Cyclohexanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-290. ± 8.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
gas353.83J/mol*KN/AKabo G.J., 1988Other entropy value at 298.15 K obtained from calorimetric data is 327.69 J/mol*K [ Stull D.R., 1969].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
132.70298.15Kabo G.J., 1988Statistically calculated S(T) and Cp(T) values given in [ Thermodynamics Research Center, 1997] are 1-10 and 5-10 J/mol*K, respectively, lower than those of [ Kabo G.J., 1988].; GT
133.53300.
176.60400.
216.42500.
250.18600.
278.37700.
301.73800.
320.77900.
337.321000.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-352.0 ± 0.67kJ/molCacWiberg, Wasserman, et al., 1985Trifluoroacetolysis; ALS
Δfliquid-350. ± 2.kJ/molCcbRabinovoch, Tel'noy, et al., 1962ALS
Δfliquid-347.4 ± 2.2kJ/molCcbSellers and Sunner, 1962Reanalyzed by Cox and Pilcher, 1970, Original value = -348.2 kJ/mol; ALS
Δfliquid-349.2 ± 0.2kJ/molCcbParks, Mosley, et al., 1950ALS
Δfliquid-359.2kJ/molCcbKelley, 1929ALS
Quantity Value Units Method Reference Comment
Δcliquid-3730. ± 20.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
liquid203.87J/mol*KN/AAdachi, Suga, et al., 1968DH
liquid199.6J/mol*KN/AKelley, 1929Average of values derived from measurements on both low and high temperature crystal forms down to 13 K, plus entropy of transition and fusion. Debye extrapolation below 13.5 K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
214.06298.15Mayer, Rachwalska, et al., 1990T = 170 to 320 K. Cp(liq) = -2223.2606 + 22.0059595T - 0.0691686793T2 + 0.0000763592T3 J/mol*K (298 to 320 K). Cp value caluculated from equation.; DH
209.99298.15Caceres-Alonso, Costas, et al., 1988DH
220.1298.Conti, Gianni, et al., 1976DH
212.297.95Petit and TerMinassian, 1974T = 297 to 428 K. Value is unsmoothed experimental datum.; DH
213.59300.Adachi, Suga, et al., 1968T = 14 to 320 K.; DH
202.5305.1Phillip, 1939DH
209.03298.15Kelley, 1929T = 13 to 300 K. Value is unsmoothed experimental datum.; DH
174.9290.Herz and Bloch, 1924DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil433. ± 3.KAVGN/AAverage of 20 out of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus296. ± 5.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple299.09KN/AAdachi, Suga, et al., 1968, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple297.0KN/AKelley, 1929, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc645. ± 20.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Pc40.80barN/ASteele, Chirico, et al., 1997Uncertainty assigned by TRC = 1.50 bar; derived from fit of obs. vapor pressure; TRC
Pc44.01barN/AWilson, Wilson, et al., 1996Uncertainty assigned by TRC = 0.25 bar; TRC
Pc42.6 ± 0.5barN/AGude and Teja, 1995 
Pc42.60barN/AAmbrose and Ghiassee, 1987Uncertainty assigned by TRC = 0.50 bar; TRC
Pc37.4902barN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 1.5199 bar; TRC
Quantity Value Units Method Reference Comment
ρc3.00mol/lN/ASteele, Chirico, et al., 1997Uncertainty assigned by TRC = 0.10 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap62. ± 1.kJ/molAVGN/AAverage of 10 out of 11 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
60.1337.N/ASteyer and Sundmacher, 2004Based on data from 322. to 433. K.; AC
49.8405.N/ASwiatek and Malanowski, 2002Based on data from 390. to 430. K.; AC
61.2 ± 0.6308.GSVerevkin, 1998Based on data from 288. to 328. K.; AC
55.0365.EBAmbrose and Ghiassee, 1987, 2Based on data from 350. to 456. K.; AC
59.9333.AStephenson and Malanowski, 1987Based on data from 318. to 434. K.; AC
62.7315.AStephenson and Malanowski, 1987Based on data from 300. to 434. K.; AC
49.3418.N/ACastellari, Francesconi, et al., 1984Based on data from 404. to 432. K.; AC
58.4318.N/ASipowska and Wieczorek, 1984Based on data from 303. to 373. K.; AC
60.4309.N/ACabani, Conti, et al., 1975Based on data from 299. to 319. K.; AC
52.6382.N/ANovák, Matous, et al., 1960Based on data from 367. to 433. K. See also Novák, Matous, et al., 1960, 2.; AC
54.8322.N/AThomson, 1946Based on data from 307. to 422. K.; AC
45.44431.7VMathews and Fehlandt, 1931ALS

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
366.88 to 433.93.08077777.363-182.037Novak, Matous, et al., 1960Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
60.7285.AStephenson and Malanowski, 1987Based on data from 272. to 298. K. See also Nitta and Seki, 1948.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
1.73298.2DSCSingh and Murthy, 2009AC
1.7297.N/APingel, Poser, et al., 1984See also Adachi, Suga, et al., 1968 and Domalski and Hearing, 1996.; AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
31.14263.5Domalski and Hearing, 1996CAL
5.72297.

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.3784220.9crystaline, IIIcrystaline, IIMayer, Rachwalska, et al., 1990DH
8.620244.5crystaline, IIIcrystaline, IMayer, Rachwalska, et al., 1990DH
8.662264.86crystaline, IIcrystaline, IMayer, Rachwalska, et al., 1990DH
1.806297.92crystaline, IliquidMayer, Rachwalska, et al., 1990DH
8.640244.8crystaline, IIIcrystaline, IAdachi, Suga, et al., 1968DH
8.827265.50crystaline, IIcrystaline, IAdachi, Suga, et al., 1968DH
1.783299.09crystaline, IliquidAdachi, Suga, et al., 1968DH
8.205263.5crystaline, IIcrystaline, IKelley, 1929Excess enthalpy over extrapolated heat capacity curves.; DH
1.699297.0crystaline, IliquidKelley, 1929Tm is 23.87°C from 16RIC/SHI.; DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
1.713220.9crystaline, IIIcrystaline, IIMayer, Rachwalska, et al., 1990DH
35.3244.5crystaline, IIIcrystaline, IMayer, Rachwalska, et al., 1990DH
32.70264.86crystaline, IIcrystaline, IMayer, Rachwalska, et al., 1990DH
6.06297.92crystaline, IliquidMayer, Rachwalska, et al., 1990DH
35.29244.8crystaline, IIIcrystaline, IAdachi, Suga, et al., 1968DH
33.25265.50crystaline, IIcrystaline, IAdachi, Suga, et al., 1968DH
5.96299.09crystaline, IliquidAdachi, Suga, et al., 1968DH
31.14263.5crystaline, IIcrystaline, IKelley, 1929Excess; DH
5.72297.0crystaline, IliquidKelley, 1929Tm; DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cyclohexanone + Hydrogen = Cyclohexanol

By formula: C6H10O + H2 = C6H12O

Quantity Value Units Method Reference Comment
Δr-75.86 ± 0.50kJ/molCmWiberg, Crocker, et al., 1991liquid phase
Δr-63.51 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -64.5 ± 0.3 kJ/mol; At 355 K

Cyclohexanol + Acetic acid, trifluoro-, anhydride = Acetic acid, trifluoro-, cyclohexyl ester + Trifluoroacetic acid

By formula: C6H12O + C4F6O3 = C8H11F3O2 + C2HF3O2

Quantity Value Units Method Reference Comment
Δr-90.06 ± 0.15kJ/molCacWiberg, Wasserman, et al., 1985liquid phase; Trifluoroacetolysis

Cyclohexanol = Cyclohexanone + Hydrogen

By formula: C6H12O = C6H10O + H2

Quantity Value Units Method Reference Comment
Δr63.4 ± 2.3kJ/molEqkKabo, Yursha, et al., 1988gas phase; Dehydrogenation

Cyclohexanol + Acetone = Cyclohexanone + Isopropyl Alcohol

By formula: C6H12O + C3H6O = C6H10O + C3H8O

Quantity Value Units Method Reference Comment
Δr9.9 ± 1.9kJ/molEqkFedoseenko, Yursha, et al., 1983gas phase; At 503 K

Cyclohexanol = Cyclohexane + Hydrogen

By formula: C6H12O = C6H12 + H2

Quantity Value Units Method Reference Comment
Δr63.4 ± 2.3kJ/molEqkFedoseenko, Yursha, et al., 1983gas phase; At 502 K

Cyclohexanone + Cyclopentanol = Cyclohexanol + Cyclopentanone

By formula: C6H10O + C5H10O = C6H12O + C5H8O

Quantity Value Units Method Reference Comment
Δr-11.6 ± 1.7kJ/molEqkFedoseenko, Yursha, et al., 1984gas phase

Cyclohexanone + Isopropyl Alcohol = Cyclohexanol + Acetone

By formula: C6H10O + C3H8O = C6H12O + C3H6O

Quantity Value Units Method Reference Comment
Δr-9.9 ± 1.9kJ/molEqkKabo, Yursha, et al., 1988gas phase

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
170. VN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Ionization energy determinations

IE (eV) Method Reference Comment
9.75EIRabbih and Selim, 1983LBLHLM
10.0 ± 0.2EIDerrick, Holmes, et al., 1975LLK
10.0EIWard and Williams, 1969RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H5O+11.5?EIWard and Williams, 1969RDSH
C5H7+10.9CH3+H2OEIWard and Williams, 1969RDSH
C6H10+10.4 ± 0.05H2OEIGreen, Bafus, et al., 1975LLK
C6H10+10.2 ± 0.2H2OEIDerrick, Holmes, et al., 1975LLK
C6H10+9.47H2OEILewis and Hamill, 1970RDSH
C6H10+10.4 ± 0.05H2OEIGreen, 1980Vertical value; LLK

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 291439

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Kabo G.J., 1988
Kabo G.J., Thermodynamic properties of cyclohexanol and cyclohexanone, J. Chem. Thermodyn., 1988, 20, 429-437. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Wiberg, Wasserman, et al., 1985
Wiberg, K.B.; Wasserman, D.J.; Martin, E.J.; Murcko, M.A., Enthalpies of hydration of alkenes. 3. Cycloalkenes, J. Am. Chem. Soc., 1985, 107, 6019-6022. [all data]

Rabinovoch, Tel'noy, et al., 1962
Rabinovoch, N.B.; Tel'noy, V.I.; Terman, L.M.; Kirillova, A.S.; Razuvaev, G.A., The heats of decomposition and formation of dicyclohexyl- and dimethylperoxidecarbonate, Dokl. Akad. Nauk SSSR, 1962, 143, 133-136. [all data]

Sellers and Sunner, 1962
Sellers, P.; Sunner, S., Heats of combustion of cyclic ketones and alcohols, Acta Chem. Scand., 1962, 16, 46-52. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Parks, Mosley, et al., 1950
Parks, G.S.; Mosley, J.R.; Peterson, P.V., Jr., Heats of combustion and formation of some organic compounds containing oxygen, J. Chem. Phys., 1950, 18, 152. [all data]

Kelley, 1929
Kelley, K.K., Cyclohexanol and the third law of thermodynamics, J. Am. Chem. Soc., 1929, 51, 1400-1406. [all data]

Adachi, Suga, et al., 1968
Adachi, K.; Suga, H.; Seki, S., Phase changes in crystalline and glassy-crystalline cyclohexanol, Bull. Chem. Soc. Japan, 1968, 41, 1073-1087. [all data]

Mayer, Rachwalska, et al., 1990
Mayer, J.; Rachwalska, M.; Sciesinska, E.; Sciesinski, J., On the polymorphism of solid cyclohexanol by adiabatic calorimetry and far infrared methods, J. Phys.(Paris), 1990, 51(9), 857-867. [all data]

Caceres-Alonso, Costas, et al., 1988
Caceres-Alonso, M.; Costas, M.; Andreoli-Ball, L.; Patterson, D., Steric effects on the self-association of branched and cyclic alcohols in inert solvents. Apparent heat capacities of secondary and tertiary alcohols in hydrocarbons, Can. J. Chem., 1988, 66, 989-998. [all data]

Conti, Gianni, et al., 1976
Conti, G.; Gianni, P.; Matteoli, E.; Mengheri, M., Capacita termiche molari di alcuni composti organici mono- e bifunzionali nel liquido puro e in soluzione acquosa a 25C, Chim. Ind. (Milan), 1976, 58, 225. [all data]

Petit and TerMinassian, 1974
Petit, J.C.; TerMinassian, L., Measurements of (dV/dT)p, (dV/dP)T, and (dH/dT)p by flux calorimetry, J. Chem. Thermodynam., 1974, 6, 1139-1152. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Herz and Bloch, 1924
Herz, W.; Bloch, W., Physikalisch-chemische Untersuchungen an Verbindungen der Cyklohexanreihe, Z. Phys. Chem., 1924, 110, 23-39. [all data]

Adachi, Suga, et al., 1968, 2
Adachi, K.; Suga, H.; Seki, S., Phase Changes in Crystalline and Glassy-Crystalline Cyclohexanol, Bull. Chem. Soc. Japan, 1968, 41, 5, 1073, https://doi.org/10.1246/bcsj.41.1073 . [all data]

Kelley, 1929, 2
Kelley, K.K., Cyclohexanol and the third law of thermodynamics, J. Am. Chem. Soc., 1929, 51, 1400-6. [all data]

Steele, Chirico, et al., 1997
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A., Vapor Pressure, Heat Capacity, and Density along the Saturted Line, Measurements for Cyclohexanol, 2-Cyclohexen-1-one, 1,2-Dichloropropane, 1,4-Di-tert-butylbenzene, (±)-2-Ethylhexanoic Acid, 1-(m, J. Chem. Eng. Data, 1997, 42, 1021-36. [all data]

Wilson, Wilson, et al., 1996
Wilson, L.C.; Wilson, H.L.; Wilding, W.V.; Wilson, G.M., Critical Point Measurements for Fourteen Compounds by a Static Method and a Flow Method, J. Chem. Eng. Data, 1996, 41, 1252-4. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Ambrose and Ghiassee, 1987
Ambrose, D.; Ghiassee, N.B., Vapor Pressures and Critical Temperatures and Critical Pressures of C5 and C6 Cyclic Alcohols and Ketones, J. Chem. Thermodyn., 1987, 19, 903. [all data]

Glaser and Ruland, 1957
Glaser, F.; Ruland, H., Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen, Chem. Ing. Techn., 1957, 29, 772. [all data]

Steyer and Sundmacher, 2004
Steyer, Frank; Sundmacher, Kai, VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol, J. Chem. Eng. Data, 2004, 49, 6, 1675-1681, https://doi.org/10.1021/je049902w . [all data]

Swiatek and Malanowski, 2002
Swiatek, Barbara E.; Malanowski, Stanislaw K., Vapor-Liquid Equilibrium in m -Xylene + Cyclohexanol at 19.99 and 94.93 kPa, J. Chem. Eng. Data, 2002, 47, 3, 478-481, https://doi.org/10.1021/je010246z . [all data]

Verevkin, 1998
Verevkin, Sergey P., Thermochemistry of phenols: experimental standard molar enthalpies of formation of 2-phenylphenol, 4-phenylphenol, 2,6-diphenylphenol, and 2,2´- and 4,4´-dihydroxybiphenyl, The Journal of Chemical Thermodynamics, 1998, 30, 3, 389-396, https://doi.org/10.1006/jcht.1997.0316 . [all data]

Ambrose and Ghiassee, 1987, 2
Ambrose, D.; Ghiassee, N.B., Vapour pressures and critical temperatures and critical pressures of C5 and C6 cyclic alcohols and ketones, The Journal of Chemical Thermodynamics, 1987, 19, 9, 903-909, https://doi.org/10.1016/0021-9614(87)90036-X . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Castellari, Francesconi, et al., 1984
Castellari, Carlo; Francesconi, Romolo; Comelli, Fabio, Vapor-liquid equilibriums in binary systems containing 1,3-dioxolane at isobaric conditions. 5. Binary mixtures of 1,3-dioxolane with cyclohexanone and cyclohexanol, J. Chem. Eng. Data, 1984, 29, 1, 90-93, https://doi.org/10.1021/je00035a029 . [all data]

Sipowska and Wieczorek, 1984
Sipowska, Jadwiga T.; Wieczorek, Stefan A., Vapour pressures and excess Gibbs free energies of (cyclohexanol + n-heptane) between 303.147 and 373.278 K, The Journal of Chemical Thermodynamics, 1984, 16, 7, 693-699, https://doi.org/10.1016/0021-9614(84)90051-X . [all data]

Cabani, Conti, et al., 1975
Cabani, Sergio; Conti, G.; Mollica, V.; Lepori, L., Thermodynamic study of dilute aqueous solutions of organic compounds. Part 4.---Cyclic and straight chain secondary alcohols, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 0, 1943, https://doi.org/10.1039/f19757101943 . [all data]

Novák, Matous, et al., 1960
Novák, J.; Matous, J.; Pick, J., Gleichgewicht flüssigkeit-dampf XXIV. Gleichgewicht flüssigkeit-dampf im system cyclohexylamin-cyclohexanol-anilin, Collect. Czech. Chem. Commun., 1960, 25, 9, 2405-2413, https://doi.org/10.1135/cccc19602405 . [all data]

Novák, Matous, et al., 1960, 2
Novák, J.; Matous, J.; Pick, J., Dampfdruck des cyclohexanols und des cyclohexylamins, Collect. Czech. Chem. Commun., 1960, 25, 2, 583-585, https://doi.org/10.1135/cccc19600583 . [all data]

Thomson, 1946
Thomson, George Wm., The Antoine Equation for Vapor-pressure Data., Chem. Rev., 1946, 38, 1, 1-39, https://doi.org/10.1021/cr60119a001 . [all data]

Mathews and Fehlandt, 1931
Mathews, J.H.; Fehlandt, P.R., The heats of vaporization of some organic compounds, J. Am. Chem. Soc., 1931, 53, 3212-32. [all data]

Novak, Matous, et al., 1960
Novak, J.; Matous, J.; Pick, J., Dampfdruck des Cyclohexanols und des Cyclohexylamins, Collect. Czech. Chem. Commun., 1960, 25, 2, 583-584, https://doi.org/10.1135/cccc19600583 . [all data]

Nitta and Seki, 1948
Nitta, I.; Seki, S., J. Chem. Soc. Jpn. Pure Chem. Sect., 1948, 69, 141. [all data]

Singh and Murthy, 2009
Singh, Lokendra P.; Murthy, S.S.N., Dielectric and calorimetric investigation of an unusual two-component plastic crystal: cyclohexanol-neopentylglycol, Phys. Chem. Chem. Phys., 2009, 11, 25, 5110, https://doi.org/10.1039/b817964f . [all data]

Pingel, Poser, et al., 1984
Pingel, Norbert; Poser, Uwe; Würflinger, Albert, Dielectric measurements at high pressures and low temperatures. Part 6.---Dielectric and thermodynamic properties of cyclohexanol, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 11, 3221, https://doi.org/10.1039/f19848003221 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Kabo, Yursha, et al., 1988
Kabo, G.J.; Yursha, I.A.; Frenkel, M.L.; Poleshchuk, P.A.; Fedoseenko, V.I.; Ladutko, A.I., Thermodynamic properties of cyclohexanol and cyclohexanone, J. Chem. Thermodyn., 1988, 20, 429-437. [all data]

Fedoseenko, Yursha, et al., 1983
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya., Equilibrium and thermodynamics of cyclohexanol dehydrogenation reactions, Dokl. Akad. Nauk BSSR, 1983, 27, 926-929. [all data]

Fedoseenko, Yursha, et al., 1984
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya., Equilibrium of cyclopentanol dehydrogenation and hydrogen disproportionation in the cyclopentanol-cyclohexanone system, Dokl. Akad. Nauk BSSR, 1984, 28, 1109-1112. [all data]

Rabbih and Selim, 1983
Rabbih, M.A.; Selim, E.T.M., A Mass spectrometric appearance energies study of cyclohexanol, Egypt. J. Phys., 1983, 14, 243. [all data]

Derrick, Holmes, et al., 1975
Derrick, P.J.; Holmes, J.L.; Morgan, R.P., Kinetics and mechanisms of the loss of water from the cyclohexanol radical ion at times from 50 picoseconds to 10 microseconds following field ionization, J. Am. Chem. Soc., 1975, 97, 4936. [all data]

Ward and Williams, 1969
Ward, R.S.; Williams, D.H., A study of water elimination as a function of ion lifetime in the mass spectrum of cyclohexanol, J. Organometal. Chem., 1969, 34, 3373. [all data]

Green, Bafus, et al., 1975
Green, M.M.; Bafus, D.; Franklin, J.L., Short communication; Combined deuterium labeling and appearance potential measurements to uncover competing reaction mechanisms in the electron- impact-induced loss of water from cyclohexanol, Org. Mass Spectrom., 1975, 10, 679. [all data]

Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H., Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer, J. Chem. Phys., 1970, 52, 6348. [all data]

Green, 1980
Green, M.M., A stereochemical bridge between mass spectrometry and free radical chemistry, Tetrahedron, 1980, 36, 2687. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References