Toluene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas50.1 ± 1.1kJ/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfgas50.00 ± 0.63kJ/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfgas48.0kJ/molN/ASchmidlin, 1906Value computed using ΔfHliquid° value of 10.0 kj/mol from Schmidlin, 1906 and ΔvapH° value of 38.0 kj/mol from Prosen, Gilmont, et al., 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
69.85200.Draeger, 1985Recommended values agree better with experimental heat capacities than results of calculation [ Chao J., 1984]. All other statistically calculated values [ Pitzer K.S., 1943, Taylor W.J., 1946, Scott D.W., 1962] are in close agreement with selected ones, except for high temperatures.; GT
94.68273.15
103.7 ± 0.4298.15
104.4300.
139.9400.
170.8500.
196.2600.
217.0700.
234.3800.
248.9900.
261.21000.
271.81100.
280.81200.
288.51300.
295.21400.
301.01500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
130.08 ± 0.26371.20Scott D.W., 1962Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Taylor W.J., 1946.; GT
140.2390.
137.2 ± 1.3393.
138.87 ± 0.27396.20
146.4410.
149.16 ± 0.30427.20
149.4 ± 1.7428.
160.33 ± 0.32462.20
159.0 ± 1.7463.
171.46 ± 0.34500.20

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid12. ± 1.1kJ/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfliquid12.0 ± 0.63kJ/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfliquid  CcbSchmidlin, 1906uncertain value: 10. kJ/mol; Undetermine error; ALS
Quantity Value Units Method Reference Comment
Δcliquid-3920. ± 20.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
liquid220.96J/mol*KN/AScott, Guthrie, et al., 1962DH
liquid219.2J/mol*KN/AKelley, 1929DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
157.09298.15Grolier, Roux-Desgranges, et al., 1993DH
155.96298.15Shiohama, Ogawa, et al., 1988DH
159.9303.15Reddy, 1986T = 303.15, 313.15 K.; DH
157.08298.15Roux-Dexgranges, Grolier, et al., 1986DH
158.70298.15Tardajos, Aicart, et al., 1986DH
158.7298.15Stephens and Olson, 1984T = 266 to 318 K. Cp given as 0.4117 cal g-1 C-1.; DH
157.0298.15Grolier, Inglese, et al., 1982DH
157.15298.15Wilhelm, Faradjzadeh, et al., 1982DH
156.0293.15Atalla, El-Sharkawy, et al., 1981DH
157.0294.71Andolenko and Grigor'ev, 1979T = 293 to 373 K. Unsoothed experimental datum given as 1.704 KJ/kg*K.; DH
157.057298.15Fortier and Benson, 1979DH
157.081298.15Fortier and Benson, 1977DH
156.94298.15Wilhelm, Grolier, et al., 1977DH
157.026298.15Fortier and Benson, 1976DH
156.99298.15Holzhauer and Ziegler, 1975T = 165 to 312 K. Cp = 187.43814 - 0.73026493T + 0.0029613602T2 - 2.8661704x10-6T3 J/mol*K.; DH
158.4298.15Pedersen, Kay, et al., 1975T = 298 to 348 K. Cp(liq) = 154.73 + 0.0981(T/K-273.15) + 0.001949(T/K-273.15)2 J/mol*K (298 to 348 K).; DH
156.8298.15Rajagopal and Subrahmanyam, 1974T = 298.15 to 323.15 K.; DH
156.5298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
158.6293.Rastorguev and Ganiev, 1967T = 293 to 373 K.; DH
157.33298.711Hwa and Ziegler, 1966T = 181 to 304 K. Unsmoothed experimental datum.; DH
157.23298.15Scott, Guthrie, et al., 1962T = 10 to 360 K.; DH
166.9324.Swietoslawski and Zielenkiewicz, 1958Mean value 21 to 81 C.; DH
140.295.Tschamler, 1948DH
158.6298.Kurbatov, 1947T = -76 to 60 C, mean Cp, four temperatures.; DH
156.9298.1Zhdanov, 1941T = 5 to 47 C.; DH
157.07298.2Burlew, 1940T = 281 to 383 K.; DH
156.5298.Vold, 1937DH
142.7227.8Aoyama and Kanda, 1935T = 78 to 228 K. Value is unsmoothed experimental datum.; DH
156.5298.1Richards and Wallace, 1932T = 293 to 333 K.; DH
161.9298.15Smith and Andrews, 1931T = 102 to 299 K. Value is unsmoothed experimental datum.; DH
153.0928.444Kelley, 1929T = 14 to 284 K. Value is unsmoothed experimental datum.; DH
151.0293.2Williams and Daniels, 1925T = 20 to 60 C.; DH
153.6303.Willams and Daniels, 1924T = 303 to 343 K. Equation only.; DH
158.2298.von Reis, 1881T = 292 to 390 K.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C7H7- + Hydrogen cation = Toluene

By formula: C7H7- + H+ = C7H8

Quantity Value Units Method Reference Comment
Δr1599.7 ± 1.9kJ/molD-EAGunion, Gilles, et al., 1992gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA; B
Δr1593. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1587. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase; B
Δr1577. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Δr1609. ± 30.kJ/molG+TSBohme and Young, 1971gas phase; B
Quantity Value Units Method Reference Comment
Δr1564. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1557. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase; B
Δr1579. ± 29.kJ/molIMRBBohme and Young, 1971gas phase; B

C3H9Si+ + Toluene = (C3H9Si+ • Toluene)

By formula: C3H9Si+ + C7H8 = (C3H9Si+ • C7H8)

Quantity Value Units Method Reference Comment
Δr119.kJ/molPHPMSStone and Stone, 1991gas phase; forms pi complex; M
Δr131.kJ/molPHPMSStone and Stone, 1991gas phase; toluene D8, forms pi complex; M
Δr111.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr146.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
43.1468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M

Bromine anion + Toluene = (Bromine anion • Toluene)

By formula: Br- + C7H8 = (Br- • C7H8)

Quantity Value Units Method Reference Comment
Δr36. ± 7.5kJ/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr0.4 ± 4.2kJ/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.4423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

C4H9+ + Toluene = (C4H9+ • Toluene)

By formula: C4H9+ + C7H8 = (C4H9+ • C7H8)

Quantity Value Units Method Reference Comment
Δr120.kJ/molPHPMSStone and Stone, 1991gas phase; toluene D8, forms protonated t-butyltoluene; M
Δr122.kJ/molPHPMSStone and Stone, 1991gas phase; forms protomated t-butyltoluene; M
Quantity Value Units Method Reference Comment
Δr228.J/mol*KPHPMSStone and Stone, 1991gas phase; toluene D8, forms protonated t-butyltoluene; M
Δr228.J/mol*KPHPMSStone and Stone, 1991gas phase; forms protomated t-butyltoluene; M

C7H8+ + Toluene = (C7H8+ • Toluene)

By formula: C7H8+ + C7H8 = (C7H8+ • C7H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr60.7kJ/molMPIErnstberger, Krause, et al., 1990gas phase; M
Δr23.kJ/molPIRuhl, Bisling, et al., 1986gas phase; from vIP of perpendicular dimer; M
Δr66.9kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C6H7N+ + Toluene = (C6H7N+ • Toluene)

By formula: C6H7N+ + C7H8 = (C6H7N+ • C7H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr57.3kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C9H12+ + Toluene = (C9H12+ • Toluene)

By formula: C9H12+ + C7H8 = (C9H12+ • C7H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr50.2kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

Nitric oxide anion + Toluene = (Nitric oxide anion • Toluene)

By formula: NO- + C7H8 = (NO- • C7H8)

Quantity Value Units Method Reference Comment
Δr185.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Hydrogen bromide + Benzene, (bromomethyl)- = Toluene + Bromine

By formula: HBr + C7H7Br = C7H8 + Br2

Quantity Value Units Method Reference Comment
Δr33.9 ± 4.2kJ/molEqkBenson and Buss, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 33. ± 4. kJ/mol; ALS

Chlorine anion + Toluene = (Chlorine anion • Toluene)

By formula: Cl- + C7H8 = (Cl- • C7H8)

Quantity Value Units Method Reference Comment
Δr16.7kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
17.300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Hydrogen iodide + Benzene, (iodomethyl)- = Toluene + Iodine

By formula: HI + C7H7I = C7H8 + I2

Quantity Value Units Method Reference Comment
Δr-33. ± 4.6kJ/molCmGraham, Nichol, et al., 1955liquid phase; solvent: p-Xylene; ALS

Benzene, (bromomethyl)- + 0.5Hydrogen = Toluene + 0.5Bromine

By formula: C7H7Br + 0.5H2 = C7H8 + 0.5Br2

Quantity Value Units Method Reference Comment
Δr-4. ± 2.kJ/molChydAshcroft, Carson, et al., 1963liquid phase; ALS

Iodide + Toluene = (Iodide • Toluene)

By formula: I- + C7H8 = (I- • C7H8)

Quantity Value Units Method Reference Comment
Δr46.0 ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

5-Methylene 1,3-cyclohexadiene = Toluene

By formula: C7H8 = C7H8

Quantity Value Units Method Reference Comment
Δr-100. ± 10.kJ/molCmBartmess and Griffith, 1990gas phase; Gas phase acidity; ALS

Benzene, (iodomethyl)- = Toluene + 0.5Iodine

By formula: C7H7I = C7H8 + 0.5I2

Quantity Value Units Method Reference Comment
Δr-41. ± 2.kJ/molChydAshcroft, Carson, et al., 1963liquid phase; ALS

(Lithium ion (1+) • Toluene) + Toluene = (Lithium ion (1+) • 2Toluene)

By formula: (Li+ • C7H8) + C7H8 = (Li+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr116. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Sodium ion (1+) • Toluene) + Toluene = (Sodium ion (1+) • 2Toluene)

By formula: (Na+ • C7H8) + C7H8 = (Na+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr87. ± 2.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Cesium ion (1+) • Toluene) + Toluene = (Cesium ion (1+) • 2Toluene)

By formula: (Cs+ • C7H8) + C7H8 = (Cs+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr61.5 ± 4.2kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Rubidium ion (1+) • Toluene) + Toluene = (Rubidium ion (1+) • 2Toluene)

By formula: (Rb+ • C7H8) + C7H8 = (Rb+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr67.8 ± 4.2kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Potassium ion (1+) • Toluene) + Toluene = (Potassium ion (1+) • 2Toluene)

By formula: (K+ • C7H8) + C7H8 = (K+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr74.9 ± 4.6kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Chromium ion (1+) • Toluene) + Toluene = (Chromium ion (1+) • 2Toluene)

By formula: (Cr+ • C7H8) + C7H8 = (Cr+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr222. ± 38.kJ/molRAKLin and Dunbar, 1997RCD

Benzene, 1-methyl-3-(1-methylethyl)- + Benzene = Toluene + Benzene, (1-methylethyl)-

By formula: C10H14 + C6H6 = C7H8 + C9H12

Quantity Value Units Method Reference Comment
Δr0.0 ± 0.6kJ/molEqkTsvetkov, Rozhnov, et al., 1985liquid phase; ALS

Lithium ion (1+) + Toluene = (Lithium ion (1+) • Toluene)

By formula: Li+ + C7H8 = (Li+ • C7H8)

Quantity Value Units Method Reference Comment
Δr183. ± 17.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Sodium ion (1+) + Toluene = (Sodium ion (1+) • Toluene)

By formula: Na+ + C7H8 = (Na+ • C7H8)

Quantity Value Units Method Reference Comment
Δr112. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Cesium ion (1+) + Toluene = (Cesium ion (1+) • Toluene)

By formula: Cs+ + C7H8 = (Cs+ • C7H8)

Quantity Value Units Method Reference Comment
Δr64.0 ± 4.6kJ/molCIDTAmunugama and Rodgers, 2002RCD

Rubidium ion (1+) + Toluene = (Rubidium ion (1+) • Toluene)

By formula: Rb+ + C7H8 = (Rb+ • C7H8)

Quantity Value Units Method Reference Comment
Δr71.1 ± 4.2kJ/molCIDTAmunugama and Rodgers, 2002RCD

Potassium ion (1+) + Toluene = (Potassium ion (1+) • Toluene)

By formula: K+ + C7H8 = (K+ • C7H8)

Quantity Value Units Method Reference Comment
Δr79.9 ± 5.0kJ/molCIDTAmunugama and Rodgers, 2002RCD

Chromium ion (1+) + Toluene = (Chromium ion (1+) • Toluene)

By formula: Cr+ + C7H8 = (Cr+ • C7H8)

Quantity Value Units Method Reference Comment
Δr176. ± 14.kJ/molRAKLin and Dunbar, 1997RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C7H8+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)8.828 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)784.0kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity756.3kJ/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
782.4Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
753.5Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
8.8276 ± 0.0006TELu, Eiden, et al., 1992LL
8.79PEKlasinc, Kovac, et al., 1983LBLHLM
8.80 ± 0.07EISelim and Helal, 1982LBLHLM
8.83PEKimura, Katsumata, et al., 1981LLK
8.82EIMcLoughlin, Morrison, et al., 1979LLK
8.82PETraeger and McLoughlin, 1978LLK
8.82PITraeger and McLoughlin, 1978LLK
8.82 ± 0.01EQLias and Ausloos, 1978LLK
8.84PEBock, Kaim, et al., 1978LLK
8.82PEBehan, Johnstone, et al., 1976LLK
8.81EIHoffman, 1974LLK
8.80PEMcLean, 1973LLK
8.78 ± 0.02PEMaier and Turner, 1973LLK
8.91CTSKobayashi, Kobayashi, et al., 1973LLK
8.8 ± 0.1EIGilbert, Leach, et al., 1973LLK
8.72PEDebies and Rabalais, 1973LLK
8.67EICooks, Bertrand, et al., 1973LLK
8.82PIStebbings and Taylor, 1972LLK
8.89 ± 0.03EIJohnstone and Mellon, 1972LLK
8.71CTSPitt, 1970RDSH
8.82PEDewar and Worley, 1969RDSH
8.80 ± 0.04EIBock, Seidl, et al., 1968RDSH
8.82 ± 0.02PIAkopyan and Vilesov, 1968RDSH
8.82PIBralsford, Harris, et al., 1960RDSH
8.82 ± 0.01PIWatanabe, 1954RDSH
8.82 ± 0.05SPrice and Walsh, 1947RDSH
8.82PEHowell, Goncalves, et al., 1984Vertical value; LBLHLM
8.85PEKobayashi, 1978Vertical value; LLK
9.00PEKlasinc, Novak, et al., 1978Vertical value; LLK
8.90 ± 0.03PEMarschner and Goetz, 1974Vertical value; LLK
8.82PEBischof, Dewar, et al., 1974Vertical value; LLK
8.85 ± 0.015PEKobayashi and Nagakura, 1972Vertical value; LLK
9.0 ± 0.03PEKlessinger, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C5H5+16.4 ± 0.2C2H2+HEITajima and Tsuchiya, 1973LLK
C5H5+16.7?EIHarrison, Haynes, et al., 1965RDSH
C6H5+13.70CH3EIHoffman, 1974LLK
C6H5+13.7 ± 0.1CH3EIMajer and Patrick, 1962RDSH
C7H7+10.94HTRPIHuang and Dunbar, 1991T = 0K; LL
C7H7+10.70 ± 0.09HEISelim and Helal, 1982LBLHLM
C7H7+10.71HEIMcLoughlin, Morrison, et al., 1979LLK
C7H7+10.71HPITraeger and McLoughlin, 1978LLK
C7H7+10.71 ± 0.03HTETraeger and McLoughlin, 1977LLK
C7H7+11.8HEIHoffman, 1974LLK
C7H7+11.55 ± 0.05HPIAkopyan and Vilesov, 1968RDSH
C7H7+11.7 ± 0.1HEINounou, 1966RDSH
C7H7+[C6H5CH2+]10.7 ± 0.1HPILifshitz, Gotkis, et al., 1993T = 298K; LL
C7H7+[C6H5CH2+]11.1 ± 0.1HPILifshitz, Gotkis, et al., 1993T = 0K; LL
C7H7+[C6H5CH2+]11.1HPILifshitz, Gotkis, et al., 1993, 2T = 0K; LL
C7H7+[C6H5CH2+]11.17 ± 0.10HPIPECOBombach, Dannacher, et al., 1983T = 0K; LBLHLM
C7H7+[C6H5CH2+]11.17 ± 0.10HPIPECOBombach, Dannacher, et al., 1983, 2T = 0K; LBLHLM
C7H7+[c-C7H7+]11.1 ± 0.1HPILifshitz, Gotkis, et al., 1993T = 0K; LL
C7H7+[c-C7H7+]10.7 ± 0.1HPILifshitz, Gotkis, et al., 1993T = 298K; LL
C7H7+[c-C7H7+]11.1HPILifshitz, Gotkis, et al., 1993, 2T = 0K; LL
C7H7+[c-C7H7+]10.52 ± 0.07HPIPECOBombach, Dannacher, et al., 1983T = 0K; LBLHLM
C7H7+[c-C7H7+]10.52 ± 0.10HPIPECOBombach, Dannacher, et al., 1983, 2T = 0K; LBLHLM

De-protonation reactions

C7H7- + Hydrogen cation = Toluene

By formula: C7H7- + H+ = C7H8

Quantity Value Units Method Reference Comment
Δr1599.7 ± 1.9kJ/molD-EAGunion, Gilles, et al., 1992gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA; B
Δr1593. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1587. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase; B
Δr1577. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Δr1609. ± 30.kJ/molG+TSBohme and Young, 1971gas phase; B
Quantity Value Units Method Reference Comment
Δr1564. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1557. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase; B
Δr1579. ± 29.kJ/molIMRBBohme and Young, 1971gas phase; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D., Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene, J. Res. NBS, 1945, 34, 65-70. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes, J. Res. NBS, 1946, 36, 455-461. [all data]

Schmidlin, 1906
Schmidlin, M.J., Recherches chimiques et thermochimiques sur la constitution des rosanilines, Ann. Chim. Phys., 1906, 1, 195-256. [all data]

Draeger, 1985
Draeger, J.A., The methylbenzenes II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation, J. Chem. Thermodyn., 1985, 17, 263-275. [all data]

Chao J., 1984
Chao J., Chemical thermodynamic properties of toluene, o-, m- and p-xylenes, Thermochim. Acta, 1984, 72, 323-334. [all data]

Pitzer K.S., 1943
Pitzer K.S., The thermodynamics and molecular structure of benzene and its methyl derivatives, J. Am. Chem. Soc., 1943, 65, 803-829. [all data]

Taylor W.J., 1946
Taylor W.J., Heats, equilibrium constants, and free energies of formation of the alkylbenzenes, J. Res. Nat. Bur. Stand., 1946, 37, 95-122. [all data]

Scott D.W., 1962
Scott D.W., Toluene: thermodynamic properties, molecular vibrations, and internal rotation, J. Phys. Chem., 1962, 66, 911-914. [all data]

Montgomery J.B., 1942
Montgomery J.B., The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene, J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]

Scott, Guthrie, et al., 1962
Scott, D.W.; Guthrie, G.B.; Messerly, J.F.; Todd, S.S.; Berg, W.T.; Hossenlopp, I.A.; McCullough, J.P., Toluene: thermodynamic properties, molecular vibrations, and internal rotation, J. Phys. Chem., 1962, 66, 911-914. [all data]

Kelley, 1929
Kelley, K.K., The heat capacity of toluene from 14K to 298K. The entropy and the free energy of formation, J. Am. Chem. Soc., 1929, 51, 2738-2741. [all data]

Grolier, Roux-Desgranges, et al., 1993
Grolier, J.-P.E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E., Heat capacities and densities of mixtures of very polar substances 2. Mixtures containing N,N-dimethylformamide, J. Chem. Thermodynam., 1993, 25(1), 41-50. [all data]

Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I., Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K, J. Chem. Thermodynam., 1988, 20, 1183-1189. [all data]

Reddy, 1986
Reddy, K.S., Isentropic compressibilities of binary liquid mixtures at 303.15 and 313.15 K, J. Chem. Eng. Data, 1986, 31, 238-240. [all data]

Roux-Dexgranges, Grolier, et al., 1986
Roux-Dexgranges, G.; Grolier, J.-P.E.; Villamanan, M.A.; Casanova, C., Role of alcohol in microemulsions. III. Volumes and heat capacities in the continuious phase water-n-butanol-toluene of reverse micelles, Fluid Phase Equilibria, 1986, 25, 209-230. [all data]

Tardajos, Aicart, et al., 1986
Tardajos, G.; Aicart, E.; Costas, M.; Patterson, D., Liquid structure and second-order mixing functions for benzene, toluene, and p-xylene with n-alkanes, J. Chem. Soc., Faraday Trans., 1986, 1 82, 2977-2987. [all data]

Stephens and Olson, 1984
Stephens, M.; Olson, J.D., Measurement of excess heat capacities by differential scanning calorimetry, Thermochim. Acta, 1984, 76, 79-85. [all data]

Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K, J. Chem. Thermodynam., 1982, 14, 523-529. [all data]

Wilhelm, Faradjzadeh, et al., 1982
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E., Excess volumes and excess heat capacities of 2,3-dimethylbutane + butane and + toluene, J. Chem. Thermodynam., 1982, 14, 1199-1200. [all data]

Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an AC heated-wire technique, Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]

Andolenko and Grigor'ev, 1979
Andolenko, R.A.; Grigor'ev, B.A., Investigation of isobaric heat capacity of aromatic hydrocarbons at atmospheric pressure, Iaz. Vyssh. Ucheb. Zaved., Neft i Gaz (11), 1979, 78, 90. [all data]

Fortier and Benson, 1979
Fortier, J.-L.; Benson, G.C., Heat capacities of some binary aromatic hydrocarbon mixtures containing benzene or toluene, J. Chem. Eng. Data, 1979, 24(1), 34-37. [all data]

Fortier and Benson, 1977
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary mixtures of tetrachloromethane witlh some aromatic liquids at 298.15 K, J. Chem. Thermodynam., 1977, 9, 1181-1188. [all data]

Wilhelm, Grolier, et al., 1977
Wilhelm, E.; Grolier, J.-P.E.; Karbalai Ghassemi, M.H., Molar heat capacities of binary liquid mixtures: 1,2-dichloroethane + benzene, + toluene, and + p-xylene, Ber. Bunsenges. Phys. Chem., 1977, 81, 925-930. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Holzhauer and Ziegler, 1975
Holzhauer, J.K.; Ziegler, W.T., Temperature dependence of excess thermodynamic properties of n-heptane-toluene, methylcyclohexane-toluene, and n-heptane-methylcyclohexane systems, J. Phys. Chem., 1975, 79(6), 590-604. [all data]

Pedersen, Kay, et al., 1975
Pedersen, M.J.; Kay, W.B.; Hershey, H.C., Excess enthalpies, heat capacities, and excess heat capacities as a function of temperature in liquid mixtures of ethanol + toluene, ethanol + hexamethyldisiloxane, and hexamethyldisiloxane + toluene, J. Chem. Thermodynam., 1975, 7, 1107-1118. [all data]

Rajagopal and Subrahmanyam, 1974
Rajagopal, E.; Subrahmanyam, S.V., Excess function of VE,(dVE/dp)T, and CpE of isooctane + benzene and + toluene, J. Chem. Thermodynam., 1974, 6, 873-876. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Hwa and Ziegler, 1966
Hwa, S.C.P.; Ziegler, W.T., Temperature dependence of excess thermodynamic properties of ethanol-methylcyclohexane and ethanol-toluene systems, J. Phys. Chem., 1966, 70(8), 2572-2593. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heats of binary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 367-369. [all data]

Tschamler, 1948
Tschamler, H., Uber binare flussige Mischungen I. Mischungswarment, Volumseffekte und Zustandsdiagramme von chlorex mit benzol und n-alkylbenzolen, Monatsh. Chem., 1948, 79, 162-177. [all data]

Kurbatov, 1947
Kurbatov, V.Ya., Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons, Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]

Zhdanov, 1941
Zhdanov, A.K., Specific heats of some liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]

Burlew, 1940
Burlew, J.S., Measurement of the heat capacity of a small volume of liquid by the piezo-thermometric method. III. Heat capacity of benzene and of toluene from 8°C. to the boiling point, J. Am. Chem. Soc., 1940, 62, 696-700. [all data]

Vold, 1937
Vold, R.D., A calorimetric test of the solubility equation for regular solutions, J. Am. Chem. Soc., 1937, 59, 1515-1521. [all data]

Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E., Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature, Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]

Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr., The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients, J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]

Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H., Thermal energy studies. I. Phenyl derivatives of methane, ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]

Williams and Daniels, 1925
Williams, J.W.; Daniels, F., The specific heats of binary mixtures, J. Am. Chem. Soc., 1925, 47, 1490-1503. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Kim, Wenthold, et al., 1999
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C., Ultraviolet photoelectron spectroscopy of o-, m-, and p-halobenzyl anions, J. Phys. Chem. A, 1999, 103, 50, 10833-10841, https://doi.org/10.1021/jp992817o . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C., Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes, J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j . [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Stone and Stone, 1991
Stone, J.M.; Stone, J.A., A High Pressure Mass Spectrometric Study of the Binding of (CH3)3Si+ and (CH3)3C+ to Toluene and Benzene, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 247, https://doi.org/10.1016/0168-1176(91)85107-W . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J., Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer, J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603 . [all data]

Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H., Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet, Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Benson and Buss, 1957
Benson, S.W.; Buss, J.H., The thermodynamics of bromination of toluene and the heat of formation of the benzyl radical, J. Phys. Chem., 1957, 61, 104-109. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2, J. Chem. Soc., 1955, 115-121. [all data]

Ashcroft, Carson, et al., 1963
Ashcroft, S.J.; Carson, A.S.; Pedley, J.B., Thermochemistry of reductions caused by lithium aluminium hydride. Part 2.-The heats of formation of benzyl bromide, benzyl iodide and the benzyl radical, Trans. Faraday Soc., 1963, 59, 2713-2717. [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Bartmess and Griffith, 1990
Bartmess, J.E.; Griffith, S.S., Tautomerization energetics of benzoannelated toluenes, J. Am. Chem. Soc., 1990, 112, 2931-2936. [all data]

Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b . [all data]

Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C., Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives, Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n . [all data]

Tsvetkov, Rozhnov, et al., 1985
Tsvetkov, V.F.; Rozhnov, A.M.; Nesterova, T.N., Study of the equilibrium of isomerization and transalkylation of isopropyltoluenes, Neftekhimiya, 1985, 53-57. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Lu, Eiden, et al., 1992
Lu, K.-T.; Eiden, G.C.; Weisshaar, J.C., Toluene cation: nearly free rotation of the methyl group, J. Phys. Chem., 1992, 96, 9742. [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Selim and Helal, 1982
Selim, E.T.M.; Helal, A.I., The study of C1-C3 monosubstituted alkyl benzenes by the inverse convolution of first differential ionization efficiency curves, Org. Mass Spectrom., 1982, 17, 539. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

McLoughlin, Morrison, et al., 1979
McLoughlin, R.G.; Morrison, J.D.; Traeger, J.C., Photoionization of the C-1 - C-4 monosubstituted alkyl benzenes: Thermochemistry of [C7H7]+ and [C8H9]+ formation, Org. Mass Spectrom., 1979, 14, 104. [all data]

Traeger and McLoughlin, 1978
Traeger, J.C.; McLoughlin, R.G., A photoionization study of the energetics of C7H7+ ion formed from C7H8 precursors, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 319. [all data]

Lias and Ausloos, 1978
Lias, S.G.; Ausloos, P.J., eIonization energies of organic compounds by equilibrium measurements, J. Am. Chem. Soc., 1978, 100, 6027. [all data]

Bock, Kaim, et al., 1978
Bock, H.; Kaim, W.; Rohwer, H.E., Die hyperkonjugative Stabilisierung von p-Xylol-Radikalkationen durch (H3C)3Si-Substituenten, Chem. Ber., 1978, 111, 3573. [all data]

Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W., An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes, Org. Mass Spectrom., 1976, 11, 207. [all data]

Hoffman, 1974
Hoffman, M.K., Hidden rearrangements in the mass spectral decomposition of cycloheptatriene, Z. Naturforsch. A:, 1974, 29, 1077. [all data]

McLean, 1973
McLean, R.A.N., The bonding of a silicon atom with a phenyl ring: The photoelectron spectrum of phenylsilane, Can. J. Chem., 1973, 51, 2089. [all data]

Maier and Turner, 1973
Maier, J.P.; Turner, D.W., Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part 2. Phenylethylenes, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 196. [all data]

Kobayashi, Kobayashi, et al., 1973
Kobayashi, H.; Kobayashi, M.; Kaizu, Y., Molecular complexes of arenetricarbonylchromium, Bull. Chem. Soc. Jpn., 1973, 46, 3109. [all data]

Gilbert, Leach, et al., 1973
Gilbert, J.R.; Leach, W.P.; Miller, J.R., Ionisation appearance potential measurements in arene chromium tricarbonyls, J. Organomet. Chem., 1973, 49, 219. [all data]

Debies and Rabalais, 1973
Debies, T.P.; Rabalais, J.W., Photoelectron spectra of substituted benzenes. II. Seven valence electron substituents, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 355. [all data]

Cooks, Bertrand, et al., 1973
Cooks, R.G.; Bertrand, M.; Beynon, J.H.; Rennekamp, M.E.; Setser, D.W., Energy partitioning data as an ion structure probe. Substituted anisoles, J. Am. Chem. Soc., 1973, 95, 1732. [all data]

Stebbings and Taylor, 1972
Stebbings, W.L.; Taylor, J.W., Photoionization mass spectrometry. II. Contrasting fragmentation of toluene by photons and by electrons, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 471. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Pitt, 1970
Pitt, C.G., Hyperconjugation: An alternative to the concept of the pπ-dπ bond in Group IV chemistry, J. Organomet. Chem., 1970, 23, 35. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Bock, Seidl, et al., 1968
Bock, H.; Seidl, H.; Fochler, M., d-Orbitaleffekte in silicium-substituierten π-Elektronensystemen. X. Vertikale Ionisierungsenergien von Alkyl- und Silyl-benzolen, Chem. Ber., 1968, 101, 2815. [all data]

Akopyan and Vilesov, 1968
Akopyan, M.E.; Vilesov, F.I., Mass-spectrometric investigation of the photo-ionization of benzene and its methyl derivatives, Khim. Vysokikh Energ., 1968, 2, 107, In original 89. [all data]

Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C., The effect of fluorine on the electronic spectra and ionization potentials of molecules, Proc. Roy. Soc. (London), 1960, A258, 459. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Price and Walsh, 1947
Price, W.C.; Walsh, A.D., The absorption spectra of benzene derivatives in the vacuum ultra-violet. I, Proc. Roy. Soc. (London), 1947, A191, 22. [all data]

Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K., Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials, J. Am. Chem. Soc., 1984, 106, 3968. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G., Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode, Croat. Chem. Acta, 1978, 51, 43. [all data]

Marschner and Goetz, 1974
Marschner, F.; Goetz, H., Korrelation zwischen photoelektronen- und elektronen-spektren. III. Eine methode zur deutung der PE- und UV-spektren vom toluol, Tetrahedron, 1974, 30, 3451. [all data]

Bischof, Dewar, et al., 1974
Bischof, P.K.; Dewar, M.J.S.; Goodman, D.W.; Jones, T.B., Photoelectron spectra of molecules. VI. Hyperconjugation versus pπ-dπ bonding in group IVb compounds, J. Organomet. Chem., 1974, 82, 89. [all data]

Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S., Photoelectron spectra of nitro-compounds, Chem. Lett., 1972, 903. [all data]

Klessinger, 1972
Klessinger, M., Ionization potentials of substituted benzenes, Angew. Chem. Int. Ed. Engl., 1972, 11, 525. [all data]

Tajima and Tsuchiya, 1973
Tajima, S.; Tsuchiya, T., Energetics consideration of C5H5+ ions produced from various precursors by electron impact, Bull. Chem. Soc. Jpn., 1973, 46, 3291. [all data]

Harrison, Haynes, et al., 1965
Harrison, A.G.; Haynes, P.; McLean, S.; Meyer, F., The mass spectra of methyl-substituted cyclopentadienes, J. Am. Chem. Soc., 1965, 87, 5099. [all data]

Majer and Patrick, 1962
Majer, J.R.; Patrick, C.R., Electron impact on some halogenated aromatic compounds, J. Chem. Soc. Faraday Trans., 1962, 58, 17. [all data]

Huang and Dunbar, 1991
Huang, F.-S.; Dunbar, R.C., Time-resolved photodissociation of toluene ion [Eo(C6H5CH3+ Ü C7H7+ + H)=2.11 eV; cited data derived using evaluated IP for toluene. Modeling uncertainties give considerable latitude in the assignment of kinetic parameters.], Int. J. Mass Spectrom. Ion Processes, 1991, 109, 151. [all data]

Traeger and McLoughlin, 1977
Traeger, J.C.; McLoughlin, R.G., Threshold photoionization and dissociation of toluene and cycloheptatriene, J. Am. Chem. Soc., 1977, 99, 7351. [all data]

Nounou, 1966
Nounou, P., Etude des composes aromatiques par spectrometrie de masse. I. Mesure des potentials d'ionisation et d'apparition par la methode du potential retardateur et interpretation des courbes d'ionisation differentielle, J. Chim. Phys., 1966, 63, 994. [all data]

Lifshitz, Gotkis, et al., 1993
Lifshitz, C.; Gotkis, Y.; Ioffe, A.; Laskin, J.; Shaik, S., Is the tropylium ion (Tr+) formed from toluene at its thermochemical threshold?, Int. J. Mass Spectrom. Ion Processes, 1993, 125, R7. [all data]

Lifshitz, Gotkis, et al., 1993, 2
Lifshitz, C.; Gotkis, Y.; Laskin, J.; Ioffe, A.; Shaik, S., Threshold formation of benzylium (Bz+) and tropylium (Tr+) from toluene. Nonstatistical behavior in Franck-Condon gaps, J. Phys. Chem., 1993, 97, 12291. [all data]

Bombach, Dannacher, et al., 1983
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., Energy and time dependence of the decay processes of toluene molecular cations, J. Am. Chem. Soc., 1983, 105, 4205. [all data]

Bombach, Dannacher, et al., 1983, 2
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., The rate-energy functions for the formation of tropylium and benzylium ions from toluene molecular cations, Chem. Phys. Lett., 1983, 95, 259. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References