Ethanol
- Formula: C2H6O
- Molecular weight: 46.0684
- IUPAC Standard InChIKey: LFQSCWFLJHTTHZ-UHFFFAOYSA-N
- CAS Registry Number: 64-17-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ethyl alcohol; Alcohol; Alcohol anhydrous; Algrain; Anhydrol; Denatured ethanol; Ethyl hydrate; Ethyl hydroxide; Jaysol; Jaysol S; Methylcarbinol; SD Alchol 23-hydrogen; Tecsol; C2H5OH; Absolute ethanol; Cologne spirit; Fermentation alcohol; Grain alcohol; Molasses alcohol; Potato alcohol; Aethanol; Aethylalkohol; Alcohol, dehydrated; Alcool ethylique; Alcool etilico; Alkohol; Cologne spirits; Denatured alcohol CD-10; Denatured alcohol CD-5; Denatured alcohol CD-5a; Denatured alcohol SD-1; Denatured alcohol SD-13a; Denatured alcohol SD-17; Denatured alcohol SD-23a; Denatured alcohol SD-28; Denatured alcohol SD-3a; Denatured alcohol SD-30; Denatured alcohol SD-39b; Denatured alcohol SD-39c; Denatured alcohol SD-40m; Etanolo; Ethanol 200 proof; Ethyl alc; Etylowy alkohol; EtOH; NCI-C03134; Spirits of wine; Spirt; Alkoholu etylowego; Ethyl alcohol anhydrous; SD alcohol 23-hydrogen; UN 1170; Tecsol C; Alcare Hand Degermer; Absolute alcohol; Denatured alcohol; Ethanol, silent spirit; Ethylol; Punctilious ethyl alcohol; SD 3A
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 51 to 77
- Henry's Law data
- Ion clustering data
- IR Spectrum
- Mass spectrum (electron ionization)
- Gas Chromatography
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -234. ± 2. | kJ/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -1366.3 ± 0.4 | kJ/mol | Cm | Rossini, 1932 | Flame Calorimetry; Corresponding ΔfHºgas = -278.20 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
37.12 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended entropies and heat capacities are in close agreement with other statistically calculated values [ Zhuravlev E.Z., 1959, Chermin H.A.G., 1961, Green J.H.S., 1961, Green J.H.S., 1961, 2, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT |
41.70 | 100. | ||
46.94 | 150. | ||
52.02 | 200. | ||
61.46 | 273.15 | ||
65.21 ± 0.14 | 298.15 | ||
65.49 | 300. | ||
81.22 | 400. | ||
95.78 | 500. | ||
108.24 | 600. | ||
118.83 | 700. | ||
127.92 | 800. | ||
135.81 | 900. | ||
142.68 | 1000. | ||
148.68 | 1100. | ||
153.92 | 1200. | ||
158.49 | 1300. | ||
162.50 | 1400. | ||
166.01 | 1500. | ||
173.0 | 1750. | ||
178.2 | 2000. | ||
182.0 | 2250. | ||
184.9 | 2500. | ||
187. | 2750. | ||
189. | 3000. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
51.38 ± 0.50 | 200. | Stromsoe E., 1970 | Experimental data [ Bennewitz K., 1938, Eucken A., 1948, Barrow G.M., 1952, Sinke G.C., 1953, Halford J.O., 1957] are collected in ref. [ Green J.H.S., 1961]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.09 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Green J.H.S., 1961, Counsell J.F., 1970.; GT |
62.30 ± 0.54 | 279. | ||
62.09 ± 0.42 | 280. | ||
73.15 | 350.01 | ||
75.7 ± 1.1 | 356.55 | ||
74.57 | 360.00 | ||
76.4 ± 1.1 | 361.75 | ||
75.52 | 367.9 | ||
76.00 | 370.01 | ||
77.7 ± 1.1 | 371.85 | ||
77.46 | 380.00 | ||
79.8 ± 1.1 | 387.25 | ||
80.0 ± 1.1 | 388.85 | ||
80.40 | 400.08 | ||
82.01 | 410.16 | ||
83.39 | 422. | ||
84.10 | 425.09 | ||
85.9 ± 1.1 | 433.25 | ||
87.99 | 437. | ||
87.3 ± 1.1 | 443.35 | ||
87.65 | 450.08 | ||
91.11 | 475.12 | ||
91.21 | 476. | ||
92.2 ± 1.1 | 480.45 | ||
99.4 ± 1.1 | 534.35 | ||
101.3 ± 1.1 | 548.75 | ||
104.5 ± 1.1 | 572.25 | ||
107.0 ± 1.1 | 591.25 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -276. ± 2. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1367.6 ± 0.3 | kJ/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -276.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1367.0 ± 0.42 | kJ/mol | Ccb | Green, 1960 | Corresponding ΔfHºliquid = -277.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1370.9 | kJ/mol | Ccb | Parks, 1925 | Corresponding ΔfHºliquid = -273.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1368.34 | kJ/mol | Ccb | Richards and Davis, 1920 | At 291 K; Corresponding ΔfHºliquid = -276.17 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1368.6 | kJ/mol | Ccb | Emery and Benedict, 1911 | Corresponding ΔfHºliquid = -275.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 159.86 | J/mol*K | N/A | Haida, Suga, et al., 1977 | DH |
S°liquid | 161.21 | J/mol*K | N/A | Green J.H.S., 1961 | DH |
S°liquid | 160.7 | J/mol*K | N/A | Kelley, 1929 | DH |
S°liquid | 177.0 | J/mol*K | N/A | Parks, 1925 | Extrapolation below 90 K, 55.19 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
112.4 | 298.15 | Petrov, Peshekhodov, et al., 1989 | T = 258.15, 278.15, 298.15, 318.15 K.; DH |
111.53 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
112.36 | 298.15 | Ogawa and Murakami, 1986 | DH |
112.68 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
110.51 | 298.15 | Ogawa and Murakami, 1985 | DH |
115.9 | 298.15 | Stephens and Olson, 1984 | T = 266 to 318 K. Cp given as 0.6011 cal/g*K.; DH |
112.67 | 298.15 | Zegers and Somsen, 1984 | DH |
108.07 | 288.15 | Benson and D'Arcy, 1982 | DH |
113.75 | 298.15 | Villamanan, Casanova, et al., 1982 | DH |
112.15 | 298.15 | Brown and Ziegler, 1979 | T = 159 to 306 K. Results as equation only.; DH |
112.30 | 298.15 | Vesely, Zabransky, et al., 1979 | DH |
112.5 | 298.15 | Haida, Suga, et al., 1977 | T = 14 to 300 K. Also glass, supercooled liquid, metastable crystal.; DH |
112.30 | 298.15 | Vesely, Svoboda, et al., 1977 | T = 298 to 318 K.; DH |
112.33 | 298.15 | Fortier, Benson, et al., 1976 | DH |
112.094 | 298.15 | Fortier and Benson, 1976 | DH |
111.81 | 298.15 | Pedersen, Kay, et al., 1975 | T = 298 to 348 K. Cp(liq) = 98.39 + 0.5368(T/K-273.25) J/mol*K (298 to 348 K).; DH |
118.4 | 313.2 | Paz Andrade, Paz, et al., 1970 | DH |
97.53 | 250. | Nikolaev, Rabinovich, et al., 1967 | T = 80 to 250 K.; DH |
112.056 | 297.359 | Hwa and Ziegler, 1966 | T = 165 to 304 K. Unsmoothed experimental datum.; DH |
112.26 | 298. | Rabinovich and Nikolaev, 1962 | T = 15 to 55°C.; DH |
111.96 | 298.15 | Green J.H.S., 1961 | T = 16 to 350 K.; DH |
118.8 | 316. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 21 to 66°C.; DH |
114.7 | 297.8 | Mazur, 1940 | T = 174 to 298 K. Unsmoothed experimental datum. Cp(liq) = 0.5437 + 0.001858t + 0.0000098t2 cal/g*K. Cp(298.15 K) = 114.9 J/mol*K, calculated from equation.; DH |
111.7 | 298. | Bykov, 1939 | DH |
103.3 | 298. | Ernst, Watkins, et al., 1936 | DH |
118.72 | 313.15 | Fiock, Ginnings, et al., 1931 | T = 40 to 110°C.; DH |
109.87 | 294.31 | Kelley, 1929 | T = 16 to 298 K. Value is unsmoothed experimental datum.; DH |
106.3 | 270. | Mitsukuri and Hara, 1929 | T = 190 to 270 K.; DH |
160.7 | 298.1 | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 38.9 J/mol*K. Revision of previous data.; DH |
113.4 | 298.0 | Parks, 1925 | T = 87 to 298 K. Value is unsmoothed experimental datum.; DH |
115.1 | 303. | Willams and Daniels, 1924 | T = 303 to 333 K. Equation only.; DH |
102.4 | 271.4 | Gibson, Parks, et al., 1920 | T = 85 to 271.4 K. Unsmoothed experimental datum. Data also given for the glassy state from 85.9 to 96.3 K.; DH |
112.1 | 298. | von Reis, 1881 | T = 288 to 346 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 351.5 ± 0.2 | K | AVG | N/A | Average of 138 out of 148 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 159. ± 2. | K | AVG | N/A | Average of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 150. ± 20. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 514. ± 7. | K | AVG | N/A | Average of 37 out of 38 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 63. ± 4. | bar | AVG | N/A | Average of 18 out of 19 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.168 | l/mol | N/A | Gude and Teja, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 6.0 ± 0.2 | mol/l | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 42.3 ± 0.4 | kJ/mol | AVG | N/A | Average of 12 out of 13 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
38.56 | 351.5 | N/A | Majer and Svoboda, 1985 | |
41.7 | 326. | N/A | Mejia, Segura, et al., 2010 | Based on data from 311. to 351. K.; AC |
39.3 | 338. | N/A | Aucejo, Loras, et al., 1999 | Based on data from 323. to 357. K.; AC |
40.7 | 321. | EB | Diogo, Santos, et al., 1995 | Based on data from 309. to 343. K.; AC |
40.5 | 357. | N/A | Ortega, Susial, et al., 1990 | Based on data from 342. to 357. K.; AC |
35.2 | 393. | C | Vine and Wormald, 1989 | AC |
30.6 | 423. | C | Vine and Wormald, 1989 | AC |
25.7 | 453. | C | Vine and Wormald, 1989 | AC |
21.8 | 473. | C | Vine and Wormald, 1989 | AC |
17.3 | 493. | C | Vine and Wormald, 1989 | AC |
14.2 | 503. | C | Vine and Wormald, 1989 | AC |
40.9 | 320. | C | Dong, Lin, et al., 1988 | AC |
40.4 | 328. | C | Dong, Lin, et al., 1988 | AC |
40.2 | 335. | C | Dong, Lin, et al., 1988 | AC |
39.4 | 344. | C | Dong, Lin, et al., 1988 | AC |
38.8 | 351. | C | Dong, Lin, et al., 1988 | AC |
41.3 | 335. | A | Stephenson and Malanowski, 1987 | Based on data from 320. to 359. K.; AC |
45.6 | 256. | A | Stephenson and Malanowski, 1987 | Based on data from 210. to 271. K.; AC |
44. | 208. | A | Stephenson and Malanowski, 1987 | Based on data from 193. to 223. K.; AC |
41.3 | 335. | A | Stephenson and Malanowski, 1987 | Based on data from 320. to 359. K.; AC |
40.1 | 361. | A | Stephenson and Malanowski, 1987 | Based on data from 349. to 374. K.; AC |
39.1 | 385. | A | Stephenson and Malanowski, 1987 | Based on data from 370. to 464. K.; AC |
36.1 | 474. | A | Stephenson and Malanowski, 1987 | Based on data from 459. to 514. K.; AC |
42.5 | 307. | A | Stephenson and Malanowski, 1987 | Based on data from 292. to 353. K.; AC |
42.5 | 308. | A,EB | Stephenson and Malanowski, 1987 | Based on data from 293. to 366. K. See also Ambrose, Counsell, et al., 1970.; AC |
42.9 | 286. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 271. to 373. K.; AC |
41.0 ± 0.1 | 320. | C | Counsell, Fenwick, et al., 1970 | AC |
40.0 ± 0.1 | 335. | C | Counsell, Fenwick, et al., 1970 | AC |
38.7 ± 0.1 | 351. | C | Counsell, Fenwick, et al., 1970 | AC |
42.4 | 303. | N/A | Van Ness, Soczek, et al., 1967 | Based on data from 288. to 348. K.; AC |
42.2 | 313. | N/A | Kretschmer and Wiebe, 1949 | Based on data from 298. to 351. K.; AC |
40.0 | 351. | N/A | Oguri, Anjo, et al., 1934 | AC |
54.1 | 301. | N/A | Kahlbaum, 1883 | Based on data from 286. to 351. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 469. |
---|---|
A (kJ/mol) | 50.43 |
α | -0.4475 |
β | 0.4989 |
Tc (K) | 513.9 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
364.8 to 513.91 | 4.92531 | 1432.526 | -61.819 | Ambrose, Sprake, et al., 1975 | Coefficents calculated by NIST from author's data. |
292.77 to 366.63 | 5.24677 | 1598.673 | -46.424 | Ambrose and Sprake, 1970 | Coefficents calculated by NIST from author's data. |
273. to 351.70 | 5.37229 | 1670.409 | -40.191 | Kretschmer and Wiebe, 1949 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
4.973 | 159. | Yoshida, 1944 | DH |
5.021 | 158.5 | Kelley, 1929 | DH |
4.626 | 156.2 | Gibson, Parks, et al., 1920 | DH |
4.64 | 158.8 | Domalski and Hearing, 1996 | AC |
4.962 | 158.7 | Parks, 1925 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
31.3 | 159. | Yoshida, 1944 | DH |
31.68 | 158.5 | Kelley, 1929 | DH |
21.22 | 158.7 | Parks, 1925 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
28.16 | 111.4 | Domalski and Hearing, 1996 | CAL |
29.25 | 158.8 | ||
5.2 | 127.5 | ||
31.0 | 159. |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.659 | 127.5 | crystaline, II | liquid | Haida, Suga, et al., 1977 | DH |
4.931 | 159.00 | crystaline, I | liquid | Haida, Suga, et al., 1977 | DH |
3.138 | 111.4 | crystaline, II | crystaline, I | Nikolaev, Rabinovich, et al., 1967 | DH |
4.644 | 158.8 | crystaline, I | liquid | Nikolaev, Rabinovich, et al., 1967 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
5.19 | 127.5 | crystaline, II | liquid | Haida, Suga, et al., 1977 | DH |
31.01 | 159.00 | crystaline, I | liquid | Haida, Suga, et al., 1977 | DH |
28.17 | 111.4 | crystaline, II | crystaline, I | Nikolaev, Rabinovich, et al., 1967 | DH |
29.24 | 158.8 | crystaline, I | liquid | Nikolaev, Rabinovich, et al., 1967 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
MS - José A. Martinho Simões
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: C2H7O+ + C2H6O = (C2H7O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 134. | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
ΔrH° | 135. | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 119. | J/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
ΔrS° | 119. | J/mol*K | N/A | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 98.3 | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
ΔrG° | 99.2 | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C2H5O- + C2H6O = (C2H5O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 115. ± 4.2 | kJ/mol | TDEq | Meot-Ner and Sieck, 1986 | gas phase; B,M |
ΔrH° | 118. ± 10. | kJ/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 112. | J/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
ΔrS° | 123. | J/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH; Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 82.0 ± 6.7 | kJ/mol | TDEq | Meot-Ner and Sieck, 1986 | gas phase; B |
ΔrG° | 79.5 ± 6.7 | kJ/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
ΔrG° | 84.1 | kJ/mol | ICR | McIver, Scott, et al., 1973 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; Meot-Ner (Mautner), 1992; M |
C2H5NaO (cr) + 0.5( • 1100) (solution) = (solution) + 0.5 (solution)
By formula: C2H5NaO (cr) + 0.5(H2O4S • 1100H2O) (solution) = C2H6O (solution) + 0.5Na2O4S (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -118.4 ± 3.8 | kJ/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on 9.97±0.04 for the enthalpy of solution of Na2SO4(cr) Blanchard, Joly, et al., 1974. A value of -490.8 ± 5.9 kJ/mol was derived in Blanchard, Joly, et al., 1974 for the enthalpy of formation. However, this value is affected by a calculation error. Also, the authors have not accounted for the acid dilution (this correction could not be made in the present database, due to lack of information). These problems were also noted in the data compilations Tel'noi and Rabinovich, 1980 and Wagman, Evans W.H., et al., 1982, where the values quoted for the enthalpy of formation, which rely on the experimental data reported in Blanchard, Joly, et al., 1974, are -410.0 ± 4.2 kJ/mol and -413.8 kJ/mol, respectively. See also comments in Liebman, Martinho Simões, et al., 1995; MS |
By formula: Cl- + C2H6O = (Cl- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.9 ± 1.7 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 73.6 ± 2.1 | kJ/mol | TDAs | Hiraoka, 1987 | gas phase; B,B,M |
ΔrH° | 72.4 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 99.2 | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 96.7 | J/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 44.56 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 43.9 ± 8.4 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
ΔrG° | 43.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, 1987 | gas phase; B |
ΔrG° | 43.5 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
41.8 | 295. | ICR | Riveros, 1974 | gas phase; switching reaction(Cl-)CH3OH; Riveros, Breda, et al., 1973; M |
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1587. ± 4.2 | kJ/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 1582. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1579. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1586.2 ± 0.42 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1559. ± 4.6 | kJ/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 1554. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1551. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: C2H5O+ + C2H6O = (C2H5O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 123. | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 90.8 | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C3H9O+ + C2H6O = (C3H9O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 128. | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 92.0 | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C4H9O- + C2H6O = (C4H9O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 111. ± 12. | kJ/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 123. | J/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 74.9 ± 8.4 | kJ/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: C3H7O- + C2H6O = (C3H7O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 115. ± 12. | kJ/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 123. | J/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 78.2 ± 8.4 | kJ/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: C3H9O+ + C2H6O = (C3H9O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 133. | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. | J/mol*K | N/A | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 98.3 | kJ/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: F- + C2H6O = (F- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 135.6 ± 2.9 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 132. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
ΔrH° | 136. ± 9.2 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 104. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 103.5 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 101. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: CN- + C2H6O = (CN- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.8 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
ΔrH° | 73. ± 15. | kJ/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
ΔrS° | 103. | J/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 44.8 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
ΔrG° | 41.8 ± 9.6 | kJ/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: I- + C2H6O = (I- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.39 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 50.6 ± 4.2 | kJ/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.1 | J/mol*K | PHPMS | Caldwell and Kebarle, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 25.6 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 27. ± 4.2 | kJ/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B |
ΔrG° | 25. ± 8.4 | kJ/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B |
By formula: C3H9Si+ + C2H6O = (C3H9Si+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 176. | kJ/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 127. | J/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
117. | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M |
By formula: HS- + C2H6O = (HS- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.20 ± 0.42 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B,M |
ΔrH° | 67.8 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
ΔrS° | 82.8 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 44.4 ± 1.7 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
ΔrG° | 43.1 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: C3H9Sn+ + C2H6O = (C3H9Sn+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 135. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
74.9 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C5H11O- + C2H6O = (C5H11O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 110. ± 12. | kJ/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 73.6 ± 8.4 | kJ/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
By formula: (Cl- • 2C2H6O) + C2H6O = (Cl- • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.2 ± 2.9 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 53.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 108. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.6 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 21. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • C2H6O) + C2H6O = (Cl- • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.02 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 67.4 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 108. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 30.7 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 35. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 9C2H6O) + C2H6O = (Cl- • 10C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Hiraoka and Mizuse, 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.9 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: (Cl- • 8C2H6O) + C2H6O = (Cl- • 9C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Hiraoka and Mizuse, 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.3 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: CH6N+ + C2H6O = (CH6N+ • C2H6O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 89.1 | kJ/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
37. | 496. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: Na+ + C2H6O = (Na+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 110. ± 5.4 | kJ/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 102. ± 4. | kJ/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 102. ± 4. | kJ/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
79.5 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
0.0 | 0. | CIDT | Rodgers and Armentrout, 1999 | RCD |
By formula: (Na+ • C2H6O) + C2H6O = (Na+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 99.2 ± 6.7 | kJ/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 96.7 ± 4.6 | kJ/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 99.2 ± 6.7 | kJ/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 97.5 ± 5.9 | kJ/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
C2H5LiO (cr) + 0.5( • 1100) (solution) = 0.5Li2O4S (solution) + (solution)
By formula: C2H5LiO (cr) + 0.5(H2O4S • 1100H2O) (solution) = 0.5Li2O4S (solution) + C2H6O (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -113.6 ± 1.3 | kJ/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on -17.5±0.3 for the enthalpy of solution of Li2SO4(cr) Blanchard, Joly, et al., 1974.; MS |
C2H5KO (cr) + 0.5( • 1100) (solution) = (solution) + 0.5K2O4S (solution)
By formula: C2H5KO (cr) + 0.5(H2O4S • 1100H2O) (solution) = C2H6O (solution) + 0.5K2O4S (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -132.3 ± 2.9 | kJ/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on 35.1±0.1 for the enthalpy of solution of K2SO4(cr) Blanchard, Joly, et al., 1974.; MS |
+ = C2H6BrO-
By formula: Br- + C2H6O = C2H6BrO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.99 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 34.3 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 37. ± 8.4 | kJ/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B |
By formula: H2 + C2H4O = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -81.3 ± 1.4 | kJ/mol | Chyd | Wiberg, Crocker, et al., 1991 | liquid phase; solvent: Triglyme; ALS |
ΔrH° | -69.08 ± 0.42 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1938 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -70.1 ± 0.4 kJ/mol; At 355 °K; ALS |
By formula: (Cl- • 3C2H6O) + C2H6O = (Cl- • 4C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 123. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 4C2H6O) + C2H6O = (Cl- • 5C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.1 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 128. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 5C2H6O) + C2H6O = (Cl- • 6C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.4 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.5 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 6C2H6O) + C2H6O = (Cl- • 7C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.1 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 7C2H6O) + C2H6O = (Cl- • 8C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38. ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.7 ± 4.2 | kJ/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: C2H3O2- + C2H6O = (C2H3O2- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 86.6 ± 4.2 | kJ/mol | N/A | Meot-Ner and Sieck, 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 122. | J/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 49.8 ± 6.7 | kJ/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: C4H8 + C2H6O = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.0 | kJ/mol | Cm | Sola, Pericas, et al., 1995 | liquid phase; ALS |
ΔrH° | -32.0 | kJ/mol | Kin | Sola, Pericas, et al., 1995 | liquid phase; ALS |
ΔrH° | -62. ± 2. | kJ/mol | Eqk | Iborra, Izquierdo, et al., 1989 | gas phase; GC; ALS |
By formula: C2H4NO2- + C2H6O = C4H10NO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.5 ± 2.1 | kJ/mol | TDAs | Nieckarz, Atkins, et al., 2008 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 41. ± 4.2 | kJ/mol | TDAs | Nieckarz, Atkins, et al., 2008 | gas phase; B |
+ 2 = C4H12IO2-
By formula: I- + 2C2H6O = C4H12IO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.93 ± 0.84 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.5 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 2 = C4H12BrO2-
By formula: Br- + 2C2H6O = C4H12BrO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.1 ± 2.5 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 23.9 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 3 = C6H18IO3-
By formula: I- + 3C2H6O = C6H18IO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.1 ± 2.1 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 14.7 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 3 = C6H18BrO3-
By formula: Br- + 3C2H6O = C6H18BrO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.7 ± 1.3 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.3 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
By formula: C2H6FO- + 2C2H6O = C4H12FO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 86.2 ± 1.3 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 50.63 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
By formula: C2H6O + C3H6O2 = C5H10O2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -22.6 ± 0.42 | kJ/mol | Eqk | Essex and Sandholzer, 1938 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -23.54 kJ/mol; ALS |
By formula: C4H12FO2- + 3C2H6O = C6H18FO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65.27 ± 0.42 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 34.0 | kJ/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ = C8H11O2-
By formula: C6H5O- + C2H6O = C8H11O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80.8 ± 4.2 | kJ/mol | N/A | Meot-Ner and Sieck, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 46.9 ± 6.7 | kJ/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: C6H5O- + C2H6O = (C6H5O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80.8 | kJ/mol | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
4 (l) + (l) = (l) + 4( • 51.3) (solution)
By formula: 4C2H6O (l) + Cl4Ti (l) = C8H20O4Ti (l) + 4(HCl • 51.3H2O) (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -205.4 ± 4.2 | kJ/mol | RSC | Bradley and Hillyer, 1966 | Please also see Pedley and Rylance, 1977.; MS |
+ = C2H5D6FO-
By formula: F- + C2H6O = C2H5D6FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 99.2 ± 8.4 | kJ/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: Mg+ + C2H6O = (Mg+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 260. ± 20. | kJ/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
3 + = CNa2O3 + + +
By formula: 3HNaO + C3H5ClO2 = CNa2O3 + C2H6O + ClNa + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -323.3 ± 1.7 | kJ/mol | Cm | Davies, Finch, et al., 1980 | liquid phase; Heat of hydrolysis; ALS |
By formula: C9H16N2O2 + H2O = C4H8O2 + C3H4N2 + C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -44.69 ± 0.67 | kJ/mol | Cm | Guthrie and Pike, 1987 | liquid phase; Heat of hydrolysis; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C2H6O+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.48 ± 0.07 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 776.4 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 746. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
779.4 ± 0.8 | Tabrizchi and Shooshtari, 2003 | T = 403-453K; Authors report only relative PAs. Absolute values are referenced here to PA(CH3COOC2H5) = 835.7 kJ/mol as listed in Hunter and Lias, 1998, although average PA(CH3COOC2H5) from the literature sources in Hunter and Lias, 1998 is 831.0 kJ/mol; MM |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1587. ± 4.2 | kJ/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 1582. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1579. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1586.2 ± 0.42 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1559. ± 4.6 | kJ/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 1554. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1551. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Anion protonation reactions
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1587. ± 4.2 | kJ/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 1582. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1579. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1586.2 ± 0.42 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1559. ± 4.6 | kJ/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 1554. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1551. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rossini, 1932
Rossini, F.D.,
The heats of combustion of methyl and ethyl alcohols,
J. Res. NBS, 1932, 8, 119-139. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Zhuravlev E.Z., 1959
Zhuravlev E.Z.,
Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state,
Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]
Chermin H.A.G., 1961
Chermin H.A.G.,
Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol,
Petrol. Refiner, 1961, 40 (4), 127-130. [all data]
Green J.H.S., 1961
Green J.H.S.,
Thermodynamic properties of organic oxygen compounds. Part 5. Ethyl alcohol,
Trans. Faraday Soc., 1961, 57, 2132-2137. [all data]
Green J.H.S., 1961, 2
Green J.H.S.,
Thermodynamic properties of the normal alcohols C1-C12,
J. Appl. Chem., 1961, 11, 397-404. [all data]
Chao J., 1986
Chao J.,
Ideal gas thermodynamic properties of simple alkanols,
Int. J. Thermophys., 1986, 7, 431-442. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Chao J., 1986, 2
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Bennewitz K., 1938
Bennewitz K.,
Molar heats of vapor organic compounds,
Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]
Eucken A., 1948
Eucken A.,
Rotational hindrance in ether and alcohol molecules on the basis of heat capacity determinations,
Z. Elektrochem., 1948, 52, 195-204. [all data]
Barrow G.M., 1952
Barrow G.M.,
Heat capacity, gas imperfection, infrared spectra, and internal rotation barriers of ethyl alcohol,
J. Chem. Phys., 1952, 20, 1739-1744. [all data]
Sinke G.C., 1953
Sinke G.C.,
The heat capacity of organic vapors. VIII. Data for some aliphatic alcohols using an improved flow calorimeter requiring only 25 ml of sample,
J. Am. Chem. Soc., 1953, 75, 1815-1818. [all data]
Halford J.O., 1957
Halford J.O.,
Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity,
J. Phys. Chem., 1957, 61, 1536-1539. [all data]
Counsell J.F., 1970
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol,
J. Chem. Thermodyn., 1970, 2, 367-372. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Rossini, 1934
Rossini, F.D.,
Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages,
J. Res. NBS, 1934, 13, 189-197. [all data]
Green, 1960
Green, J.H.S.,
Revision of the values of the heats of formation of normal alcohols,
Chem. Ind. (London), 1960, 1215-1216. [all data]
Parks, 1925
Parks, G.S.,
Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols,
J. Am. Chem. Soc., 1925, 47, 338-345. [all data]
Richards and Davis, 1920
Richards, T.W.; Davis, H.S.,
The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds,
J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]
Emery and Benedict, 1911
Emery, A.G.; Benedict, F.G.,
The heat of combustion of compounds of physiological importance,
Am. J. Physiol., 1911, 28, 301-307. [all data]
Haida, Suga, et al., 1977
Haida, O.; Suga, H.; Seki, S.,
Calorimetric study of the glassy state. XII. Plural glass-transition phenomena of ethanol,
J. Chem. Thermodynam., 1977, 9, 1133-1148. [all data]
Kelley, 1929
Kelley, K.K.,
The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies,
J. Am. Chem. Soc., 1929, 51, 779-786. [all data]
Petrov, Peshekhodov, et al., 1989
Petrov, A.N.; Peshekhodov, P.B.; Al'per, G.A.,
Heat capacity of non-aqueous solutions of non-electrolyts with N,N-dimethylformamide as a base, Sbornik Nauch. Trud., Termodin. Rast. neelect., Ivanovo,
Inst. nevod. rast., 1989, Akad. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S.,
Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K,
Thermochim. Acta, 1986, 109, 145-154. [all data]
Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S.,
Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Ogawa and Murakami, 1985
Ogawa, H.; Murakami, S.,
Flow microcalorimeter for heat capacities of solutions,
Thermochim. Acta, 1985, 88, 255-260. [all data]
Stephens and Olson, 1984
Stephens, M.; Olson, J.D.,
Measurement of excess heat capacities by differential scanning calorimetry,
Thermochim. Acta, 1984, 76, 79-85. [all data]
Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G.,
Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol),
J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J.,
Excess isobaric heat capacities of water - n-alcohol mixtures,
J. Chem. Eng. Data, 1982, 27, 439-442. [all data]
Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K,
Thermochim. Acta, 1982, 52, 279-283. [all data]
Brown and Ziegler, 1979
Brown, G.N., Jr.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol + n-heptane and 2-propanol + n-heptane solutions,
J. Chem. Eng. Data, 1979, 24, 319-330. [all data]
Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J.,
The use of mixing calorimeter for measuring heat capacities of liquids,
Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]
Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J.,
Heat capacities of some organic liquids determined with the mixing calorimeter,
1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]
Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P.,
Heat capacities of some organic liquids determined with the Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 289-299. [all data]
Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 411-423. [all data]
Pedersen, Kay, et al., 1975
Pedersen, M.J.; Kay, W.B.; Hershey, H.C.,
Excess enthalpies, heat capacities, and excess heat capacities as a function of temperature in liquid mixtures of ethanol + toluene, ethanol + hexamethyldisiloxane, and hexamethyldisiloxane + toluene,
J. Chem. Thermodynam., 1975, 7, 1107-1118. [all data]
Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E.,
Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos,
An. Quim., 1970, 66, 961-967. [all data]
Nikolaev, Rabinovich, et al., 1967
Nikolaev, P.N.; Rabinovich, I.B.; Lebedev, B.V.,
Specific heat of H- and D-ethyl alcohol in the interval 80-250K,
Zhur. Fiz. Khim., 1967, 41, 1294-1299. [all data]
Hwa and Ziegler, 1966
Hwa, S.C.P.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol-methylcyclohexane and ethanol-toluene systems,
J. Phys. Chem., 1966, 70(8), 2572-2593. [all data]
Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N.,
Isotopic effect in the specific heat of some deutero compounds,
Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat in homologous series of binary and ternary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]
Mazur, 1940
Mazur, V.J.,
On the specific heat of ethyl alcohol,
Acta Phys. Polon., 1940, 8, 6-11. [all data]
Bykov, 1939
Bykov, V.T.,
Heat of mixing of liquids,
Zhur. Fiz. Khim., 1939, 13, 1013-1019. [all data]
Ernst, Watkins, et al., 1936
Ernst, R.C.; Watkins, C.H.; Ruwe, H.H.,
The physical properties of the ternary system ethyl alcohol-glycerin-water,
J. Phys. Chem., 1936, 40, 627-635. [all data]
Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B.,
Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene,
J. Res., 1931, NBS 6, 881-900. [all data]
Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K.,
Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures,
Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
Gibson, Parks, et al., 1920
Gibson, G.E.; Parks, G.S.; Latimer, W.M.,
Entropy changes at low temperatures. II. Ethyl and propyl alcohols and their equal molal mixture,
J. Am. Chem. Soc., 1920, 42, 1542-1550. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Mejia, Segura, et al., 2010
Mejia, Andres; Segura, Hugo; Cartes, Marcela,
Vapor-Liquid Equilibria and Interfacial Tensions of the System Ethanol + 2-Methoxy-2-methylpropane,
J. Chem. Eng. Data, 2010, 55, 1, 428-434, https://doi.org/10.1021/je9004068
. [all data]
Aucejo, Loras, et al., 1999
Aucejo, Antonio; Loras, Sonia; Muñoz, Rosa; Ordoñez, Luis Miguel,
Isobaric vapor--liquid equilibrium for binary mixtures of 2-methylpentane+ethanol and +2-methyl-2-propanol,
Fluid Phase Equilibria, 1999, 156, 1-2, 173-183, https://doi.org/10.1016/S0378-3812(99)00029-1
. [all data]
Diogo, Santos, et al., 1995
Diogo, Hermínio P.; Santos, Rui C.; Nunes, Paulo M.; Minas da Piedade, Manuel E.,
Ebulliometric apparatus for the measurement of enthalpies of vaporization,
Thermochimica Acta, 1995, 249, 113-120, https://doi.org/10.1016/0040-6031(95)90678-9
. [all data]
Ortega, Susial, et al., 1990
Ortega, Juan; Susial, Pedro; De Alfonso, Casiano,
Isobaric vapor-liquid equilibrium of methyl butanoate with ethanol and 1-propanol binary systems,
J. Chem. Eng. Data, 1990, 35, 2, 216-219, https://doi.org/10.1021/je00060a037
. [all data]
Vine and Wormald, 1989
Vine, M.D.; Wormald, C.J.,
The enthalpy of ethanol,
The Journal of Chemical Thermodynamics, 1989, 21, 11, 1151-1157, https://doi.org/10.1016/0021-9614(89)90101-8
. [all data]
Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing,
Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene,
Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J.,
The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point,
The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Counsell, Fenwick, et al., 1970
Counsell, J.F.; Fenwick, J.O.; Lees, E.B.,
Thermodynamic properties of organic oxygen compounds 24. Vapour heat capacities and enthalpies of vaporization of ethanol, 2-methylpropan-1-ol, and pentan-1-ol,
The Journal of Chemical Thermodynamics, 1970, 2, 3, 367-372, https://doi.org/10.1016/0021-9614(70)90007-8
. [all data]
Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L.,
Thermodynamic excess properties of three alcohol-hydrocarbon systems,
J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017
. [all data]
Kretschmer and Wiebe, 1949
Kretschmer, Carl B.; Wiebe, Richard.,
Liquid-Vapor Equilibrium of Ethanol--Toluene Solutions,
J. Am. Chem. Soc., 1949, 71, 5, 1793-1797, https://doi.org/10.1021/ja01173a076
. [all data]
Oguri, Anjo, et al., 1934
Oguri, S.; Anjo, S.; Kuwabara, Y.,
Bull. Waseda Appl. Chem. Soc., 1934, 22, 1. [all data]
Kahlbaum, 1883
Kahlbaum, Georg W.A.,
Ueber die Abhängigkeit der Siedetemperatur vom Luftdruck,
Ber. Dtsch. Chem. Ges., 1883, 16, 2, 2476-2484, https://doi.org/10.1002/cber.188301602178
. [all data]
Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature,
J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0
. [all data]
Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S.,
Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,
The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8
. [all data]
Yoshida, 1944
Yoshida, U.,
Structural relaxation of amorphous solids and the cybotactic structure of super-cooled liquids,
Mem. Coll. Sci. Kyoto Imp. Univ., 1944, 24A, 135-148. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Bomse and Beauchamp, 1981
Bomse, D.S.; Beauchamp, J.L.,
Slow Multiphoton Excitation as a Probe of Bimolecular and Unimolecular Reaction Energetics. Multiphoton Dissociation of Proton-Bound Alcohol Dimers,
J. Am. Chem. Soc., 1981, 103, 12, 3292, https://doi.org/10.1021/ja00402a011
. [all data]
Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W.,
The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions,
J. Am. Chem. Soc., 1986, 108, 7525. [all data]
Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E.,
Anion-alcohol hydrogen bond strengths in the gas phase,
J. Am. Chem. Soc., 1984, 106, 4660. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase,
J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076
. [all data]
Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W.,
Relative acidities of water and methanol, and the stabilities of the dimer adducts,
J. Phys. Chem., 1986, 90, 6687. [all data]
Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M.,
Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol,
J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014
. [all data]
McIver, Scott, et al., 1973
McIver, R.T., Jr.; Scott, J.A.; Riveros, J.M.,
Effect of solvation on the intrinsic relative acidity of methanol and ethanol,
J. Am. Chem. Soc., 1973, 95, 2706. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Blanchard, Joly, et al., 1974
Blanchard, J.M.; Joly, R.D.; Lettoffe, J.M.; Perachon, G.; Thourey, J.,
J. Chim. Phys. Phys.-Chim. Biol., 1974, 71, 472. [all data]
Tel'noi and Rabinovich, 1980
Tel'noi, V.I.; Rabinovich, I.B.,
Russ. Chem. Rev., 1980, 49, 603. [all data]
Wagman, Evans W.H., et al., 1982
Wagman, D.D.; Evans W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L.,
The NBS Tables of Chemical Thermodynamic Properties; J. Phys. Chem. Ref. Data, 1982, 11, Suppl. 2. [all data]
Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W.,
In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]
Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B.,
Stepwise solvation of halides by alcohol molecules in the gas phase,
Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5
. [all data]
Hiraoka, 1987
Hiraoka, K.,
Relation Between Gas Phase Stepwise and Bulk Solvation of Cl- with Water and Aliphatic Alcohols,
Bull. Chem. Soc. Japan, 1987, 60, 7, 2555, https://doi.org/10.1246/bcsj.60.2555
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S.,
Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH,
Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4
. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Riveros, 1974
Riveros, J.M.,
Formation and Relative Stability of Negative Clustered Ions by Ion Cyclotron Resonance Spectroscopy,
Adv. Mass Spectrom., 1974, 6, 277. [all data]
Riveros, Breda, et al., 1973
Riveros, J.M.; Breda, A.C.; Blair, L.K.,
Formation and relative stability of chloride ion clusters in the gas phase by ICR spectroscopy,
J. Am. Chem. Soc., 1973, 95, 4066. [all data]
Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C.,
Vibronic structure of alkoxy radicals via photoelectron spectroscopy,
J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols,
J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P.,
Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements,
J. Am. Chem. Soc., 1984, 106, 967. [all data]
Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M.,
Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR,
J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B.,
Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments,
Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y.,
Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN,
Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8
. [all data]
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E.,
Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds,
J. Am. Chem. Soc., 1938, 60, 440-450. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Sola, Pericas, et al., 1995
Sola, L.; Pericas, M.A.; Cunill, F.; Tejero, J.,
Thermodynamic and kinetic studies of the liquid phase synthesis of tert-butyl ethyl ether using a reaction calorimeter,
Ind. Eng. Chem. Res., 1995, 34, 3718-3725. [all data]
Iborra, Izquierdo, et al., 1989
Iborra, M.; Izquierdo, J.F.; Tejero, J.; Cunill, F.,
Equilibrium constant for ethyl tert-butyl ether vapor-phase synthesis,
J. Chem. Eng. Data, 1989, 34, 1-5. [all data]
Nieckarz, Atkins, et al., 2008
Nieckarz, R.J.; Atkins, C.G.; McMahon, T.B.,
Effects of Isomerization on the Measured Thermochemical Properties of Deprotonated Glycine/Protic-Solvent Clusters,
Chemphyschem, 2008, 9, 18, 2816-2825, https://doi.org/10.1002/cphc.200800525
. [all data]
Essex and Sandholzer, 1938
Essex, H.; Sandholzer, M.,
The free energy of formation of ethyl propionate,
J. Phys. Chem., 1938, 42, 317-333. [all data]
Bradley and Hillyer, 1966
Bradley, D.C.; Hillyer, M.J.,
Trans. Faraday Soc., 1966, 62, 2367. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B.,
Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions,
Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M
. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Davies, Finch, et al., 1980
Davies, R.H.; Finch, A.; Gardner, P.J.,
The standard enthalpy of formation of liquid and gaseous ethylchloroformate (C3H5O2Cl),
J. Chem. Thermodyn., 1980, 12, 291-296. [all data]
Guthrie and Pike, 1987
Guthrie, J.P.; Pike, D.C.,
Hydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazole on esters. The question of concerted mechanisms for acyl transfers,
Can. J. Chem., 1987, 65, 1951-1969. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Tabrizchi and Shooshtari, 2003
Tabrizchi, M.; Shooshtari, S.,
Proton affinity measurements using ion mobility spectrometry,
J. Chem. Thermodynamics, 2003, 35, 863. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Ohno, Imai, et al., 1985
Ohno, K.; Imai, K.; Harada, Y.,
Variations in reactivity of lone-pair electrons due to intramolecular hydrogen bonding as observed by penning ionization electron spectroscopy,
J. Am. Chem. Soc., 1985, 107, 8078. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Ohno, Imai, et al., 1983
Ohno, K.; Imai, K.; Matsumoto, S.; Harada, Y.,
Penning ionization electron spectroscopy of C2H5X (X = NH2, OH, H, Cl, I) relative reactivity of orbital localizing on functional groups upon electrophilic attack by metastable helium atoms,
J. Phys. Chem., 1983, 87, 4346. [all data]
Mishchanchuk, Pokrovskii, et al., 1982
Mishchanchuk, B.G.; Pokrovskii, V.A.; Shabel'nikov, V.P.; Korol, E.N.,
Mass spectrometric study of energy characteristics of methanol and ethanol ions during ionization by a strong electric field,
Teor. Eksp. Khim., 1982, 18, 307. [all data]
Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L.,
30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O),
J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]
Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V.,
Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols,
Khim. Vys. Energ., 1972, 6, 387. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E.,
Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins,
Anal. Chem., 1971, 43, 375. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Refaey and Chupka, 1968
Refaey, K.M.A.; Chupka, W.A.,
Photoionization of the lower aliphatic alcohols with mass analysis,
J. Chem. Phys., 1968, 48, 5205. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Utsunomiya, Kobayashi, et al., 1980
Utsunomiya, C.; Kobayashi, T.; Nagakura, S.,
Photoelectron angular distribution measurements for some aliphatic alcohols, amines, halides,
Bull. Chem. Soc. Jpn., 1980, 53, 1216. [all data]
Hoppilliard and Solgadi, 1980
Hoppilliard, Y.; Solgadi, D.,
Conformational analysis of 2-haloethanols and 2-methoxyethylhalides in a photoelectron spectrometer,
Tetrahedron, 1980, 36, 377. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Peel and Willett, 1975
Peel, J.B.; Willett, G.D.,
Photoelectron spectroscopic studies of the higher alcohols,
Aust. J. Chem., 1975, 28, 2357. [all data]
Vovna, Lopatin, et al., 1974
Vovna, V.I.; Lopatin, S.N.; Pettsold, R.; Vilesov, F.I.; Akopyan, M.E.,
Photoelectron spectra of a number of substitution products of thiophosphoryl chloride,
Opt. Spectrosc., 1974, 36, 99. [all data]
Schweig and Thiel, 1974
Schweig, A.; Thiel, W.,
Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds,
Mol. Phys., 1974, 27, 265. [all data]
Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A.,
Excited electronic states of the simple alcohols,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]
Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K.,
Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols,
Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]
Stepanov, Perov, et al., 1988
Stepanov, A.N.; Perov, A.A.; Kabanov, S.P.; Simonov, A.P.,
Formation of long-lived, highly excited atoms during dissociative excitation of CH3CN, CH3CH2OH, CH3COOH, HCOOH, and C4H4S molecules on electron impact,
Russ. J. Phys. Chem., 1988, 22, 81. [all data]
Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L.,
Excess energies in mass spectra of some oxygen-containing organic compounds,
J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]
Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I.,
Heat of formation of CH2=OH+ fragment ion,
Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]
Lossing, 1977
Lossing, F.P.,
Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability,
J. Am. Chem. Soc., 1977, 99, 7526. [all data]
Friedman, Long, et al., 1957
Friedman, L.; Long, F.A.; Wolfsberg, M.,
Study of the mass spectra of the lower aliphatic alcohols,
J. Chem. Phys., 1957, 27, 613. [all data]
Holmes, Terlouw, et al., 1976
Holmes, J.L.; Terlouw, J.K.; Lossing, F.P.,
The thermochemistry of C2H4O+ ions,
J. Phys. Chem., 1976, 80, 2860. [all data]
Solka and Russell, 1974
Solka, B.H.; Russell, M.E.,
Energetics of formation of some structural isomers of gaseous C2H5O+ C2H6N+ ions,
J. Phys. Chem., 1974, 78, 1268. [all data]
Ruscic and Berkowitz, 1994
Ruscic, B.; Berkowitz, J.,
The heats of formation of some C2H5O+ isomers, relevant bond energies in ethanol and PA(CH3CHO),
J. Chem. Phys., 1994, 101, 10936. [all data]
Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H.,
Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer,
J. Chem. Phys., 1970, 52, 6348. [all data]
Niwa, Nishimura, et al., 1982
Niwa, Y.; Nishimura, T.; Tsuchiya, T.,
Ionic dissociation of ethanol studied by photoelectron-photoion coincidence spectroscopy,
Int. J. Mass Spectrom. Ion Processes, 1982, 42, 91. [all data]
Haney and Franklin, 1969, 2
Haney, M.A.; Franklin, J.L.,
Heats of formation of H3O+, H3S+, and NH4+ by electron impact,
J. Chem. Phys., 1969, 50, 2028. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.