Oxygen
- Formula: O2
- Molecular weight: 31.9988
- IUPAC Standard InChIKey: MYMOFIZGZYHOMD-UHFFFAOYSA-N
- CAS Registry Number: 7782-44-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Molecular oxygen; Oxygen molecule; Pure oxygen; O2; Liquid oxygen; UN 1072; UN 1073; Dioxygen
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 205.152 ± 0.005 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 205.15 | J/mol*K | Review | Chase, 1998 | Data last reviewed in March, 1977 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 100. to 700. | 700. to 2000. | 2000. to 6000. |
---|---|---|---|
A | 31.32234 | 30.03235 | 20.91111 |
B | -20.23531 | 8.772972 | 10.72071 |
C | 57.86644 | -3.988133 | -2.020498 |
D | -36.50624 | 0.788313 | 0.146449 |
E | -0.007374 | -0.741599 | 9.245722 |
F | -8.903471 | -11.32468 | 5.337651 |
G | 246.7945 | 236.1663 | 237.6185 |
H | 0.0 | 0.0 | 0.0 |
Reference | Chase, 1998 | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in March, 1977; New parameter fit January 2009 | Data last reviewed in March, 1977; New parameter fit January 2009 | Data last reviewed in March, 1977; New parameter fit January 2009 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: O2- + O2 = (O2- • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48. ± 20. | kJ/mol | AVG | N/A | Average of 5 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrS° | 130. | J/mol*K | PHPMS | Conway and Nesbit, 1968 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13. ± 4.6 | kJ/mol | TDAs | Hiraoka, 1888 | gas phase; see also Sherwood, Hanold, et al., 1996. Aquino, Taylor, et al., 2001 calns indicate rectangular anion; B |
ΔrG° | 23. ± 4.2 | kJ/mol | IMRE | Payzant J.D. and Kebarle, 1972 | gas phase; B |
ΔrG° | 13. ± 4.2 | kJ/mol | IMRE | Pack and Phelps, 1971 | gas phase; B |
ΔrG° | 16.7 ± 2.1 | kJ/mol | IMRE | Parkes, 1971 | gas phase; B |
ΔrG° | 16. ± 4.2 | kJ/mol | TDAs | Conway and Nesbit, 1968 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 300. | DT | Pack and Phelps, 1971 | gas phase; M |
By formula: O2+ + O2 = (O2+ • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. ± 5. | kJ/mol | AVG | N/A | Average of 5 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.7 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrS° | 104.7 | J/mol*K | PHPMS | Conway and Janik, 1970 | gas phase; M |
ΔrS° | 84. | J/mol*K | PHPMS | Durden, Kebarle, et al., 1969 | gas phase; M |
ΔrS° | 86.2 | J/mol*K | PHPMS | Yang and Conway, 1964 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
16. | 300. | DT | Rakshit and Warneck, 1981 | gas phase; M |
14. | 300. | DT | Rakshit and Warneck, 1980 | gas phase; M |
14. | 296. | FA | Howard, Bierbaum, et al., 1972 | gas phase; M |
25. | 200. | FA | Adams and Bohme, 1970 | gas phase; M |
By formula: (HO2+ • 2O2) + O2 = (HO2+ • 3O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 13. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.6 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka, Saluja, et al., 1979 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.6 | 105. | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; Entropy change calculated or estimated; M |
By formula: (O2- • 7N2 • O2) + N2 = (O2- • 8N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. ± 1. | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
ΔrH° | 6.40 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
ΔrS° | 75.3 | J/mol*K | N/A | Hiraoka, 1988, 2 | gas phase; Entropy change calculated or estimated; M |
By formula: O- + O2 = (O- • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. | kJ/mol | PDiss | Hiller and Vestal, 1981 | gas phase; From thermochemical cycle, ΔrH<; M |
ΔrH° | 163. | kJ/mol | PES | Novich, Engelking, et al., 1979 | gas phase; From thermochemical cycle, from EA(O3), D(O-O2) AND EA(O); M |
ΔrH° | 160. | kJ/mol | PDiss | Cosby, Moseley, et al., 1978 | gas phase; M |
ΔrH° | 180. | kJ/mol | CID | Lifschitz, Wu, et al., 1978 | gas phase; M |
By formula: (O2+ • O2) + O2 = (O2+ • 2O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. ± 1. | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrH° | 28.7 ± 0.3 | kJ/mol | PHPMS | Conway and Janik, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrS° | 133.0 | J/mol*K | PHPMS | Conway and Janik, 1970 | gas phase; M |
By formula: (HO2+ • O2) + O2 = (HO2+ • 2O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 28. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.7 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 92. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (O2+ • 3O2) + O2 = (O2+ • 4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrH° | 10.3 ± 0.75 | kJ/mol | PHPMS | Conway and Janik, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.7 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Conway and Janik, 1970 | gas phase; M |
By formula: (O2+ • 2O2) + O2 = (O2+ • 3O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.4 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrH° | 10.6 ± 0.4 | kJ/mol | PHPMS | Conway and Janik, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrS° | 82.8 | J/mol*K | PHPMS | Conway and Janik, 1970 | gas phase; M |
By formula: (O2+ • 4O2) + O2 = (O2+ • 5O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrH° | 8. ± 3. | kJ/mol | PHPMS | Conway and Janik, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.5 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrS° | 71.1 | J/mol*K | PHPMS | Conway and Janik, 1970 | gas phase; M |
By formula: O3- + O2 = (O3- • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.79 ± 0.84 | kJ/mol | TDAs | Hiraoka, 1988, 2 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -15.1 ± 2.1 | kJ/mol | TDAs | Hiraoka, 1988, 2 | gas phase; B |
By formula: NO- + O2 = (NO- • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 60.7 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
-2. | 200. | FA | Dunkin, Fehsenfeld, et al., 1971 | gas phase; DG>; M |
By formula: (O2- • 6O2) + O2 = (O2- • 7O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.86 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 67. | J/mol*K | N/A | Hiraoka, 1988 | gas phase; Entropy change calculated or estimated; M |
By formula: (O2+ • 7O2) + O2 = (O2+ • 8O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.61 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Hiraoka, 1988 | gas phase; Entropy change calculated or estimated; M |
By formula: (O2+ • O2) + N2 = (O2+ • N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12. | kJ/mol | HPMS | Speller and Fitaire, 1983 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 42.3 | J/mol*K | HPMS | Speller and Fitaire, 1983 | gas phase; Entropy change is questionable; M |
By formula: (H3+ • O2) + O2 = (H3+ • 2O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.1 | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; From thermochemical cycle(O2H+)O2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; From thermochemical cycle(O2H+)O2; M |
By formula: (O3- • 4O2) + O2 = (O3- • 5O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.44 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; ΔrH, ΔrS approximate; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 68.6 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; ΔrH, ΔrS approximate; M |
By formula: H3+ + O2 = (H3+ • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.3 | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; From thermochemical cycle(O2H+)O2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.0 | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; From thermochemical cycle(O2H+)O2; M |
(O2S- • 2 • ) + = (O2S- • 3 • )
By formula: (O2S- • 2O2S • O2) + O2S = (O2S- • 3O2S • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.1 ± 1.7 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6. ± 13. | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: (O2S- • O2S • O2) + O2S = (O2S- • 2O2S • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.2 ± 1.7 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10. ± 8.4 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: (O3S- • O2S • O2) + O2S = (O3S- • 2O2S • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.8 ± 2.5 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15. ± 8.8 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: O+ + O2 = (O+ • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 179. | kJ/mol | PDiss | Hiller and Vestal, 1982 | gas phase; M |
ΔrH° | 200. | kJ/mol | PI | Linn, Ono, et al., 1981 | gas phase; M |
ΔrH° | 209. | kJ/mol | PDiss | Mosely, Ozenne, et al., 1981 | gas phase; M |
By formula: (O3S- • O2) + O2S = (O3S- • O2S • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.2 ± 3.3 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18. ± 9.2 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: (O2S- • O2) + O2S = (O2S- • O2S • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.0 ± 4.2 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26. ± 9.2 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: (O2- • 2N2 • O2) + N2 = (O2- • 3N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.3 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.6 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 3N2 • O2) + N2 = (O2- • 4N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 4N2 • O2) + N2 = (O2- • 5N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.6 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 5N2 • O2) + N2 = (O2- • 6N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.6 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.6 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 6N2 • O2) + N2 = (O2- • 7N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.7 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • N2 • O2) + N2 = (O2- • 2N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.7 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (NO- • 2O2) + O2 = (NO- • 3O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.8 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 65.7 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • 3O2) + O2 = (NO- • 4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.2 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 67.4 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • 4O2) + O2 = (NO- • 5O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.8 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 80.3 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • O2) + O2 = (NO- • 2O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 65.7 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (HO2+ • 3O2) + O2 = (HO2+ • 4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (HO2+ • 4O2) + O2 = (HO2+ • 5O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.6 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (HO2+ • 5O2) + O2 = (HO2+ • 6O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (HO2+ • 6O2) + O2 = (HO2+ • 7O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (HO2+ • 7O2) + O2 = (HO2+ • 8O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (HO2+ • 8O2) + O2 = (HO2+ • 9O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 86.2 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (HO2+ • O2) + H2 = (HO2+ • H2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (O2- • O2) + N2 = (O2- • N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.0 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: 2C2H6S + O2 = 2C2H6OS
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -277.7 ± 0.84 | kJ/mol | Cm | Douglas, 1946 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -278.3 ± 0.8 kJ/mol; At 291°K; ALS |
By formula: C2H6O2S = C2H6OS + 0.5O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 243.3 ± 0.84 | kJ/mol | Cm | Douglas, 1946 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 246.9 ± 0.8 kJ/mol; At 291°K; ALS |
By formula: (O2- • 2O2) + O2 = (O2- • 3O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.1 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2- • 3O2) + O2 = (O2- • 4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. ± 1. | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.4 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2- • 4O2) + O2 = (O2- • 5O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.4 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.4 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2- • 5O2) + O2 = (O2- • 6O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6. ± 1. | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 67.8 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2+ • 5O2) + O2 = (O2+ • 6O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2+ • 6O2) + O2 = (O2+ • 7O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 2. | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.6 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to O2+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 12.0697 ± 0.0002 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 421. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 396.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.4480 ± 0.0060 | LPES | Ervin, Anusiewicz, et al., 2003 | B |
0.4510 ± 0.0070 | LPES | Travers, Cowles, et al., 1989 | B |
0.4400 ± 0.0080 | LPES | Celotta, Bennett, et al., 1972 | 89SAW puts DH(H-O2.) at 59 kcal/mol, implying ΔHacid=362.5; B |
0.451 ± 0.052 | ECD | Chen and Wentworth, 1983 | B |
0.44 ± 0.10 | CIDT | Tiernan and Wu, 1978 | From O2-; B |
0.40 ± 0.10 | NBIE | Durup, Parlant, et al., 1977 | B |
0.450 ± 0.024 | ETS | Burrow, 1974 | B |
0.50 ± 0.10 | NBIE | Baeda, 1972 | B |
0.430 ± 0.030 | LPES | Celotta, Bennett, et al., 1971 | B |
0.460 ± 0.050 | NBIE | Nalley and Compton, 1971 | B |
>0.45 ± 0.10 | Endo | Tiernan, Hughes, et al., 1971 | B |
0.50 ± 0.20 | NBIE | Lacmann and Herschbach, 1970 | B |
0.430 ± 0.020 | Kine | Pack and Phelps, 1966 | B |
>0.479998 | Endo | Berkowitz, Chupka, et al., 1971 | B |
>0.56 ± 0.10 | Endo | Chantry, 1971 | B |
0.725005 | ECD | Chen and Chen, 2003 | B |
>1.27 ± 0.20 | Endo | Bailey and Mahadevan, 1970 | B |
1.119 ± 0.069 | IMRB | Vogt, Hauffle, et al., 1970 | B |
>1.10 ± 0.10 | EIAE | Stockdale, Compton, et al., 1969 | From NO2; B |
0.150 ± 0.050 | PD | Burch, Smith, et al., 1958 | B |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
421. ± 3. | Litorja and Ruscic, 1998 | T = 298K; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
12.0697 ± 0.0002 | S | Tonkyn, Winniczek, et al., 1989 | LL |
12.1 ± 0.1 | EI | Grade, Wienecke, et al., 1983 | LBLHLM |
12.8 ± 0.5 | EI | Gomez, Chatillon, et al., 1982 | LBLHLM |
12.0 ± 1.0 | S | Farber, Srivastava, et al., 1982 | LBLHLM |
12.076 ± 0.002 | PE | MacNeil and Dixon, 1977 | LLK |
12.071 | PE | Kronebusch and Berkowitz, 1976 | LLK |
12.071 ± 0.001 | PE | Samson and Gardner, 1975 | LLK |
12.0 ± 0.5 | EI | Hildenbrand, 1975 | LLK |
12.2 ± 0.2 | EI | Bennett, Lin, et al., 1974 | LLK |
12.07 ± 0.01 | PI | Tanaka and Tanaka, 1973 | LLK |
12.08 | PE | Natalis, 1973 | LLK |
12.077 | PE | Dromey, Morrison, et al., 1973 | LLK |
12.127 | PE | Vilesov and Lopatin, 1972 | LLK |
12.072 ± 0.008 | PI | Dibeler and Walker, 1967 | RDSH |
12.059 ± 0.001 | S | Samson and Cairns, 1966 | RDSH |
12.078 ± 0.005 | PI | Brehm, 1966 | RDSH |
12.065 ± 0.003 | PI | Nicholson, 1963 | RDSH |
12.08 ± 0.01 | PI | Watanabe, 1957 | RDSH |
12.30 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
12.33 ± 0.01 | PE | Banna and Shirley, 1976 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
O+ | 18.734 | O | PIPECO | Blyth, Powis, et al., 1981 | LLK |
O+ | 17.28 | O- | PI | Oertel, Schenk, et al., 1980 | LLK |
O+ | 18.69 ± 0.04 | O | EI | Locht and Schopman, 1974 | LLK |
O+ | 17.3 ± 0.2 | O- | EI | Locht and Momigny, 1971 | LLK |
O+ | 17.25 ± 0.01 | O- | PI | Dibeler and Walker, 1967 | RDSH |
O+ | 17.272 ± 0.024 | O- | PI | Elder, Villarejo, et al., 1965 | RDSH |
O+ | 18.8 ± 0.4 | O | PI | Weissler, Samson, et al., 1959 | RDSH |
O+ | 18.99 ± 0.05 | O | EI | Frost and McDowell, 1959 | RDSH |
Anion protonation reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1476.9 ± 3.0 | kJ/mol | D-EA | Travers, Cowles, et al., 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1450.5 ± 3.4 | kJ/mol | H-TS | Travers, Cowles, et al., 1989 | gas phase; B |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Hiraoka, 1988
Hiraoka, K.,
A Determination of the Stabilities of O2+(O2)n and O2-(O2)n with n = 1 - 8 from Measurements of the Gas-Phase Ion Equilibria,
J. Chem. Phys., 1988, 89, 5, 3190, https://doi.org/10.1063/1.454976
. [all data]
Conway and Nesbit, 1968
Conway, D.C.; Nesbit, L.E.,
Stability of O4-,
J. Chem. Phys., 1968, 48, 1, 509, https://doi.org/10.1063/1.1667956
. [all data]
Hiraoka, 1888
Hiraoka, K.,
A Determination of the Stability of O2+(O2)n and O2-(O2)n with n=1-8 from Measurements of the Gas Phase Ion Equilibria,
J. Chem. Phys., 1888, 89, 5, 3190, https://doi.org/10.1063/1.454976
. [all data]
Sherwood, Hanold, et al., 1996
Sherwood, C.R.; Hanold, K.A.; Garner, M.C.; Strong, K.M.; Continetti, R.E.,
Translational Spectroscopy Studies of the Photodissociation Dynamics of O4-,
J. Chem. Phys., 1996, 105, 24, 10803, https://doi.org/10.1063/1.472888
. [all data]
Aquino, Taylor, et al., 2001
Aquino, A.J.A.; Taylor, P.R.; Walch, S.P.,
Structure, properties, and photodissociation of O-4(-),
J. Chem. Phys., 2001, 114, 7, 3010-3017, https://doi.org/10.1063/1.1288379
. [all data]
Payzant J.D. and Kebarle, 1972
Payzant J.D.; Kebarle, P.,
Kinetics and Reactions Leading to O2-(H2O)n in Moist Oxygen,
J. Chem. Phys., 1972, 56, 7, 3482, https://doi.org/10.1063/1.1677723
. [all data]
Pack and Phelps, 1971
Pack, J.L.; Phelps, A.V.,
Hydration of Oxygen Negative Ions,
Bull. Am. Phys. Soc., 1971, 16, 214. [all data]
Parkes, 1971
Parkes, D.A.,
Electron Attachment and Negative Ion-Molecule Reactions in Pure O2,
Trans. Farad. Soc., 1971, 97, 711, https://doi.org/10.1039/tf9716700711
. [all data]
Conway and Janik, 1970
Conway, D.C.; Janik, G.S.,
Determination of the Bond Energies for the Series O2 - O2+ through O2 - O10+,
J. Chem. Phys., 1970, 53, 5, 1859, https://doi.org/10.1063/1.1674262
. [all data]
Durden, Kebarle, et al., 1969
Durden, D.A.; Kebarle, P.; Good, A.,
Thermal Ion-Molecule Reaction Rate Constants at Pressures up to 10 torr with a Pulsed Mass Spectrometer. Reactions in Methane, Krypton, and Oxygen,
J. Chem. Phys., 1969, 50, 2, 805, https://doi.org/10.1063/1.1671133
. [all data]
Yang and Conway, 1964
Yang, J.H.; Conway, D.C.,
Bonding in Ion Clusters. I. O4+,
J. Chem. Phys., 1964, 40, 6, 1729, https://doi.org/10.1063/1.1725389
. [all data]
Rakshit and Warneck, 1981
Rakshit, A.B.; Warneck, P.,
Formation and Reactions of O2+.CO2, O2+.H2O and O2+(CO2)2 Ions,
Int. J. Mass Spectrom Ion Phys., 1981, 40, 2, 135, https://doi.org/10.1016/0020-7381(81)80037-X
. [all data]
Rakshit and Warneck, 1980
Rakshit, A.B.; Warneck, P.,
A Drift Chamber Study of the Formation of Water Cluster Ions in Oxygen,
J. Chem. Phys., 1980, 73, 10, 5074, https://doi.org/10.1063/1.439985
. [all data]
Howard, Bierbaum, et al., 1972
Howard, C.J.; Bierbaum, V.M.; Rundle, H.W.; Kaufman, F.,
Kinetics and Mechanism of Formation of Water Cluster Ions from O2+ and H2O+,
J. Chem. Phys., 1972, 57, 8, 3491, https://doi.org/10.1063/1.1678783
. [all data]
Adams and Bohme, 1970
Adams, N.G.; Bohme, D.,
Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-,
J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449
. [all data]
Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T.,
Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14,
Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8
. [all data]
Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P.,
Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements,
Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346
. [all data]
Hiraoka, 1988, 2
Hiraoka, K.,
Determination of the Stabilities of O3-(N2)n, O3-(O2)n, and O4-(N2)n from Measurements of the Gas Phase Equilibria,
Chem. Phys., 1988, 125, 2-3, 439, https://doi.org/10.1016/0301-0104(88)87096-4
. [all data]
Hiller and Vestal, 1981
Hiller, J.F.; Vestal, M.L.,
Laser Photodissociation of O3- by Triple Quadrupole Mass Spectrometry,
J. Chem. Phys., 1981, 74, 11, 6096, https://doi.org/10.1063/1.441053
. [all data]
Novich, Engelking, et al., 1979
Novich, S.E.; Engelking, P.C.; Jones, P.L.; Futrell, J.H.; Lineberger, W.C.,
Laser photoelectron, photodetachment, and photodestruction spectra of O3-,
J. Chem. Phys., 1979, 70, 2652. [all data]
Cosby, Moseley, et al., 1978
Cosby, P.C.; Moseley, J.T.; Peterson, J.R.; Ling, J.H.,
Photodissociation spectroscopy of O3,
J. Chem. Phys., 1978, 69, 2771. [all data]
Lifschitz, Wu, et al., 1978
Lifschitz, C.; Wu, R.L.C.; Tiernan, T.O.; Terwillinger, D.T.,
Negative Ion - Molecule Reactions of Ozone and Their Implications on the Thermochemistry of O3-,
J. Chem. Phys., 1978, 68, 1, 247, https://doi.org/10.1063/1.435489
. [all data]
Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S.,
Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5,
J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518
. [all data]
Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E.,
Three-Body Association Reactions of NO+ with O2, N2, and CO2,
J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432
. [all data]
Speller and Fitaire, 1983
Speller, C.V.; Fitaire, M.,
Proceedings of the 16th International Conference on Phenomena of Ionized Gases, H. Boetticher, H. Wenk and E. Shulz - Gulde, ed(s)., ICPIG, Dusseldorf, 1983, 568. [all data]
Vacher, Jorda, et al., 1992
Vacher, J.R.; Jorda, M.; Leduc, E.; Fitaire, M.,
A Determination of the Stabilities of Negative Ion Clusters in SO2 and SO2-O2 Mixtures,
Int. J. Mass Spectrom. Ion Proc., 1992, 114, 3, 149, https://doi.org/10.1016/0168-1176(92)80033-W
. [all data]
Hiller and Vestal, 1982
Hiller, J.F.; Vestal, M.L.,
Laser Photodissociation of O3+ and the Energetics of Ozone and its Ions,
J. Chem. Phys., 1982, 77, 3, 1248, https://doi.org/10.1063/1.444000
. [all data]
Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y.,
A Study of the Ion - Molecule Half Reactions O2+(a4piu, v)...(O2)m ---> O2m+1 + O, m=1, 2, 3, Using the Molecular Beam Photoionization Method,
J. Chem. Phys., 1981, 74, 6, 3348, https://doi.org/10.1063/1.441487
. [all data]
Mosely, Ozenne, et al., 1981
Mosely, J.T.; Ozenne, J.B.; Cosby, P.C.,
Photofragment Spectroscopy of O3+,
J. Chem. Phys., 1981, 74, 1, 337, https://doi.org/10.1063/1.440839
. [all data]
Douglas, 1946
Douglas, T.B.,
Heats of formation of liquid methyl sulfoxide and crystalline methyl sulfone at 18°,
J. Am. Chem. Soc., 1946, 68, 1072-1076. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Ervin, Anusiewicz, et al., 2003
Ervin, K.M.; Anusiewicz, W.; Skurski, P.; Simons, J.; Lineberger, W.C.,
The only stable state of O-2(-) is the X (2)Pi(g) ground state and it (still!) has an adiabatic electron detachment energy of,
J. Phys. Chem. A, 2003, 107, 41, 8521-8529, https://doi.org/10.1021/jp0357323
. [all data]
Travers, Cowles, et al., 1989
Travers, M.J.; Cowles, D.C.; Ellison, G.B.,
Reinvestigation of the Electron Affinities of O2 and NO,
Chem. Phys. Lett., 1989, 164, 5, 449, https://doi.org/10.1016/0009-2614(89)85237-6
. [all data]
Celotta, Bennett, et al., 1972
Celotta, R.J.; Bennett, R.A.; Hall, J.L.; Siegel, M.W.; Levine, J.,
Molecular photodetachment spectrometry. II. The electron affinity of O2 and the structure of O2-,
Phys. Rev. A:, 1972, 6, 631. [all data]
Chen and Wentworth, 1983
Chen, E.C.M.; Wentworth, W.E.,
Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state,
J. Phys. Chem., 1983, 87, 45. [all data]
Tiernan and Wu, 1978
Tiernan, T.O.; Wu, R.L.C.,
Thermochemical Data for Molecular Negative Ions from Collisional Dissociation Thresholds,
Adv. Mass Spectrom., 1978, 7A, 136. [all data]
Durup, Parlant, et al., 1977
Durup, M.; Parlant, G.; Appell, J.; Durup, J.; Ozenne, J.-B.,
Translational spectroscopy of neutralization-reionization double collision processes of Ar+ ions at keV energies,
Chem. Phys., 1977, 25, 245. [all data]
Burrow, 1974
Burrow, P.D.,
Temporary negative ion formation in NO and O2,
Chem. Phys. Lett., 1974, 26, 265. [all data]
Baeda, 1972
Baeda, A.P.M.,
The adiabatic electron affinities of Cl2, Br2, I2, IBr, NO2, and O2,
Physica, 1972, 59, 541. [all data]
Celotta, Bennett, et al., 1971
Celotta, R.J.; Bennett, R.A.; Hall, J.L.; Levine, J.; Siegel, M.W.,
Electron affinity of O2 by laser photodetachment,
Bull. Am. Phys. Soc., 1971, 16, 212. [all data]
Nalley and Compton, 1971
Nalley, S.J.; Compton, R.N.,
Collisional ionization of cesium by oxygen: The electron affinity of O2,
Chem. Phys. Lett., 1971, 9, 529. [all data]
Tiernan, Hughes, et al., 1971
Tiernan, T.O.; Hughes, B.M.; Lifschitz, C.,
Electron affinities from endothermic negative ion charge transfer reactions. II. O2,
J. Chem. Phys., 1971, 55, 5692. [all data]
Lacmann and Herschbach, 1970
Lacmann, K.; Herschbach, D.R.,
Collisional Excitation and Ionization of K Atoms by Diatomic Molecules: Role of Ion-pair States,
Chem. Phys. Lett., 1970, 6, 2, 106, https://doi.org/10.1016/0009-2614(70)80144-0
. [all data]
Pack and Phelps, 1966
Pack, J.L.; Phelps, A.V.,
Electron Attachment and Detachment. I. Pure O2 at Low Energy,
J. Chem. Phys., 1966, 44, 5, 1870, https://doi.org/10.1063/1.1726956
. [all data]
Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Gutman, D.,
Electron Affinities of O2, O3, NO, NO2, and NO3 by Endothermic Charge Transfer,
J. Chem. Phys., 1971, 55, 6, 2733, https://doi.org/10.1063/1.1676488
. [all data]
Chantry, 1971
Chantry, P.J.,
Doppler broadening in beam experiments,
J. Chem. Phys., 1971, 55, 2746. [all data]
Chen and Chen, 2003
Chen, E.S.; Chen, E.C.M.,
Semiempirical characterization of homonuclear diatomic ions: 6. Group VI and VII anions,
J. Phys. Chem. A, 2003, 107, 1, 169-177, https://doi.org/10.1021/jp0268922
. [all data]
Bailey and Mahadevan, 1970
Bailey, T.L.; Mahadevan, P.,
Electron Transfer and Detachment in Collisions of Low Energy Negative Ions with O2,
J. Chem. Phys., 1970, 52, 1, 179, https://doi.org/10.1063/1.1672663
. [all data]
Vogt, Hauffle, et al., 1970
Vogt, D.; Hauffle, B.; Neuert, H.,
Ladungsaustausch-Reaktionen Einiger Negativer Ionen mit O2 und die Elektronenaffinitat des O2,
Z. Phys., 1970, 232, 5, 439, https://doi.org/10.1007/BF01395674
. [all data]
Stockdale, Compton, et al., 1969
Stockdale, J.A.D.; Compton, R.N.; Hurst, G.S.; Reinhardt, P.W.,
Collisions of Monoenergetic Electrons with NO2: Possible Lower Limits to the Electron Affinities of O2 and NO,
J. Chem. Phys., 1969, 50, 5, 2176, https://doi.org/10.1063/1.1671347
. [all data]
Burch, Smith, et al., 1958
Burch, D.S.; Smith, S.J.; Branscomb, L.M.,
Photodetachment of O2-.,
Phys. Rev., 1958, 112, 1, 171, https://doi.org/10.1103/PhysRev.112.171
. [all data]
Litorja and Ruscic, 1998
Litorja, M.; Ruscic, B.,
A photoionization study of the hydroperoxyl radical, HO2, and hydrogen peroxide, H2O2,
J. Electron Spectroscopy and Related Phenomena, 1998, 97, 131. [all data]
Tonkyn, Winniczek, et al., 1989
Tonkyn, R.G.; Winniczek, J.W.; White, M.G.,
Rotationally resolved photoionization of O2 near threshold,
Chem. Phys. Lett., 1989, 164, 137. [all data]
Grade, Wienecke, et al., 1983
Grade, M.; Wienecke, J.; Rosinger, W.; Hirschwald, W.,
Electron impact investigation of the molecules SeS(g) and TeSe(g) under high-temperature equilibrium conditions,
Ber. Bunsen-Ges. Phys. Chem., 1983, 87, 355. [all data]
Gomez, Chatillon, et al., 1982
Gomez, M.; Chatillon, C.; Allibert, M.,
Thermodynamics of gaseous and condensed indium oxides by mass spectrometry with controlled oxygen oressure,
J. Chem. Thermodyn., 1982, 14, 447. [all data]
Farber, Srivastava, et al., 1982
Farber, M.; Srivastava, R.D.; Moyer, J.W.,
Mass spectrometric determination of the thermodynamics of potassium hydroxide and minor potassium-containing species required in magnetohydrodynamic power systems,
J. Chem. Thermodyn., 1982, 14, 1103. [all data]
MacNeil and Dixon, 1977
MacNeil, K.A.G.; Dixon, R.N.,
High-resolution photoelectron spectroscopy of methanol and its deuterated derivatives: Internal rotation in the ground ionic state,
J. Electron Spectrosc. Relat. Phenom., 1977, 11, 315. [all data]
Kronebusch and Berkowitz, 1976
Kronebusch, P.L.; Berkowitz, J.,
Photodissociative ionization in the 21-41 eV region: O2, N2, CO, NO, CO2, H2O, NH3 and CH4,
Int. J. Mass Spectrom. Ion Phys., 1976, 22, 283. [all data]
Samson and Gardner, 1975
Samson, J.A.R.; Gardner, J.L.,
On the ionization potential of molecular oxygen,
Can. J. Phys., 1975, 53, 1948. [all data]
Hildenbrand, 1975
Hildenbrand, D.L.,
Vertical ionization potential of the CF2 radical,
Chem. Phys. Lett., 1975, 32, 30. [all data]
Bennett, Lin, et al., 1974
Bennett, S.L.; Lin, S.-S.; Gilles, P.W.,
High-temperature vaporization of ternary systems. I. Mass spectrometry of oxygen-rich vanadium-tungsten-oxygen species,
J. Phys. Chem., 1974, 78, 266. [all data]
Tanaka and Tanaka, 1973
Tanaka, K.; Tanaka, I.,
Photoelectron spectra from some autoionizing state of O2 near the ionization threshold,
J. Chem. Phys., 1973, 59, 5042. [all data]
Natalis, 1973
Natalis, P.,
Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques,
Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]
Dromey, Morrison, et al., 1973
Dromey, R.G.; Morrison, J.D.; Peel, J.B.,
Time-averaged and deconvoluted photoelectron spectrum of the first band of O2,
Chem. Phys. Lett., 1973, 23, 30. [all data]
Vilesov and Lopatin, 1972
Vilesov, F.I.; Lopatin, S.N.,
Photoelectron spectrometer,
Zh. Tekh. Fiz., 1972, 42, 176. [all data]
Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A.,
Mass spectrometric study of the photoionization of small polyatomic molecules,
Advan. Mass Spectrom., 1967, 4, 767. [all data]
Samson and Cairns, 1966
Samson, J.A.R.; Cairns, R.B.,
Ionization potential of O2,
J. Opt. Soc. Am., 1966, 56, 769. [all data]
Brehm, 1966
Brehm, B.,
Massenspektrometrische Untersuchung der Photoionisation von Molekulen,
Z. Naturforsch., 1966, 21a, 196. [all data]
Nicholson, 1963
Nicholson, A.J.C.,
Photo-ionization efficiency curves. Measurement of ionization potentials and interpretation of fine structure,
J. Chem. Phys., 1963, 39, 954. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Banna and Shirley, 1976
Banna, M.S.; Shirley, D.A.,
Molecular photoelectron spectroscopy at 132.3 eV: N2, CO, C2H4 and O2,
J. Electron Spectrosc. Relat. Phenom., 1976, 8, 255. [all data]
Blyth, Powis, et al., 1981
Blyth, R.C.G.; Powis, I.; Danby, C.J.,
Competing pre-dissociations of O2+(B 2Σg-),
Chem. Phys. Lett., 1981, 84, 272. [all data]
Oertel, Schenk, et al., 1980
Oertel, H.; Schenk, H.; Baumgartel, H.,
Ion pair formation from photon irradiation of O2, NO and CO in 17-30 eV,
Chem. Phys., 1980, 46, 251. [all data]
Locht and Schopman, 1974
Locht, R.; Schopman, J.,
The dissociative ionization in oxygen,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 361. [all data]
Locht and Momigny, 1971
Locht, R.; Momigny, J.,
Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2,
Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]
Elder, Villarejo, et al., 1965
Elder, F.A.; Villarejo, D.; Inghram, M.G.,
Electron affinity of oxygen,
J. Chem. Phys., 1965, 43, 758. [all data]
Weissler, Samson, et al., 1959
Weissler, G.L.; Samson, J.A.R.; Ogawa, M.; Cook, G.R.,
Photoionization analysis by mass spectroscopy,
J. Opt. Soc. Am., 1959, 49, 338. [all data]
Frost and McDowell, 1959
Frost, D.C.; McDowell, C.A.,
Recent electron impact studies on simple molecules (O2, Cl2, I2),
Advan. Mass Spectrom., 1959, 1, 413. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.