, 4097-4106, https://doi.org/10.1016/j.chroma.2009.03.021
. [all data]
Chen and Feng, 2007
Chen, Y.; Feng, C.,
QSPR study on gas chromatography retention index of some organic pollutants,
Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]
Feng and Mu, 2007
Feng, H.; Mu, L.-L.,
Quantitative structure-retention relationships for alkane and its derivatives based on electrotopological state index and molecular shape index,
Chem. Ind. Engineering (Chinese), 2007, 24, 2, 161-168. [all data]
Du and Liang, 2003
Du, Y.; Liang, Y.,
Data mining for seeking accurate quantitative relationship between molecular structure and GC retention indices of alkanes by projection pursuit,
Comput. Biol. Chem., 2003, 27, 3, 339-353, https://doi.org/10.1016/S1476-9271(02)00081-6
. [all data]
Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F.,
Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies,
Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]
Perkin Elmer Instruments, 2002
Perkin Elmer Instruments,
Detailed hydrocarbon analysis (DHAX) Model 4015, 2002, retrieved from http://www.perkinelmer.com/instruments. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L.,
A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices,
J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.