Heptane
- Formula: C7H16
- Molecular weight: 100.2019
- IUPAC Standard InChIKey: IMNFDUFMRHMDMM-UHFFFAOYSA-N
- CAS Registry Number: 142-82-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: n-Heptane; Dipropylmethane; Heptyl hydride; Skellysolve C; n-C7H16; Eptani; Heptan; Heptanen; Gettysolve-C; NSC 62784
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -44.89 ± 0.19 | kcal/mol | Ccb | Prosen and Rossini, 1945 | ALS |
ΔfH°gas | -45.24 | kcal/mol | N/A | Davies and Gilbert, 1941 | Value computed using ΔfHliquid° value of -225.9±1.3 kj/mol from Davies and Gilbert, 1941 and ΔvapH° value of 36.6 kj/mol from Prosen and Rossini, 1945.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
30.509 | 200. | Scott D.W., 1974 | Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT |
36.960 | 273.15 | ||
39.48 ± 0.07 | 298.15 | ||
39.670 | 300. | ||
50.349 | 400. | ||
60.251 | 500. | ||
68.700 | 600. | ||
75.801 | 700. | ||
81.800 | 800. | ||
86.900 | 900. | ||
91.200 | 1000. | ||
94.900 | 1100. | ||
98.100 | 1200. | ||
101.00 | 1300. | ||
104.00 | 1400. | ||
106.00 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
45.770 ± 0.045 | 357.10 | Waddington G., 1947 | GT |
47.510 ± 0.048 | 373.15 | ||
50.370 ± 0.050 | 400.40 | ||
53.850 ± 0.055 | 434.35 | ||
57.000 ± 0.057 | 466.10 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -53.63 ± 0.19 | kcal/mol | Ccb | Prosen and Rossini, 1945 | ALS |
ΔfH°liquid | -53.99 ± 0.30 | kcal/mol | Ccb | Davies and Gilbert, 1941 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1151. ± 2. | kcal/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 78.530 | cal/mol*K | N/A | Huffman, Gross, et al., 1961 | DH |
S°liquid | 78.389 | cal/mol*K | N/A | Douglas, Furukawa, et al., 1954 | DH |
S°liquid | 78.599 | cal/mol*K | N/A | Pitzer K.S., 1940 | DH |
S°liquid | 78.90 | cal/mol*K | N/A | Huffman, Parks, et al., 1930 | Extrapolation below 90 K, 71.00 J/mol*K. Based on previously published specific heat data, 30PAR/HUF.; DH |
S°liquid | 78.01 | cal/mol*K | N/A | Parks, Huffman, et al., 1930 | Extrapolation below 90 K, 71.00 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
53.690 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
53.709 | 298.15 | Saito and Tanaka, 1988 | DH |
53.712 | 298.15 | Shiohama, Ogawa, et al., 1988 | DH |
53.270 | 293.15 | Kalali, Kohler, et al., 1987 | T = 293.15, 313.15 K.; DH |
53.7096 | 298.15 | Tanaka, 1987 | DH |
53.810 | 300. | Van Miltenburg, Van den Berg, et al., 1987 | T = 10 to 350 K.; DH |
53.707 | 298.15 | Wilhelm, Inglese, et al., 1987 | DH |
53.7239 | 298.15 | Baluja, Bravo, et al., 1985 | DH |
53.7239 | 298.15 | Lainez, Rodrigo, et al., 1985 | DH |
53.7120 | 298.15 | Tanaka, Nakamichi, et al., 1985 | DH |
53.707 | 298.15 | Grolier, Inglese, et al., 1984 | DH |
53.724 | 298.15 | Roux, Grolier, et al., 1984 | DH |
53.7199 | 298.15 | Kimura, Treszczanowicz, et al., 1983 | DH |
53.855 | 300. | Tan, Zhou, et al., 1983 | T = 220 to 380 K.; DH |
53.73 | 298.15 | Tanaka, 1982 | DH |
53.54 | 298. | Zaripov, 1982 | T = 298, 323, 363 K.; DH |
53.702 | 298.15 | Grolier, Inglese, et al., 1981 | DH |
53.685 | 297.860 | Kalinowska, Jedlinska, et al., 1980 | T = 185 to 300 K. Unsmoothed experimental datum.; DH |
53.695 | 298.15 | Brown and Ziegler, 1979 | T = 183 to 302 K. Results as equation only.; DH |
53.92 | 300. | Czarnota, 1979 | DH |
53.68 | 298.15 | Grolier, Hamedi, et al., 1979 | DH |
52.581 | 285. | Schaake, Offringa, et al., 1979 | T = 90 to 285 K.; DH |
54.13 | 333.15 | Woycicka and Kalinowska, 1978 | DH |
60.95 | 298.15 | Meijer, Blok, et al., 1977 | T = 160 to 350 K.; DH |
53.7063 | 298.15 | Fortier and Benson, 1976 | DH |
53.39 | 298. | Grigor'ev, Rastorguev, et al., 1975 | T = 300 to 463 K.; DH |
53.583 | 298.15 | Holzhauer and Ziegler, 1975 | T = 182 to 312 K. Cp = 866.18820 - 9.9628490T + 0.054561085T2 - 0.00013079634T3 + 1.1957392x10-7T4 J/mol*K.; DH |
54.142 | 303.15 | Woycicka and Kalinowska, 1975 | DH |
53.85 | 298.15 | Diaz pena and Renuncio, 1974 | T = 298 to 323 K.; DH |
54.142 | 298.15 | Kalinowska and Woycicka, 1973 | DH |
50.10 | 250. | Van Miltenburg, 1972 | T = 130 to 263 K.; DH |
78.540 | 298.15 | Oetting F.L., 1963 | DH |
53.760 | 298.15 | Huffman, Gross, et al., 1961 | T = 10 to 300 K.; DH |
53.760 | 298.15 | McCullough and Messerly, 1961 | T = 10 to 370 K. Csat(liq) = 56.582 - 0.14490T + 5.7813x10-4T2 - 4.1667x10-7T3 cal/mol*K.; DH |
59.11 | 332. | Swietoslawski and Zielenkiewicz, 1958 | Mean value 22 to 96 C.; DH |
55.719 | 299.8 | Helfrey, Heiser, et al., 1955 | T = 70 to 220 F.; DH |
53.714 | 298.15 | Douglas, Furukawa, et al., 1954 | T = 20 to 520 K.; DH |
53.714 | 298.15 | Ginnings and Furukawa, 1953 | T = 25 to 520 K.; DH |
53.740 | 298.15 | Osborne and Ginnings, 1947 | T = 278 to 318 K.; DH |
53.681 | 296.5 | Pitzer K.S., 1940 | T = 15 to 318 K. Value is unsmoothed experimental datum.; DH |
50.50 | 298. | Bykov, 1939 | DH |
50.41 | 300.8 | Phillip, 1939 | DH |
53.30 | 298. | Vold, 1937 | Cp given as 0.532 cal/g*K.; DH |
53.61 | 298.1 | Richards and Wallace, 1932 | T = 293 to 323 K.; DH |
53.11 | 299.2 | Parks, Huffman, et al., 1930 | T = 90 to 300 K. Value is unsmoothed experimental datum.; DH |
51.86 | 303. | Willams and Daniels, 1924 | T = 303 to 350 K. Equation only.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
(solution) + (solution) = C14H21MnO2 (solution) + (solution)
By formula: C8H5MnO3 (solution) + C7H16 (solution) = C14H21MnO2 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47. ± 2. | kcal/mol | AVG | N/A | Average of 18 values; Individual data points |
(solution) + (solution) = C12H16CrO5 (solution) + (solution)
By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.1 ± 0.8 | kcal/mol | AVG | N/A | Average of 13 values; Individual data points |
C12H16CrO5 (solution) = (solution) + C5CrO5 (solution)
By formula: C12H16CrO5 (solution) = C7H16 (solution) + C5CrO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.61 | kcal/mol | N/A | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 27.20 kcal/mol Morse, Parker, et al., 1989; MS |
ΔrH° | 9.8 | kcal/mol | N/A | Yang, Vaida, et al., 1988 | solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 26.98 kcal/mol Yang, Peters, et al., 1986; MS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -29.8 ± 0.5 | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
C12H16MoO5 (solution) = C5MoO5 (solution) + (solution)
By formula: C12H16MoO5 (solution) = C5MoO5 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.70 | kcal/mol | N/A | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Mo-CO bond in Mo(CO)6, 40.51 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Mo(CO)6(solution) + n-C7H16(solution) = Mo(CO)5(n-C7H16)(solution) + CO(solution), 31.81 kcal/mol Morse, Parker, et al., 1989; MS |
C12H16O5W (solution) = C5O5W (solution) + (solution)
By formula: C12H16O5W (solution) = C5O5W (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.4 | kcal/mol | N/A | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of W-CO bond in W(CO)6, 46.01 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction W(CO)6(solution) + n-C7H16(solution) = W(CO)5(n-C7H16)(solution) + CO(solution), 32.60 kcal/mol Morse, Parker, et al., 1989; MS |
(solution) + (solution) = C12H16MoO5 (solution) + (solution)
By formula: C6MoO6 (solution) + C7H16 (solution) = C12H16MoO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.3 ± 2.9 | kcal/mol | PAC | Johnson, Popov, et al., 1991 | solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation.; MS |
ΔrH° | 31.8 ± 1.3 | kcal/mol | PAC | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.32 ± 0.07 | kcal/mol | Chyd | Rogers and Dejroongruang, 1988 | liquid phase; solvent: Hydrocarbone; ALS |
ΔrH° | -28.01 ± 0.68 | kcal/mol | Chyd | Rogers and Siddiqui, 1975 | liquid phase; solvent: n-Hexane; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.14 ± 0.23 | kcal/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -0.52 ± 0.27 | kcal/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.42 ± 0.28 | kcal/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -4.45 ± 0.32 | kcal/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.18 ± 0.26 | kcal/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -2.80 ± 0.30 | kcal/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.54 ± 0.16 | kcal/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -3.40 ± 0.22 | kcal/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.44 ± 0.15 | kcal/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -3.24 ± 0.21 | kcal/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.00 ± 0.22 | kcal/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -4.17 ± 0.27 | kcal/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
(solution) + (solution) = C12H16O5W (solution) + (solution)
By formula: C6O6W (solution) + C7H16 (solution) = C12H16O5W (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.60 ± 0.41 | kcal/mol | PAC | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS |
(solution) + (solution) = C15H22CrO2 (solution) + (solution)
By formula: C9H6CrO3 (solution) + C7H16 (solution) = C15H22CrO2 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.79 ± 0.31 | kcal/mol | PAC | Burkey, 1990 | solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS |
(solution) + (solution) = C15H21O3V (solution) + (solution)
By formula: C9H5O4V (solution) + C7H16 (solution) = C15H21O3V (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.6 ± 3.1 | kcal/mol | PAC | Johnson, Popov, et al., 1991 | solvent: Heptane; The reaction enthalpy relies on 0.80 for the quantum yield of CO dissociation.; MS |
C12H16CrO5 (solution) + (solution) = (solution) + C10H5CrNO5 (solution)
By formula: C12H16CrO5 (solution) + C4H4N2 (solution) = C7H16 (solution) + C10H5CrNO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -20.1 ± 0.41 | kcal/mol | PAC | Yang, Vaida, et al., 1988 | solvent: Heptane; MS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.3 ± 0.1 | kcal/mol | Chyd | Rogers and Dejroongruang, 1988 | liquid phase; solvent: Hydrocarbone; ALS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.41 ± 0.07 | kcal/mol | Chyd | Rogers and Dejroongruang, 1988 | liquid phase; solvent: Hydrocarbone; ALS |
C14H21MnO2 (solution) + (solution) = C11H13MnO3 (solution) + (solution)
By formula: C14H21MnO2 (solution) + C4H8O (solution) = C11H13MnO3 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -16.1 ± 1.4 | kcal/mol | PAC | Klassen, Selke, et al., 1990 | solvent: Heptane; MS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.63 ± 0.1 | kcal/mol | Chyd | Rogers and Dejroongruang, 1988 | liquid phase; solvent: Hydrocarbone; ALS |
C12H16CrO5 (solution) + (solution) = C9H8CrO6 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C4H8O (solution) = C9H8CrO6 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.4 ± 1.2 | kcal/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = (solution) + C8H6CrO6 (solution)
By formula: C12H16CrO5 (solution) + C3H6O (solution) = C7H16 (solution) + C8H6CrO6 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -13.5 ± 1.2 | kcal/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C17H27CrNO5 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C12H27N (solution) = C17H27CrNO5 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.2 ± 1.2 | kcal/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C11H12CrO5 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C6H12 (solution) = C11H12CrO5 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.2 ± 1.2 | kcal/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C14H21MnO2 (solution) + (solution) = C10H11MnO3 (solution) + (solution)
By formula: C14H21MnO2 (solution) + C3H6O (solution) = C10H11MnO3 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -17.4 ± 1.0 | kcal/mol | PAC | Klassen, Selke, et al., 1990 | solvent: Heptane; MS |
C14H21MnO2 (solution) + (solution) = C8H7Cl2MnO2 (solution) + (solution)
By formula: C14H21MnO2 (solution) + CH2Cl2 (solution) = C8H7Cl2MnO2 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -9.0 ± 1.0 | kcal/mol | PAC | Yang and Yang, 1992 | solvent: Heptane; MS |
C14H21MnO2 (solution) + (solution) = C8H7Br2MnO2 (solution) + (solution)
By formula: C14H21MnO2 (solution) + CH2Br2 (solution) = C8H7Br2MnO2 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.2 ± 1.2 | kcal/mol | PAC | Yang and Yang, 1992 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C7H5CrO6 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C2H6O (solution) = C7H5CrO6 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -13.8 ± 1.2 | kcal/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C8H6CrNO5 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C2H3N (solution) = C8H6CrNO5 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -18.2 ± 1.2 | kcal/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
By formula: C7H12 + 2H2 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -65.11 ± 0.31 | kcal/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane; ALS |
By formula: 2H2 + C7H12 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -64.63 ± 0.36 | kcal/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane; ALS |
By formula: 2H2 + C7H12 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -69.65 ± 0.39 | kcal/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.93 ± 0.10 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.15 | EST | Luo and Pacey, 1992 | LL |
9.93 ± 0.10 | EVAL | Lias, 1982 | LBLHLM |
9.83 ± 0.15 | EQ | Mautner(Meot-Ner), Sieck, et al., 1981 | LLK |
9.91 | EQ | Lias, Ausloos, et al., 1976 | LLK |
9.90 ± 0.05 | PI | Brehm, 1966 | RDSH |
10.16 | PE | Turner and Al-Joboury, 1964 | RDSH |
10.08 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3+ | 27.9 ± 0.2 | ? | EI | Olmsted, Street, et al., 1964 | RDSH |
C2H5+ | 12.89 | ? | EI | Potzinger and Bunau, 1969 | RDSH |
C3H5+ | 12.7 ± 0.1 | ? | PI | Brehm, 1966 | RDSH |
C3H6+ | 10.7 ± 0.1 | C4H10 | PI | Brehm, 1966 | RDSH |
C3H6+ | 10.97 ± 0.08 | C4H10 | PI | Steiner, Giese, et al., 1961 | RDSH |
C3H7+ | 11.58 | ? | EI | Potzinger and Bunau, 1969 | RDSH |
C3H7+ | 11.05 ± 0.05 | ? | PI | Brehm, 1966 | RDSH |
C4H7+ | 11.5 ± 0.1 | ? | PI | Brehm, 1966 | RDSH |
C4H8+ | 10.56 ± 0.05 | C3H8 | PI | Brehm, 1966 | RDSH |
C4H8+ | 10.97 ± 0.03 | C3H8 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H9+ | 10.72 | C3H7 | EI | Potzinger and Bunau, 1969 | RDSH |
C4H9+ | 10.56 ± 0.05 | C3H7 | PI | Brehm, 1966 | RDSH |
C4H9+ | 11.19 ± 0.07 | C3H7 | PI | Steiner, Giese, et al., 1961 | RDSH |
C5H10+ | 10.33 | C2H6 | EI | Lewis and Hamill, 1970 | RDSH |
C5H10+ | 10.40 ± 0.05 | C2H6 | PI | Brehm, 1966 | RDSH |
C5H10+ | 11.035 ± 0.025 | C2H6 | PI | Steiner, Giese, et al., 1961 | RDSH |
C5H11+ | 10.66 | C2H5 | EI | Potzinger and Bunau, 1969 | RDSH |
C5H11+ | 10.43 ± 0.05 | C2H5 | PI | Brehm, 1966 | RDSH |
C5H11+ | 10.96 ± 0.085 | C2H5 | PI | Steiner, Giese, et al., 1961 | RDSH |
C6H12+ | 11.145 ± 0.035 | CH4 | PI | Steiner, Giese, et al., 1961 | RDSH |
C6H13+ | 10.7 ± 0.1 | CH3 | PI | Brehm, 1966 | RDSH |
C6H13+ | 10.93 ± 0.11 | CH3 | PI | Steiner, Giese, et al., 1961 | RDSH |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Davies and Gilbert, 1941
Davies, G.F.; Gilbert, E.C.,
Heats of combustion and formation of the nine isomeric heptanes in the liquid state,
J. Am. Chem. Soc., 1941, 63, 2730-2732. [all data]
Scott D.W., 1974
Scott D.W.,
Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]
Scott D.W., 1974, 2
Scott D.W.,
Correlation of the chemical thermodynamic properties of alkane hydrocarbons,
J. Chem. Phys., 1974, 60, 3144-3165. [all data]
Pitzer K.S., 1944
Pitzer K.S.,
Thermodynamics of gaseous paraffins. Specific heat and related properties,
Ind. Eng. Chem., 1944, 36, 829-831. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Waddington G., 1947
Waddington G.,
An improved flow calorimeter. Experimental vapor heat capacities and heats of vaporization of n-heptane and 2,2,3-trimethylbutane,
J. Am. Chem. Soc., 1947, 69, 22-30. [all data]
Huffman, Gross, et al., 1961
Huffman, H.M.; Gross, M.E.; Scott, D.W.; McCullough, I.P.,
Low temperature thermodynamic properties of six isomeric heptanes,
J. Phys. Chem., 1961, 65, 495-503. [all data]
Douglas, Furukawa, et al., 1954
Douglas, T.B.; Furukawa, G.T.; McCoskey, R.E.; Ball, A.F.,
Calorimetric properties of normal heptane from 0 to 520 K,
J. Res., 1954, NBS 53, 139-153. [all data]
Pitzer K.S., 1940
Pitzer K.S.,
The thermodynamics of n-heptane and 2,2,4-trimethylpentane, including heat capacities, heats of fusion and vaporization and entropies,
J. Am. Chem. Soc., 1940, 62, 1224-1227. [all data]
Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Thomas, S.B.,
Thermal data on organic compounds. VIII. The heat capacities, entropies and free energies of the isomeric heptanes,
J. Am. Chem. Soc., 1930, 52, 3241-3251. [all data]
Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B.,
Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Saito and Tanaka, 1988
Saito, A.; Tanaka, R.,
Excess volumes and heat capacities of binary mixtures formed from cyclohexane, hexane and heptane at 298.15 K,
J. Chem. Thermodynam., 1988, 20, 859-865. [all data]
Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I.,
Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K,
J. Chem. Thermodynam., 1988, 20, 1183-1189. [all data]
Kalali, Kohler, et al., 1987
Kalali, H.; Kohler, F.; Svejda, P.,
Excess properties of the mixture bis(2-dichlorethyl)ether (chlorex) + 2,2,4-trimethylpentane (isooctane),
Monatsh. Chem., 1987, 118, 1-18. [all data]
Tanaka, 1987
Tanaka, R.,
Excess heat capacities for mixture of benzene with n-heptane at 293.15, 298.15 and 303.15 K,
J. Chem. Eng. Data, 1987, 32, 176-177. [all data]
Van Miltenburg, Van den Berg, et al., 1987
Van Miltenburg, J.C.; Van den Berg, G.J.K.; Van Bommel, M.J.,
Construction of an adiabatic calorimeter. Measurements of the molar heat capacity of synthetic sapphire and of n-heptane,
J. Chem. Thermodynam., 1987, 19, 1129-1137. [all data]
Wilhelm, Inglese, et al., 1987
Wilhelm, E.; Inglese, A.; Roux, A.H.; Grolier, J.-P.E.,
Excess enthalpy, excess heat capacity and excess volume of 1,2,4-trimethylbenzene +, and 1-methylnaphthalene + an n-alkane,
Fluid Phase Equilibria, 1987, 34, 49-67. [all data]
Baluja, Bravo, et al., 1985
Baluja, M.C.; Bravo, R.; Pintos, M.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Unusual dependence on concentration of the excess heat capacities of ester solutions in alkanes,
Calorim. Anal. Therm., 1985, 16, 138-144. [all data]
Lainez, Rodrigo, et al., 1985
Lainez, A.; Rodrigo, M.; Roux, A.H.; Grolier, J.-P.E.; Wilhelm, E.,
Relations between structure and thermodynamic properties. Heat capacities of polar substances (nitrobenzene and benzonitrile) in alkane solutions,
Calorim. Anal. Therm., 1985, 16, 153-158. [all data]
Tanaka, Nakamichi, et al., 1985
Tanaka, R.; Nakamichi, T.; Murakami, S.,
Molar excess heat capacities and volumes for mixtures of benzomitrile with cyclohexane between 10 and 45°C,
J. Solution Chem., 1985, 14(11), 795-803. [all data]
Grolier, Inglese, et al., 1984
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess molar heat capacities of (1,4-dioxane + an n-alkane): an unusual composition dependence,
J. Chem. Thermodynam., 1984, 16, 67-71. [all data]
Roux, Grolier, et al., 1984
Roux, A.H.; Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess molar enthalpies, excess molar heat capacities and excess molar volumes of (fluorobenzene + an n-alkane),
Ber. Bunsenges. Phys. Chem., 1984, 88, 986-992. [all data]
Kimura, Treszczanowicz, et al., 1983
Kimura, F.; Treszczanowicz, A.J.; Halpin, C.J.; Benson, G.C.,
Excess volumes and ultrasonic speeds for (di-n-propylether + n-heptane),
J. Chem. Thermodynam., 1983, 15, 503-510. [all data]
Tan, Zhou, et al., 1983
Tan, Z.; Zhou, L.; Chen, S.; Yin, A.; Sun, Y.; Ye, J.; Wang, X.,
An adiabatic calorimeter for heat-capacity measurements from 80 to 400 K - heat capacities of a-alumina and n-heptane, Sci. Sin.,
Ser. B (Engl. Ed.), 1983, 26, 1014-1026. [all data]
Tanaka, 1982
Tanaka, R.,
Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter,
J. Chem. Thermodynam., 1982, 14, 259-268. [all data]
Zaripov, 1982
Zaripov, Z.I.,
Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m., 1982, Teplomassoobmen Teplofiz. [all data]
Grolier, Inglese, et al., 1981
Grolier, J.P.E.; Inglese, A.; Roux, A.H.; Wilhelm, E.,
Thermodynamics of (1-chloronaphthalene + n-alkane): excess enthalpies, excess volumes and excess heat capacities,
Ber. Bunsenges. Phys. Chem., 1981, 85, 768-772. [all data]
Kalinowska, Jedlinska, et al., 1980
Kalinowska, B.; Jedlinska, J.; Woycicki, W.; Stecki, J.,
Heat capacities of liquids at temperatures between 90 and 300 K and at atmospheric pressure. I. Method and apparatus, and the heat capacities of n-heptane, n-hexane, and n-propanol,
J. Chem. Thermodynam., 1980, 12, 891-896. [all data]
Brown and Ziegler, 1979
Brown, G.N., Jr.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol + n-heptane and 2-propanol + n-heptane solutions,
J. Chem. Eng. Data, 1979, 24, 319-330. [all data]
Czarnota, 1979
Czarnota, I.,
Calorimetric system for measurement of specific heat capacity of liquids, Cp, at high pressures, Bull. Acad. Pol. Sci.,
Ser. Sci. Chim., 1979, 10, 763-772. [all data]
Grolier, Hamedi, et al., 1979
Grolier, J-P.E.; Hamedi, M.H.; Wilhelm, E.; Kehiaian, H.V.,
Excess heat capacities of binary mixtures of carbon tetrachloride with n-alkanes at 298.15 K,
Thermochim. Acta, 1979, 31, 79-84. [all data]
Schaake, Offringa, et al., 1979
Schaake, R.C.F.; Offringa, J.C.A.; van der Berg, G.J.K.; van Miltenburg, J.C.,
Phase transitions in solids, studied by adiabatic calorimetry. I. Design and test of an automatic adiabatic calorimeter,
J. Royal Netherlands Chem. Soc., 1979, 98, 408-412. [all data]
Woycicka and Kalinowska, 1978
Woycicka, M.; Kalinowska, B.,
Excess entahlpy and heat capacities of diluted propionic acid solutions in n-heptane, Bull. Acad. Pol. Sci.,
Ser. Sci. Chim., 1978, 26, 371-375. [all data]
Meijer, Blok, et al., 1977
Meijer, E.L.; Blok, J.G.; Kroon, J.; Oonk, H.A.J.,
The carvoxime system. IV. Heat capacities and enthalpies of melting of DL-carvoxime, L-carvoxime and standard n-heptane,
Thermochim. Acta, 1977, 20, 325-334. [all data]
Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 411-423. [all data]
Grigor'ev, Rastorguev, et al., 1975
Grigor'ev, B.A.; Rastorguev, Yu.L.; Yanin, G.S.,
Experimental determination of the isobaric specific heat of n-alkanes,
Iz. Vyssh. Uchebn. Zaved. Neft Gaz 18, 1975, No.10, 63-66. [all data]
Holzhauer and Ziegler, 1975
Holzhauer, J.K.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of n-heptane-toluene, methylcyclohexane-toluene, and n-heptane-methylcyclohexane systems,
J. Phys. Chem., 1975, 79(6), 590-604. [all data]
Woycicka and Kalinowska, 1975
Woycicka, M.K.; Kalinowska, B.,
Enthalpies of mixing and excess heat capacities of dilute solutions of n-decanol with n-heptane and n-tridecane, Bull. Acad. Pol. Sci.,
Ser. Sci. Chim., 1975, 23, 759-764. [all data]
Diaz pena and Renuncio, 1974
Diaz pena, M.D.; Renuncio, J.A.R.,
Construccion de un calorimetro adiabatico. Capacidad calorifica de mezclas n-hexano + n-hexadecano,
An. Quim., 1974, 70, 113-120. [all data]
Kalinowska and Woycicka, 1973
Kalinowska, B.; Woycicka, M.,
Excess heat capacities of dilute solutions of n-hexanol in n-alkanes,
Bull. Aca. Pol. Sci. (Ser. Sci. Chim.), 1973, 21(11), 845-848. [all data]
Van Miltenburg, 1972
Van Miltenburg, J.C.,
Construction of an adiabatic calorimeter. Thermodynamic properties of standard n-heptane from 155 to 270K and of 2,2-dichloropropane from 135 to 270K,
J. Chem. Thermodynam., 1972, 4, 773-782. [all data]
Oetting F.L., 1963
Oetting F.L.,
The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330 K,
J. Phys. Chem., 1963, 67, 2757-2761. [all data]
McCullough and Messerly, 1961
McCullough, J.P.; Messerly, J.F.,
The chemical thermodynamic properties of hydrocarbons and related substances,
Bureau of Mines Bulletin, 1961, 596, pp. [all data]
Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat of some ternary azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]
Helfrey, Heiser, et al., 1955
Helfrey, P.F.; Heiser, D.A.; Sage, B.H.,
Isobaric heat capacities at bubble point, Two trimethylbenzenes and n-heptane,
Ind. Eng. Chem., 1955, 44, 2385-2388. [all data]
Ginnings and Furukawa, 1953
Ginnings, D.C.; Furukawa, G.T.,
Heat capacity standards for the range 14 to 1200°K,
J. Am. Chem. Soc., 1953, 75, 522-527. [all data]
Osborne and Ginnings, 1947
Osborne, N.S.; Ginnings, D.C.,
Measurements of heat of vaporization and heat capacity of a number of hydrocarbons,
J. Res. NBS, 1947, 39, 453-477. [all data]
Bykov, 1939
Bykov, V.T.,
Heat of mixing of liquids,
Zhur. Fiz. Khim., 1939, 13, 1013-1019. [all data]
Phillip, 1939
Phillip, N.M.,
Adiabatic and isothermal compressibilities of liquids,
Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]
Vold, 1937
Vold, R.D.,
A calorimetric test of the solubility equation for regular solutions,
J. Am. Chem. Soc., 1937, 59, 1515-1521. [all data]
Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr.,
The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients,
J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J.,
Organometallics, 1989, 8, 2471. [all data]
Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P.,
Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6,
J. Am. Chem. Soc., 1984, 106, 3905. [all data]
Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S.,
Polyhedron, 1988, 7, 1619. [all data]
Yang, Peters, et al., 1986
Yang, G.K.; Peters, K.S.; Vaida, V.,
Chem. Phys. Lett., 1986, 125, 566. [all data]
Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J.,
Mendeleev Commun., 1991, 145.. [all data]
Rogers and Dejroongruang, 1988
Rogers, D.W.; Dejroongruang, K.,
Enthalpies of hydrogenation of the n-heptenes and the methylhexenes,
J. Chem. Thermodyn., 1988, 20, 675-680. [all data]
Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A.,
Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids,
J. Phys. Chem., 1975, 79, 574-577. [all data]
Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D.,
Heats of isomerization of the nine heptanes,
J. Res. NBS, 1941, 27, 519-528. [all data]
Burkey, 1990
Burkey, T.J.,
J. Am. Chem. Soc., 1990, 112, 8329. [all data]
Klassen, Selke, et al., 1990
Klassen, J.K.; Selke, M.; Sorensen, A.A.; Yang, G.K.,
J. Am. Chem. Soc., 1990, 112, 1267. [all data]
Yang and Yang, 1992
Yang, P.-F.; Yang, K.G.,
J. Am. Chem. Soc., 1992, 114, 6937. [all data]
Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L.,
Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation,
J. Am. Chem. Soc., 1979, 101, 671-676. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Lias, 1982
Lias, S.G.,
Thermochemical information from ion-molecule rate constants,
Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]
Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P.,
Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects,
J. Am. Chem. Soc., 1981, 103, 5342. [all data]
Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z.,
Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials,
Int. J. Chem. Kinet., 1976, 8, 725. [all data]
Brehm, 1966
Brehm, B.,
Massenspektrometrische Untersuchung der Photoionisation von Molekulen,
Z. Naturforsch., 1966, 21a, 196. [all data]
Turner and Al-Joboury, 1964
Turner, D.W.; Al-Joboury, M.I.,
Molecular photoelectron spectroscopy,
Bull. Soc. Chim. Belges, 1964, 73, 428. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S.,
Excess-kinetic-energy ions in organic mass spectra,
J. Chem. Phys., 1964, 40, 2114. [all data]
Potzinger and Bunau, 1969
Potzinger, P.; Bunau, G.v.,
Empirische Beruksichtigung von Uberschussenergien bei der Auftrittspotentialbestimmung,
Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 466. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H.,
Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer,
J. Chem. Phys., 1970, 52, 6348. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy S°liquid Entropy of liquid at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.