Methane
- Formula: CH4
- Molecular weight: 16.0425
- IUPAC Standard InChIKey: VNWKTOKETHGBQD-UHFFFAOYSA-N
- CAS Registry Number: 74-82-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Marsh gas; Methyl hydride; CH4; Fire Damp; R 50; Biogas; R 50 (refrigerant)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -74.87 | kJ/mol | Review | Chase, 1998 | Data last reviewed in March, 1961 |
ΔfH°gas | -74.6 ± 0.3 | kJ/mol | Review | Manion, 2002 | adopted recommendation of Gurvich, Veyts, et al., 1991; DRB |
ΔfH°gas | -74.5 ± 0.4 | kJ/mol | Ccb | Pittam and Pilcher, 1972 | ALS |
ΔfH°gas | -74.85 ± 0.31 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Hf derived from Heat of Hydrogenation; ALS |
ΔfH°gas | -73.4 ± 1.1 | kJ/mol | Ccb | Roth and Banse, 1932 | Reanalyzed by Cox and Pilcher, 1970, Original value = -75.19 kJ/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -890.7 ± 0.4 | kJ/mol | Ccb | Pittam and Pilcher, 1972 | Corresponding ΔfHºgas = -74.48 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -890.35 ± 0.30 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Hf derived from Heat of Hydrogenation; Corresponding ΔfHºgas = -74.822 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -891.8 ± 1.1 | kJ/mol | Ccb | Roth and Banse, 1932 | Reanalyzed by Cox and Pilcher, 1970, Original value = -887.3 ± 1.0 kJ/mol; Corresponding ΔfHºgas = -73.39 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -890.16 ± 0.30 | kJ/mol | Cm | Rossini, 1931 | Corresponding ΔfHºgas = -75.010 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 188.66 ± 0.42 | J/mol*K | N/A | Colwell J.H., 1963 | The calorimetric value is significantly higher than the statistically calculated entropy, 186.26 J/mol*K, which remains the best value for use in thermodynamic calculations [ Vogt G.J., 1976, Friend D.G., 1989, Gurvich, Veyts, et al., 1989]. Earlier the value of 185.3 J/mol*K was calculated from experimental data [ Giauque W.F., 1931]. The value of S(298.15 K)=185.94 J/mol*K was obtained by high accuracy ab initio calculation [ East A.L.L., 1997].; GT |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 186.25 | J/mol*K | Review | Chase, 1998 | Data last reviewed in March, 1961 |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
34.92 ± 0.25 | 279. | Halford J.O., 1957 | GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
33.28 | 100. | Gurvich, Veyts, et al., 1989 | p=1 bar. Because of more precise method of calculation, the recommended values are more accurate, especially at high temperatures, than those obtained by [ McDowell R.S., 1963] and often regarded as reference data [ Friend D.G., 1989].; GT |
33.51 | 200. | ||
35.69 | 298.15 | ||
35.76 | 300. | ||
40.63 | 400. | ||
46.63 | 500. | ||
52.74 | 600. | ||
58.60 | 700. | ||
64.08 | 800. | ||
69.14 | 900. | ||
73.75 | 1000. | ||
77.92 | 1100. | ||
81.68 | 1200. | ||
85.07 | 1300. | ||
88.11 | 1400. | ||
90.86 | 1500. | ||
93.33 | 1600. | ||
95.58 | 1700. | ||
97.63 | 1800. | ||
99.51 | 1900. | ||
101.24 | 2000. | ||
102.83 | 2100. | ||
104.31 | 2200. | ||
105.70 | 2300. | ||
107.00 | 2400. | ||
108.23 | 2500. | ||
109.39 | 2600. | ||
110.50 | 2700. | ||
111.56 | 2800. | ||
112.57 | 2900. | ||
113.55 | 3000. |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1300. | 1300. to 6000. |
---|---|---|
A | -0.703029 | 85.81217 |
B | 108.4773 | 11.26467 |
C | -42.52157 | -2.114146 |
D | 5.862788 | 0.138190 |
E | 0.678565 | -26.42221 |
F | -76.84376 | -153.5327 |
G | 158.7163 | 224.4143 |
H | -74.87310 | -74.87310 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in March, 1961 | Data last reviewed in March, 1961 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
CH3- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1743.6 ± 2.9 | kJ/mol | D-EA | Ellison, Engelking, et al., 1978 | gas phase; B |
ΔrH° | 1749. ± 15. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
ΔrH° | >1691.1 ± 0.42 | kJ/mol | G+TS | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
ΔrH° | 1735.5 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeBr3; ; ΔS(EA)=9.3; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1709.8 ± 3.3 | kJ/mol | H-TS | Ellison, Engelking, et al., 1978 | gas phase; B |
ΔrG° | 1715. ± 15. | kJ/mol | H-TS | Graul and Squires, 1990 | gas phase; B |
ΔrG° | >1657.3 | kJ/mol | IMRB | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
ΔrG° | 1704.1 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeBr3; ; ΔS(EA)=9.3; B |
By formula: (CH5+ • CH4) + CH4 = (CH5+ • 2CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 25. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
ΔrH° | 6.3 | kJ/mol | HPMS | Field and Beggs, 1971 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 104. | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 102. | J/mol*K | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
ΔrS° | 30. | J/mol*K | HPMS | Field and Beggs, 1971 | gas phase; Entropy change is questionable; M |
By formula: CH5+ + CH4 = (CH5+ • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 31. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
ΔrH° | 17. | kJ/mol | HPMS | Field and Beggs, 1971 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.5 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 87.0 | J/mol*K | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
ΔrS° | 51.9 | J/mol*K | HPMS | Field and Beggs, 1971 | gas phase; Entropy change is questionable; M |
By formula: C2H5+ + CH4 = (C2H5+ • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.0 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
ΔrH° | 28. | kJ/mol | PHPMS | Hiroka and Kebarle, 1975 | gas phase; M |
ΔrH° | 10. | kJ/mol | HPMS | Field and Beggs, 1971 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.9 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
ΔrS° | 97.9 | J/mol*K | PHPMS | Hiroka and Kebarle, 1975 | gas phase; M |
ΔrS° | 36. | J/mol*K | HPMS | Field and Beggs, 1971 | gas phase; Entropy change is questionable; M |
By formula: (Co+ • 2CH4) + CH4 = (Co+ • 3CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46. | kJ/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Kemper, Bushnell, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
41. (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3. | 477. | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
By formula: Co+ + CH4 = (Co+ • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 82.8 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(530 K); M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
90.0 (+6.7,-0.) | CID | Haynes and Armentrout, 1996 | gas phase; guided ion beam CID; M | |
90.0 (+5.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M | |
94. (+2.,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(530 K); M |
By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 95.8 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
73. (+3.,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M |
By formula: (Co+ • H2) + CH4 = (Co+ • CH4 • H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 91.2 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
94.6 (+5.0,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M |
(g) = C5MnO5 (g) + (g)
By formula: C6H3MnO5 (g) = C5MnO5 (g) + CH4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 192. ± 15. | kJ/mol | PIMS | Martinho Simões and Beauchamp, 1990 | The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 940.7 ± 4.8 kJ/mol, using Mn(CO)5(Me) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990; MS |
By formula: (Co+ • CH4) + CH4 = (Co+ • 2CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 109. | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(500 K); M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
95.8 (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M | |
104. (+4.2,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(500 K); M |
By formula: (CH5+ • 2CH4) + CH4 = (CH5+ • 3CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 17. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.7 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 109. | J/mol*K | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
By formula: (CH5+ • 3CH4) + CH4 = (CH5+ • 4CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.6 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 16. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 99.2 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 111. | J/mol*K | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
(g) + CH3BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + CH3BrMg (solution) = CH4 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -274.5 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Diethyl ether; The enthalpy of formation was calculated using the assumptions and the auxiliary data in Holm, 1981, except for the organic compound, whose enthalpy of formation was quoted from Pedley, 1994; MS |
By formula: (Co+ • CH4) + C2H6 = (Co+ • C2H6 • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 108. | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
119. (+5.4,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M |
C63H91CoN13O14P (solution) = (solution) + (solution)
By formula: C63H91CoN13O14P (solution) = C63H88CoN14O14P (solution) + CH4 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 155. ± 13. | kJ/mol | KinS | Martin and Finke, 1990 | solvent: Ethylene glycol; Please also see Martin and Finke, 1992. The reaction enthalpy relies on 172. ± 13. kJ/mol for the reaction activation enthalpy. The reaction refers to "base-on" cobalamine.; MS |
By formula: C3H7+ + CH4 = (C3H7+ • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.8 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
ΔrH° | 14. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.8 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
ΔrS° | 84. | J/mol*K | PHPMS | Hiraoka and Kebarle, 1976 | gas phase; M |
By formula: HI + CH3I = CH4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -52.55 ± 0.54 | kJ/mol | Eqk | Golden, Walsh, et al., 1965 | gas phase; ALS |
ΔrH° | -53.0 ± 0.2 | kJ/mol | Eqk | Goy and Pritchard, 1965 | gas phase; ALS |
ΔrH° | -46.2 ± 5.6 | kJ/mol | Cm | Nichol and Ubbelohde, 1952 | gas phase; ALS |
By formula: (C2H5+ • 9CH4) + CH4 = (C2H5+ • 10CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.99 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Hiraoka, Mori, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
By formula: (C3H7+ • 7CH4) + CH4 = (C3H7+ • 8CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.28 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Hiraoka, Mori, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
By formula: (C4H9+ • 8CH4) + CH4 = (C4H9+ • 9CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.78 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka, Mori, et al., 1993 | gas phase; Entropy change calculated or estimated; M |
By formula: (CH5+ • 8CH4) + CH4 = (CH5+ • 9CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.44 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
By formula: (Co+ • H2O) + CH4 = (Co+ • CH4 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 113. | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(525 K); M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
108. (+3.,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(525 K); M |
By formula: (H3O+ • CH4) + CH4 = (H3O+ • 2CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14. | kJ/mol | HPMS | Bennet and Field, 1972 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 34. | J/mol*K | HPMS | Bennet and Field, 1972 | gas phase; Entropy change is questionable; M |
By formula: (Co+ • C2H6) + CH4 = (Co+ • CH4 • C2H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 110. | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(490 K); M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
102. (+4.6,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(490 K); M |
By formula: H4N+ + CH4 = (H4N+ • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. | kJ/mol | HPMS | Bennet and Field, 1972, 2 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.9 | J/mol*K | HPMS | Bennet and Field, 1972, 2 | gas phase; Entropy change is questionable; M |
By formula: HBr (g) + CH3Li (cr) = CH4 (g) + BrLi (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -317.3 ± 2.0 | kJ/mol | RSC | Holm, 1974 | Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS |
By formula: 2H2 + CH2Cl2 = CH4 + 2HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -163.4 ± 1.3 | kJ/mol | Chyd | Lacher, Amador, et al., 1967 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -167.7 ± 1.3 kJ/mol; At 250 C; ALS |
(l) + ( • 100) (solution) = 2 (g) + ( • 100) (solution)
By formula: C2H6Zn (l) + (H2O4S • 100H2O) (solution) = 2CH4 (g) + (O4SZn • 100H2O) (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -341.8 ± 0.8 | kJ/mol | RSC | Carson, Hartley, et al., 1949 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
By formula: (CH5+ • 4CH4) + CH4 = (CH5+ • 5CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.7 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 104. | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CH5+ • 5CH4) + CH4 = (CH5+ • 6CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.3 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 106. | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CH5+ • 6CH4) + CH4 = (CH5+ • 7CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.2 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CH5+ • 7CH4) + CH4 = (CH5+ • 8CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.5 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.4 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (C2H5+ • 2CH4) + CH4 = (C2H5+ • 3CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.54 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C2H5+ • 3CH4) + CH4 = (C2H5+ • 4CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.46 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.0 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C2H5+ • 4CH4) + CH4 = (C2H5+ • 5CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.29 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.1 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C2H5+ • 5CH4) + CH4 = (C2H5+ • 6CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.25 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.2 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C2H5+ • 6CH4) + CH4 = (C2H5+ • 7CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.91 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 86.6 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C2H5+ • 7CH4) + CH4 = (C2H5+ • 8CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.79 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.9 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C2H5+ • 8CH4) + CH4 = (C2H5+ • 9CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.70 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.2 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C3H7+ • 2CH4) + CH4 = (C3H7+ • 3CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.46 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.0 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C3H7+ • 3CH4) + CH4 = (C3H7+ • 4CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.20 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C3H7+ • 4CH4) + CH4 = (C3H7+ • 5CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.20 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.4 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C3H7+ • 5CH4) + CH4 = (C3H7+ • 6CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.16 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.9 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C3H7+ • 6CH4) + CH4 = (C3H7+ • 7CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.04 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.2 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C4H9+ • 2CH4) + CH4 = (C4H9+ • 3CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.92 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.4 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C4H9+ • 3CH4) + CH4 = (C4H9+ • 4CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.87 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 83.7 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C4H9+ • 4CH4) + CH4 = (C4H9+ • 5CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.25 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.2 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C4H9+ • 5CH4) + CH4 = (C4H9+ • 6CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.74 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 80.8 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C4H9+ • 6CH4) + CH4 = (C4H9+ • 7CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.58 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.4 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
By formula: (C4H9+ • 7CH4) + CH4 = (C4H9+ • 8CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.33 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.1 | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1993 | gas phase; M |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to CH4+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 12.61 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 543.5 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 520.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
CH3- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1743.6 ± 2.9 | kJ/mol | D-EA | Ellison, Engelking, et al., 1978 | gas phase; B |
ΔrH° | 1749. ± 15. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
ΔrH° | >1691.1 ± 0.42 | kJ/mol | G+TS | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
ΔrH° | 1735.5 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeBr3; ; ΔS(EA)=9.3; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1709.8 ± 3.3 | kJ/mol | H-TS | Ellison, Engelking, et al., 1978 | gas phase; B |
ΔrG° | 1715. ± 15. | kJ/mol | H-TS | Graul and Squires, 1990 | gas phase; B |
ΔrG° | >1657.3 | kJ/mol | IMRB | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
ΔrG° | 1704.1 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeBr3; ; ΔS(EA)=9.3; B |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Manion, 2002
Manion, J.A.,
Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons,
J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703
. [all data]
Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]
Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G.,
Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane,
J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Roth and Banse, 1932
Roth, W.A.; Banse, H.,
Die verbrennungs- und bildungswarme von kohlenoxyd und methan,
Arch. Eisenhutten., 1932, 6, 43-46. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Rossini, 1931
Rossini, F.D.,
The heats of combustion of methane and carbon monoxide,
J. Res. NBS, 1931, 6, 37-49. [all data]
Colwell J.H., 1963
Colwell J.H.,
Thermodynamic properties of CH4 and CD4. Interpretation of the properties of solid,
J. Chem. Phys., 1963, 39, 635-653. [all data]
Vogt G.J., 1976
Vogt G.J.,
Entropy and heat capacity of methane; spin-species conversion,
J. Chem. Thermodyn., 1976, 8, 1011-1031. [all data]
Friend D.G., 1989
Friend D.G.,
Thermophysical properties of methane,
J. Phys. Chem. Ref. Data, 1989, 18, 583-638. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Giauque W.F., 1931
Giauque W.F.,
The entropies of methane and ammonia,
Phys. Rev., 1931, 38, 196-197. [all data]
East A.L.L., 1997
East A.L.L.,
Ab initio statistical thermodynamical models for the computation of third-law entropies,
J. Chem. Phys., 1997, 106, 6655-6674. [all data]
Halford J.O., 1957
Halford J.O.,
Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity,
J. Phys. Chem., 1957, 61, 1536-1539. [all data]
McDowell R.S., 1963
McDowell R.S.,
Thermodynamic functions of methane,
J. Chem. Eng. Data, 1963, 8, 547-548. [all data]
Ellison, Engelking, et al., 1978
Ellison, G.B.; Engelking, P.C.; Lineberger, W.C.,
An experimental determination of the geometry and electron affinity of CH3,
J. Am. Chem. Soc., 1978, 100, 2556. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B.,
Acidity order of selected bronsted acids in the gas phase at 300K,
J. Am. Chem. Soc., 1972, 94, 5153. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T.,
Gas - Phase Stability and Structure of Cluster Ions CH5+(CH4)n with n = 1 - 9,
Chem. Phys. Lett., 1989, 161, 2, 111, https://doi.org/10.1016/0009-2614(89)85040-7
. [all data]
Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P.,
Energetics, Stabilities and Possible Structures of CH5+(CH4)n Clusters from Gas Phase Study of Equilibria CH5+(CH4)n - 1 + CH4 = CH5+(CH4)n for n = 1 - 5,
J. Am. Chem. Soc., 1975, 97, 15, 4179, https://doi.org/10.1021/ja00848a005
. [all data]
Field and Beggs, 1971
Field, F.H.; Beggs, D.P.,
Reversible Reactions of Gas Phase Ions. III. Studies with Methane at 0.1-1.0 Torr and 77-300 K,
J. Am. Chem. Soc., 1971, 93, 7, 1585, https://doi.org/10.1021/ja00736a003
. [all data]
Hiraoka, Mori, et al., 1993
Hiraoka, K.; Mori, T.; Yamabe, S.,
The Gas-Phase Solvation of C2H5+, s-C3H7+ and s-C4H9+ with CH4. The Isomeric Structures of C2H5+ and C2H5+.CH4,
Chem. Phys. Lett., 1993, 207, 2-3, 178, https://doi.org/10.1016/0009-2614(93)87011-Q
. [all data]
Hiroka and Kebarle, 1975
Hiroka, K.; Kebarle, P.,
Information on the Proton Affinity and Protolysis of Propane from Measurement of the Ion Cluster Equilibrium: C2H5+ + CH4 = C3H9+,
Can. J. Phys., 1975, 53, 970. [all data]
Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T.,
Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters,
J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016
. [all data]
Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L.,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]
Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B.,
Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy,
Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7
. [all data]
Kemper, Bushnell, et al., 1993, 2
Kemper, P.R.; Bushnell, J.; Von Helden, G.; Bowers, M.T.,
Co+(H2)n Clusters: Binding Energies and Molecular Parameters,
J. Chem Phys., 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012
. [all data]
Martinho Simões and Beauchamp, 1990
Martinho Simões, J.A.; Beauchamp, J.L.,
Chem. Rev., 1990, 90, 629. [all data]
Holm, 1981
Holm, T.,
J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]
Pedley, 1994
Pedley, J.B.,
Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]
Martin and Finke, 1990
Martin, B.D.; Finke, R.G.,
J. Am. Chem. Soc., 1990, 112, 2419. [all data]
Martin and Finke, 1992
Martin, B.D.; Finke, R.G.,
J. Am. Chem. Soc., 1992, 114, 585. [all data]
Hiraoka and Kebarle, 1976
Hiraoka, K.; Kebarle, P.,
Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C2H7+ Ions and Some Higher Analogues: C3H9+ and C4H11+,
J. Am. Chem. Soc., 1976, 98, 20, 6119, https://doi.org/10.1021/ja00436a009
. [all data]
Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical,
J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]
Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O.,
Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide,
J. Phys. Chem., 1965, 69, 3040-3041. [all data]
Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2,
J. Am. Chem. Soc., 1952, 415-421. [all data]
Bennet and Field, 1972
Bennet, S.L.; Field, F.H.,
Reversible Reactions of Gaseous Ions. V. The Methane - Water System at Low Temperatures,
J. Am. Chem. Soc., 1972, 94, 15, 5188, https://doi.org/10.1021/ja00770a008
. [all data]
Bennet and Field, 1972, 2
Bennet, S.L.; Field, F.H.,
Reversible Reactions of Gaseous Ions. VI. The NH3 - CH4, H2S - CH4 and CF4 - CH4 Systems at Low Temperatures,
J. Am. Chem. Soc., 1972, 94, 18, 6305, https://doi.org/10.1021/ja00773a009
. [all data]
Holm, 1974
Holm, T.,
J. Organometal. Chem., 1974, 77, 27. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W.,
In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]
Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D.,
Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane,
Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]
Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A.,
Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I.,
Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159
. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Berkowitz, Greene, et al., 1987
Berkowitz, J.; Greene, J.P.; Cho, H.; Ruscic, B.,
The ionization potentials of CH4 and CD4,
J. Chem. Phys., 1987, 86, 674. [all data]
Chatham, Hils, et al., 1984
Chatham, H.; Hils, D.; Robertson, R.; Gallagher, A.,
Total and partial electron collisional ionization cross sections for CH4, C2H6, SiH4, and Si2H6,
J. Chem. Phys., 1984, 81, 1770. [all data]
Plessis, Marmet, et al., 1983
Plessis, P.; Marmet, P.; Dutil, R.,
Ionization and appearance potentials of CH4 by electron impact,
J. Phys. B:, 1983, 16, 1283. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Selim and El-Kholy, 1975
Selim, E.T.M.; El-Kholy, S.B.,
Mass spectrometric ionization and dissociation of methane,
Indian J. Pure Appl. Phys., 1975, 13, 233. [all data]
Debies and Rabalais, 1975
Debies, T.P.; Rabalais, J.W.,
Calculated photoionization cross-sections and angular distributions for the isoelectronic series Ne, HF, H2O, NH3, and CH4,
J. Am. Chem. Soc., 1975, 97, 487. [all data]
Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O.,
Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules,
J. Chem. Phys., 1974, 61, 516. [all data]
Morrison and Traeger, 1973
Morrison, J.D.; Traeger, J.C.,
Ionization and dissociation by electron impact. III. CH4 and SiH4,
Int. J. Mass Spectrom. Ion Phys., 1973, 11, 289. [all data]
Potts and Price, 1972
Potts, A.W.; Price, W.C.,
The photoelectron spectra of methane, silane germane and stannane,
Proc. R. Soc. London A:, 1972, 165. [all data]
Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G.,
A third-derivative method for determining electron-impact onset potentials,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]
Bergmark, Rabalais, et al., 1972
Bergmark, T.; Rabalais, J.W.; Werme, L.O.; Karlsson, L.; Siegbahn, K.,
High-resolution electron spectra of methane, thiophene, 2-bromothiphene, and 3-bromothiophene
in Electron Spectroscopy, ed. D.A. Shirley (North-Holland Pub. Co., Amsterdam), 1972. [all data]
Rabalais, Bergmark, et al., 1971
Rabalais, J.W.; Bergmark, T.; Werme, L.O.; Karlsson, L.; Siegbahn, K.,
The Jahn-Teller effect in the electron spectrum of methane,
Phys. Scr., 1971, 3, 13. [all data]
Chupka and Berkowitz, 1971
Chupka, W.A.; Berkowitz, J.,
Photoionization of methane: ionization potential and proton affinity of CH4,
J. Chem. Phys., 1971, 54, 4256. [all data]
Pullen, Carlson, et al., 1970
Pullen, B.P.; Carlson, T.A.; Moddeman, W.E.; Schweitzer, G.K.; Bull, W.E.,
Photoelectron spectra of methane, silane, germane, methyl fluoride, difluoromethane, and trifluoromethane,
J. Chem. Phys., 1970, 53, 768. [all data]
Brundle, Robin, et al., 1970
Brundle, C.R.; Robin, M.B.; Basch, H.,
Electronic energies and electronic structures of the fluoromethanes,
J. Chem. Phys., 1970, 53, 2196. [all data]
Lossing and Semeluk, 1969
Lossing, F.P.; Semeluk, G.P.,
Threshold ionization efficiency curves for monoenergetic electron impact on H2, D2, CH4 and CD4,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 408. [all data]
Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H.,
Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer,
J. Chem. Phys., 1968, 49, 4467. [all data]
Villarejo, Stockbauer, et al., 1968
Villarejo, D.; Stockbauer, R.; Inghram, M.G.,
Measurement of threshold electrons in the photoionization of small molecules,
Bull. Am. Phys. Soc., 1968, 13, 39. [all data]
Cermak, 1968
Cermak, V.,
Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules,
Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]
Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W.,
The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]
Brehm, 1966
Brehm, B.,
Massenspektrometrische Untersuchung der Photoionisation von Molekulen,
Z. Naturforsch., 1966, 21a, 196. [all data]
Nicholson, 1965
Nicholson, A.J.C.,
Photoionization-efficiency curves. II. False and genuine structure,
J. Chem. Phys., 1965, 43, 1171. [all data]
Dibeler, Krauss, et al., 1965
Dibeler, V.H.; Krauss, M.; Reese, R.M.; Harllee, F.N.,
Mass-spectrometric study of photoionization. III. Methane and methane-d4,
J. Chem. Phys., 1965, 42, 3791. [all data]
Melton and Hamill, 1964
Melton, C.E.; Hamill, W.H.,
Appearance potentials by the retarding potential-difference method for secondary ions produced by excited-neutral, excited ion-neutral, and ion-neutral reactions,
J. Chem. Phys., 1964, 41, 1469. [all data]
Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]
Harshbarger, Robin, et al., 1973
Harshbarger, W.R.; Robin, M.B.; Lassettre, E.N.,
The electron impact spectra of the fluoromethanes,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 319. [all data]
McCulloh and Dibeler, 1976
McCulloh, K.E.; Dibeler, V.H.,
Enthalpy of formation of methyl and methylene radicals of photoionization studies of methane and ketene,
J. Chem. Phys., 1976, 64, 4445. [all data]
Chupka, 1968
Chupka, W.A.,
Mass-spectrometric study of the photoionization of methane,
J. Chem. Phys., 1968, 48, 2337. [all data]
Stockbauer, 1977
Stockbauer, R.,
A threshold photoelectron-photoion coincidence mass spectrometer for measureing ion kinetic energy release on fragmentation,
Int. J. Mass Spectrom. Ion Processes, 1977, 25, 89. [all data]
Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P.,
Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals,
Can. J. Chem., 1970, 48, 955. [all data]
Locht, Olivier, et al., 1979
Locht, R.; Olivier, J.L.; Momigny, J.,
Dissociative autoionization as a mechanism for the proton formation from methane and methane-d4 by low energy electron impact,
Chem. Phys., 1979, 43, 425. [all data]
Appell and Kubach, 1971
Appell, J.; Kubach, C.,
On the formation of energetic protons by electron impact on methane,
Chem. Phys. Lett., 1971, 11, 486. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy S°gas Entropy of gas at standard conditions S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.