Acetonitrile

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Chlorine anion + Acetonitrile = (Chlorine anion • Acetonitrile)

By formula: Cl- + C2H3N = (Cl- • C2H3N)

Quantity Value Units Method Reference Comment
Δr15. ± 2.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr15.7cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr15.7cal/mol*KPHPMSYamabe, Furumiya, et al., 1986gas phase; M
Δr14.3cal/mol*KPHPMSSieck, 1985gas phase; M
Δr14.3cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; M
Δr21.4cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)CF3H, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr10.20 ± 0.20kcal/molTDAsLi, Ross, et al., 1996gas phase; B
Δr9.2 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr8.9 ± 2.6kcal/molTDAsYamabe, Furumiya, et al., 1986gas phase; B
Δr10.10 ± 0.20kcal/molTDAsSieck, 1985gas phase; B
Δr9.2 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

Bromine anion + Acetonitrile = (Bromine anion • Acetonitrile)

By formula: Br- + C2H3N = (Br- • C2H3N)

Quantity Value Units Method Reference Comment
Δr14.3 ± 1.0kcal/molTDAsLi, Ross, et al., 1996gas phase; B
Δr12.10 ± 0.40kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr12.90 ± 0.40kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr12.9 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Δr12.9kcal/molHPMSCaldwell, Masucci, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr12.2cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr16.5cal/mol*KHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr8.70 ± 0.20kcal/molTDAsLi, Ross, et al., 1996gas phase; B
Δr8.8 ± 2.0kcal/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B
Δr9.20 ± 0.70kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr8.0 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

Iodide + Acetonitrile = (Iodide • Acetonitrile)

By formula: I- + C2H3N = (I- • C2H3N)

Quantity Value Units Method Reference Comment
Δr11.9 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Δr11.10 ± 0.40kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr11.1 ± 1.1kcal/molLPESDessent, Bailey, et al., 1995gas phase; B
Δr11.00 ± 0.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr12.kcal/molPHPMSCaldwell, Masucci, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr13.8cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr18.2cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr6.4 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B
Δr6.6 ± 2.0kcal/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B
Δr6.90 ± 0.50kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

CN- + Acetonitrile = (CN- • Acetonitrile)

By formula: CN- + C2H3N = (CN- • C2H3N)

Quantity Value Units Method Reference Comment
Δr13.8 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Δr16.4 ± 3.5kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Δr15.70kcal/molTDAsHiraoka, Mizure, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KPHPMSHiraoka, Mizure, et al., 1988gas phase; M
Δr14.2cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Δr24.3cal/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr9.5 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B
Δr9.1 ± 2.3kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Δr9.20kcal/molTDAsHiraoka, Mizure, et al., 1988gas phase; B

C2H2N- + Hydrogen cation = Acetonitrile

By formula: C2H2N- + H+ = C2H3N

Quantity Value Units Method Reference Comment
Δr372.9 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr369.0 ± 4.5kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr373.3 ± 2.6kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Δr374.8 ± 2.0kcal/molD-EAZimmerman and Brauman, 1977gas phase; B
Δr366.6 ± 4.6kcal/molEIAEHeni and Illenberger, 1986gas phase; From MeCN; B
Quantity Value Units Method Reference Comment
Δr365.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr365.6 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B
Δr367.2 ± 2.1kcal/molH-TSZimmerman and Brauman, 1977gas phase; B

(Iodide • Acetonitrile) + Acetonitrile = (Iodide • 2Acetonitrile)

By formula: (I- • C2H3N) + C2H3N = (I- • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr10.40 ± 0.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr11.10 ± 0.70kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr11.10 ± 0.40kcal/molN/ADessent, Bailey, et al., 1995gas phase; Vertical Detachment Energy: 2.25±0.08 eV.; B
Δr10.50kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr18.4cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr20.8cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr4.90 ± 0.80kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr4.30kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

C2H4N+ + Acetonitrile = (C2H4N+ • Acetonitrile)

By formula: C2H4N+ + C2H3N = (C2H4N+ • C2H3N)

Quantity Value Units Method Reference Comment
Δr31.1 ± 2.3kcal/molCIDHonma, Sunderlin, et al., 1993gas phase; guided ion beam CID; M
Δr28.9kcal/molPHPMSAllison, Cramer, et al., 1991gas phase; M
Δr29.8kcal/molPHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n; M
Δr29.8kcal/molPHPMSSpeller and Meot-Ner (Mautner), 1985gas phase; M
Δr30.2kcal/molPHPMSMeot-Ner (Mautner), 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr27.2cal/mol*KPHPMSAllison, Cramer, et al., 1991gas phase; M
Δr24.8cal/mol*KPHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n; M
Δr24.7cal/mol*KPHPMSSpeller and Meot-Ner (Mautner), 1985gas phase; M
Δr29.cal/mol*KPHPMSMeot-Ner (Mautner), 1978gas phase; M

Fluorine anion + Acetonitrile = (Fluorine anion • Acetonitrile)

By formula: F- + C2H3N = (F- • C2H3N)

Quantity Value Units Method Reference Comment
Δr24.5 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; Discrepancy with Yamdagni and Kebarle, 1972 "not resolved; B,M
Δr16.0 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr13.4cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr17.6 ± 3.3kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; Discrepancy with Yamdagni and Kebarle, 1972 "not resolved; B
Δr12.0 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Chlorine anion • 3Acetonitrile) + Acetonitrile = (Chlorine anion • 4Acetonitrile)

By formula: (Cl- • 3C2H3N) + C2H3N = (Cl- • 4C2H3N)

Quantity Value Units Method Reference Comment
Δr10.90 ± 0.30kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.00 ± 0.80kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr6.20kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr26.6cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr10.8cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr2.9 ± 1.2kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr3.00kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Bromine anion • 3Acetonitrile) + Acetonitrile = (Bromine anion • 4Acetonitrile)

By formula: (Br- • 3C2H3N) + C2H3N = (Br- • 4C2H3N)

Quantity Value Units Method Reference Comment
Δr8.70 ± 0.30kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr8.50 ± 0.80kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr5.50kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.6cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr10.9cal/mol*KHPMSYamdagni and Kebarle, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr2.8 ± 1.2kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr2.20kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Chlorine anion • 2Acetonitrile) + Acetonitrile = (Chlorine anion • 3Acetonitrile)

By formula: (Cl- • 2C2H3N) + C2H3N = (Cl- • 3C2H3N)

Quantity Value Units Method Reference Comment
Δr11.20 ± 0.40kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr12.00 ± 0.70kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr10.60kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.6cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr20.1cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr5.3 ± 1.3kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr4.60kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Chlorine anion • Acetonitrile) + Acetonitrile = (Chlorine anion • 2Acetonitrile)

By formula: (Cl- • C2H3N) + C2H3N = (Cl- • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr12.50 ± 0.40kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr12.00 ± 0.70kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr12.20kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr16.3cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr18.9cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr7.6 ± 1.2kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr6.60kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Iodide • 2Acetonitrile) + Acetonitrile = (Iodide • 3Acetonitrile)

By formula: (I- • 2C2H3N) + C2H3N = (I- • 3C2H3N)

Quantity Value Units Method Reference Comment
Δr9.20 ± 0.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.70 ± 0.70kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr9.30kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr22.1cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr3.20 ± 0.80kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr2.70kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Bromine anion • 2Acetonitrile) + Acetonitrile = (Bromine anion • 3Acetonitrile)

By formula: (Br- • 2C2H3N) + C2H3N = (Br- • 3C2H3N)

Quantity Value Units Method Reference Comment
Δr9.20 ± 0.40kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr10.40 ± 0.70kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr10.00kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr16.7cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr21.7cal/mol*KHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr4.2 ± 1.3kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr3.60kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Bromine anion • Acetonitrile) + Acetonitrile = (Bromine anion • 2Acetonitrile)

By formula: (Br- • C2H3N) + C2H3N = (Br- • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr11.70 ± 0.40kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr11.50 ± 0.70kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Δr11.80kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.0cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr20.4cal/mol*KHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr6.6 ± 1.3kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr5.80kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Fluorine anion • 4Acetonitrile) + Acetonitrile = (Fluorine anion • 5Acetonitrile)

By formula: (F- • 4C2H3N) + C2H3N = (F- • 5C2H3N)

Quantity Value Units Method Reference Comment
Δr11.50 ± 0.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr5.30kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr29.6cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr7.4cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr2.60 ± 0.80kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr3.10kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Fluorine anion • 2Acetonitrile) + Acetonitrile = (Fluorine anion • 3Acetonitrile)

By formula: (F- • 2C2H3N) + C2H3N = (F- • 3C2H3N)

Quantity Value Units Method Reference Comment
Δr15.1 ± 1.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr11.70kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.4cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.9cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr8.4 ± 2.5kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr6.40kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Fluorine anion • Acetonitrile) + Acetonitrile = (Fluorine anion • 2Acetonitrile)

By formula: (F- • C2H3N) + C2H3N = (F- • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr17.7 ± 1.5kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr12.90kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr14.8cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr10.8 ± 3.4kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr8.50kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

(Fluorine anion • 3Acetonitrile) + Acetonitrile = (Fluorine anion • 4Acetonitrile)

By formula: (F- • 3C2H3N) + C2H3N = (F- • 4C2H3N)

Quantity Value Units Method Reference Comment
Δr12.80 ± 0.50kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr10.40kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B,M
Quantity Value Units Method Reference Comment
Δr26.3cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr19.6cal/mol*KPHPMSYamdagni and Kebarle, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr4.9 ± 1.9kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr4.50kcal/molTDAsYamdagni and Kebarle, 1972gas phase; B

C3H9Sn+ + Acetonitrile = (C3H9Sn+ • Acetonitrile)

By formula: C3H9Sn+ + C2H3N = (C3H9Sn+ • C2H3N)

Quantity Value Units Method Reference Comment
Δr37.5kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr31.4cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
21.0525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

(C2H4N+ • Water • 2Acetonitrile) + Water = (C2H4N+ • 2Water • 2Acetonitrile)

By formula: (C2H4N+ • H2O • 2C2H3N) + H2O = (C2H4N+ • 2H2O • 2C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr9.7kcal/molPHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/ADeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.8316.PHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n, Entropy change calculated or estimated; M

C2H2N- + Acetonitrile = (C2H2N- • Acetonitrile)

By formula: C2H2N- + C2H3N = (C2H2N- • C2H3N)

Quantity Value Units Method Reference Comment
Δr12.8 ± 1.0kcal/molTDAsMeot-ner, 1988, 2gas phase; B,M
Δr15.70kcal/molTDAsHiraoka, Mizure, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.8cal/mol*KPHPMSHiraoka, Mizure, et al., 1988gas phase; M
Δr13.4cal/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr8.8 ± 1.0kcal/molTDAsMeot-ner, 1988, 2gas phase; B
Δr8.90kcal/molTDAsHiraoka, Mizure, et al., 1988gas phase; B

(Chlorine anion • 7Acetonitrile) + Acetonitrile = (Chlorine anion • 8Acetonitrile)

By formula: (Cl- • 7C2H3N) + C2H3N = (Cl- • 8C2H3N)

Quantity Value Units Method Reference Comment
Δr9.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; Entropy estimated; B,M
Δr2.8 ± 1.2kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr32.cal/mol*KN/AHiraoka, Mizuse, et al., 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr-0.40kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; Entropy estimated; B

(C2H4N+ • Acetonitrile • 4Water) + Acetonitrile = (C2H4N+ • 2Acetonitrile • 4Water)

By formula: (C2H4N+ • C2H3N • 4H2O) + C2H3N = (C2H4N+ • 2C2H3N • 4H2O)

Quantity Value Units Method Reference Comment
Δr14.4kcal/molPHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/ADeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.4318.PHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n, Entropy change calculated or estimated; M

(CH6N+ • 2Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • 2Acetonitrile)

By formula: (CH6N+ • 2C2H3N) + CH4S = (CH6N+ • CH4S • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr7.8kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.4270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

C11H10+ + Acetonitrile = (C11H10+ • Acetonitrile)

By formula: C11H10+ + C2H3N = (C11H10+ • C2H3N)

Quantity Value Units Method Reference Comment
Δr11.3kcal/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/AEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.6303.PHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M

(Chlorine anion • 6Acetonitrile) + Acetonitrile = (Chlorine anion • 7Acetonitrile)

By formula: (Cl- • 6C2H3N) + C2H3N = (Cl- • 7C2H3N)

Quantity Value Units Method Reference Comment
Δr9.40 ± 0.30kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr3.9 ± 1.1kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr30.7cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr0.2 ± 1.4kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(Chlorine anion • 4Acetonitrile) + Acetonitrile = (Chlorine anion • 5Acetonitrile)

By formula: (Cl- • 4C2H3N) + C2H3N = (Cl- • 5C2H3N)

Quantity Value Units Method Reference Comment
Δr9.80 ± 0.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr5.80 ± 0.90kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.70 ± 0.80kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(Iodide • 3Acetonitrile) + Acetonitrile = (Iodide • 4Acetonitrile)

By formula: (I- • 3C2H3N) + C2H3N = (I- • 4C2H3N)

Quantity Value Units Method Reference Comment
Δr7.80 ± 0.10kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr7.40 ± 0.80kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr19.3cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr2.00 ± 0.40kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(Iodide • 4Acetonitrile) + Acetonitrile = (Iodide • 5Acetonitrile)

By formula: (I- • 4C2H3N) + C2H3N = (I- • 5C2H3N)

Quantity Value Units Method Reference Comment
Δr7.10 ± 0.30kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr10.60 ± 0.90kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr18.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.4 ± 1.4kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(Chlorine anion • 5Acetonitrile) + Acetonitrile = (Chlorine anion • 6Acetonitrile)

By formula: (Cl- • 5C2H3N) + C2H3N = (Cl- • 6C2H3N)

Quantity Value Units Method Reference Comment
Δr9.50 ± 0.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr5.8 ± 1.0kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr29.1cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr0.80 ± 0.80kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(Bromine anion • 4Acetonitrile) + Acetonitrile = (Bromine anion • 5Acetonitrile)

By formula: (Br- • 4C2H3N) + C2H3N = (Br- • 5C2H3N)

Quantity Value Units Method Reference Comment
Δr8.50 ± 0.30kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr5.80 ± 0.90kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr22.2cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.8 ± 1.3kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(Bromine anion • 5Acetonitrile) + Acetonitrile = (Bromine anion • 6Acetonitrile)

By formula: (Br- • 5C2H3N) + C2H3N = (Br- • 6C2H3N)

Quantity Value Units Method Reference Comment
Δr8.00 ± 0.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr5.5 ± 1.0kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr22.5cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.20 ± 0.90kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(Bromine anion • 6Acetonitrile) + Acetonitrile = (Bromine anion • 7Acetonitrile)

By formula: (Br- • 6C2H3N) + C2H3N = (Br- • 7C2H3N)

Quantity Value Units Method Reference Comment
Δr7.70 ± 0.30kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr3.0 ± 1.1kcal/molN/AMarkovich, Perera, et al., 1996gas phase; B
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr0.8 ± 1.3kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(Fluorine anion • 6Acetonitrile) + Acetonitrile = (Fluorine anion • 7Acetonitrile)

By formula: (F- • 6C2H3N) + C2H3N = (F- • 7C2H3N)

Quantity Value Units Method Reference Comment
Δr8.50kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; Entropy estimated; B,M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AHiraoka, Mizuse, et al., 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr0.10kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; Entropy estimated; B

C9H9N3O3W (cr) = 0.5Tungsten hexacarbonyl (g) + 0.5tungsten (cr) + 3Acetonitrile (g)

By formula: C9H9N3O3W (cr) = 0.5C6O6W (g) + 0.5W (cr) + 3C2H3N (g)

Quantity Value Units Method Reference Comment
Δr46.6kcal/molTD-HFCAdedeji, Connor, et al., 1978The value for the reaction enthalpy corresponds to the thermal decomposition experiments and leads to -99.2 kcal/mol for the enthalpy of formation of W(CO)3(MeCN)3(cr). The value -405.0±12.0 was recommended by the authors Adedeji, Connor, et al., 1978; MS

C7H4N2O2- + Acetonitrile = (C7H4N2O2- • Acetonitrile)

By formula: C7H4N2O2- + C2H3N = (C7H4N2O2- • C2H3N)

Quantity Value Units Method Reference Comment
Δr13.9 ± 2.0kcal/molN/AChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B,M
Quantity Value Units Method Reference Comment
Δr28.6cal/mol*KPHPMSChowdhury, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr4.1 ± 2.0kcal/molTDAsChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

C7H7NO3- + Acetonitrile = (C7H7NO3- • Acetonitrile)

By formula: C7H7NO3- + C2H3N = (C7H7NO3- • C2H3N)

Quantity Value Units Method Reference Comment
Δr13.8 ± 2.0kcal/molN/AChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B,M
Quantity Value Units Method Reference Comment
Δr22.7cal/mol*KPHPMSChowdhury, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr6.6 ± 2.0kcal/molTDAsChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

(Sodium ion (1+) • 4Acetonitrile) + Acetonitrile = (Sodium ion (1+) • 5Acetonitrile)

By formula: (Na+ • 4C2H3N) + C2H3N = (Na+ • 5C2H3N)

Quantity Value Units Method Reference Comment
Δr12.6 ± 0.8kcal/molCIDTValina, 2001CH3CN is fifth ligand; RCD
Δr12.7kcal/molHPMSDavidson and Kebarle, 1976gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr41.2cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; Entropy change is questionable; M

C7H4F3NO2- + Acetonitrile = (C7H4F3NO2- • Acetonitrile)

By formula: C7H4F3NO2- + C2H3N = (C7H4F3NO2- • C2H3N)

Quantity Value Units Method Reference Comment
Δr13.3 ± 2.0kcal/molN/AChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B,M
Quantity Value Units Method Reference Comment
Δr23.4cal/mol*KPHPMSChowdhury, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr5.4 ± 2.0kcal/molTDAsChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

(Oxygen anion • 2Acetonitrile) + Acetonitrile = (Oxygen anion • 3Acetonitrile)

By formula: (O2- • 2C2H3N) + C2H3N = (O2- • 3C2H3N)

Quantity Value Units Method Reference Comment
Δr11.90 ± 0.60kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.7cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr4.50 ± 0.20kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

(Oxygen anion • 3Acetonitrile) + Acetonitrile = (Oxygen anion • 4Acetonitrile)

By formula: (O2- • 3C2H3N) + C2H3N = (O2- • 4C2H3N)

Quantity Value Units Method Reference Comment
Δr9.50 ± 0.50kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.4cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr2.80 ± 0.10kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

(Oxygen anion • Acetonitrile) + Acetonitrile = (Oxygen anion • 2Acetonitrile)

By formula: (O2- • C2H3N) + C2H3N = (O2- • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr14.20 ± 0.70kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.0cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr7.70 ± 0.40kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

(Fluorine anion • 5Acetonitrile) + Acetonitrile = (Fluorine anion • 6Acetonitrile)

By formula: (F- • 5C2H3N) + C2H3N = (F- • 6C2H3N)

Quantity Value Units Method Reference Comment
Δr9.70 ± 0.20kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr27.8cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.40 ± 0.90kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

Nitrogen oxide anion + Acetonitrile = (Nitrogen oxide anion • Acetonitrile)

By formula: NO2- + C2H3N = (NO2- • C2H3N)

Quantity Value Units Method Reference Comment
Δr13.40 ± 0.10kcal/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr15.3cal/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr8.80 ± 0.20kcal/molTDAsSieck, 1985gas phase; B

(C2H4N+ • 2Water • Acetonitrile) + Water = (C2H4N+ • 3Water • Acetonitrile)

By formula: (C2H4N+ • 2H2O • C2H3N) + H2O = (C2H4N+ • 3H2O • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr10.3kcal/molPHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n; M

Oxygen anion + Acetonitrile = (Oxygen anion • Acetonitrile)

By formula: O2- + C2H3N = (O2- • C2H3N)

Quantity Value Units Method Reference Comment
Δr16.40kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr11.20kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

(C2H4N+ • Water • Acetonitrile) + Water = (C2H4N+ • 2Water • Acetonitrile)

By formula: (C2H4N+ • H2O • C2H3N) + H2O = (C2H4N+ • 2H2O • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr15.3kcal/molPHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n; M
Quantity Value Units Method Reference Comment
Δr25.2cal/mol*KPHPMSDeakyne, Meot-Ner (Mautner), et al., 1986gas phase; n; M

pyrrolide anion + Acetonitrile = (pyrrolide anion • Acetonitrile)

By formula: C4H4N- + C2H3N = (C4H4N- • C2H3N)

Quantity Value Units Method Reference Comment
Δr15.8 ± 1.0kcal/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr23.4cal/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr8.8 ± 1.0kcal/molTDAsMeot-ner, 1988, 2gas phase; B

(C2H4N+ • Methyl Alcohol • Acetonitrile) + Methyl Alcohol = (C2H4N+ • 2Methyl Alcohol • Acetonitrile)

By formula: (C2H4N+ • CH4O • C2H3N) + CH4O = (C2H4N+ • 2CH4O • C2H3N)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr13.7kcal/molPHPMSEl-Shall, Olafsdottir, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr24.1cal/mol*KPHPMSEl-Shall, Olafsdottir, et al., 1991gas phase; M

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C2H3N+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)12.20 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)186.2kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity179.kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.01101EFDSuess, Liu, et al., 2003B
0.0030 ± 0.0072LPESBailey, Dessent, et al., 1996B
0.01149EFDDesfrancois, Abdoul-Carime, et al., 1994EA: 11.5 meV. Dipole-bound state.; B

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
188.2 ± 1.4Williams, Denault, et al., 2001T = T(eff) = 498-797 KK; propionitrile, butyronitrile, valeronitrile reference compounds; MM

Ionization energy determinations

IE (eV) Method Reference Comment
12.201 ± 0.002PEGochel-Dupuis, Delwiche, et al., 1992LL
12.38 ± 0.04EIHarland and McIntosh, 1985LBLHLM
12.3 ± 0.25EIChess, Lapp, et al., 1982LBLHLM
12.33 ± 0.08EIAllam, Migahed, et al., 1982LBLHLM
12.194 ± 0.005PIRider, Ray, et al., 1981LLK
12.21PEKimura, Katsumata, et al., 1981LLK
12.20 ± 0.01PEStaley, Kleckner, et al., 1976LLK
13.14PELake and Thompson, 1970RDSH
15.11PELake and Thompson, 1970RDSH
12.12PEFrost, Herring, et al., 1970RDSH
13.11PEFrost, Herring, et al., 1970RDSH
15.12PEFrost, Herring, et al., 1970RDSH
16.98PEFrost, Herring, et al., 1970RDSH
12.19 ± 0.01PIDibeler and Liston, 1968RDSH
12.23 ± 0.05EIFranklin, Wada, et al., 1966RDSH
12.205 ± 0.004PINicholson, 1965RDSH
12.22 ± 0.01PIWatanabe, Nakayama, et al., 1962RDSH
12.46PEAsbrink, Von Niessen, et al., 1980Vertical value; LLK
12.20PELake and Thompson, 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+27.0 ± 0.3?EIReed and Snedden, 1956RDSH
CH+22.4 ± 0.2?EIReed and Snedden, 1956RDSH
CH2+15.7HCNEIHaney and Franklin, 1968RDSH
CH2+14.94 ± 0.02HCNPIDibeler and Liston, 1968RDSH
C2HN+15.90 ± 0.08?EIHarland and McIntosh, 1985LBLHLM
C2HN+15.1 ± 0.1H2PIDibeler and Liston, 1968RDSH
C2H2N+13.94 ± 0.02HN/AHolmes, Lossing, et al., 1993LL
C2H2N+14.38 ± 0.04HEIHarland and McIntosh, 1985LBLHLM
C2H2N+14.75 ± 0.08HEIAllam, Migahed, et al., 1982LBLHLM
C2H2N+14.01 ± 0.02HPIDibeler and Liston, 1968RDSH
C2H2N+13.54 ± 0.08HEIFranklin, Wada, et al., 1966RDSH
C2H2N+14.28 ± 0.05HEIPottie and Lossing, 1961RDSH
C2N+20.00 ± 0.08?EIHarland and McIntosh, 1985LBLHLM

De-protonation reactions

C2H2N- + Hydrogen cation = Acetonitrile

By formula: C2H2N- + H+ = C2H3N

Quantity Value Units Method Reference Comment
Δr372.9 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr369.0 ± 4.5kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr373.3 ± 2.6kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Δr374.8 ± 2.0kcal/molD-EAZimmerman and Brauman, 1977gas phase; B
Δr366.6 ± 4.6kcal/molEIAEHeni and Illenberger, 1986gas phase; From MeCN; B
Quantity Value Units Method Reference Comment
Δr365.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr365.6 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B
Δr367.2 ± 2.1kcal/molH-TSZimmerman and Brauman, 1977gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-4393
NIST MS number 228221

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 3


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 CH3 s-str 2954  A 2954.1 M gas 2942 VS liq.
a1 2 CN str 2267  A 2266.5 M gas 2249 S liq.
a1 3 CH3 s-deform 1385  C 1376 M liq. OC34)
a1 4 CC str 920  A 920.2 S gas 918 S liq.
e 5 CH3 d-str 3009  A 3009.2 S gas 2999 S liq.
e 6 CH3 d-deform 1448  D 1447.9 S gas 1440 M b liq. FR78)
e 7 CH3 rock 1041  A 1040.8 M gas
e 8 CCN bend 362  B 362 S gas 380 S liq.

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
bBroad
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
OCFrequency estimated from an overtone or a combination tone indicated in the parentheses.
A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty

Gas Chromatography

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-1100.452.53Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1110.452.72Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1120.452.90Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1130.453.18Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1140.453.70Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1150.454.45Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1160.455.25Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1170.455.74Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1180.456.69Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-1190.457.67Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-120.455.45Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-130.454.52Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-140.453.90Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-150.453.32Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-160.452.92Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-170.452.71Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-180.452.50Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryHP-190.452.35Görgényi and Héberger, 2003N2; Column length: 30. m; Phase thickness: 3. μm
CapillaryCP Sil 5 CB20.456.9Do and Raulin, 199225. m/0.15 mm/2. μm, H2
CapillaryPoraPLOT Q100.432.Do and Raulin, 198910. m/0.32 mm/10. μm, H2
CapillaryPoraPLOT Q160.442.Do and Raulin, 198910. m/0.32 mm/10. μm, H2
CapillaryPoraPLOT Q200.450.de Zeeuw, de Nijs, et al., 1988H2; Column length: 25. m; Column diameter: 0.53 mm
CapillaryPoraPLOT Q200.460.de Zeeuw, de Nijs, et al., 1988H2; Column length: 25. m; Column diameter: 0.53 mm
PackedSE-30100.464.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedPorapack Q200.425.Goebel, 1982N2
PackedApiezon L150.440.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m
PackedDC-200100.460.Rohrschneider, 1966Column length: 4. m
PackedApiezon L100.444.Rohrschneider, 1966Column length: 5. m
PackedApiezon L130.447.Wehrli and Kováts, 1959Celite; Column length: 2.25 m
PackedApiezon L70.439.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M75.1045.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedCarbowax 20M100.1025.Rohrschneider, 1966Column length: 2. m

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryFFAP1012.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSynachrom150.439.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.446.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedDC-400150.500.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB456.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryBP-1470.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone447.N/AProgram: not specified
CapillarySPB-1443.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes452.Zenkevich and Chupalov, 1996Program: not specified
CapillaryMethyl Silicone467.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillarySPB-1443.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1455.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB490.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.464.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1455.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1026.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryCarbowax 20M1002.de la Fuente, Martinez-Castro, et al., 200550. m/0.25 mm/0.25 μm, Helium, 40. C @ 2. min, 4. K/min, 190. C @ 30. min
CapillaryDB-Wax1026.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryCarbowax 20M1030.Soria, Martinez-Castro, et al., 200350. m/0.25 mm/0.25 μm, He, 45. C @ 2. min, 4. K/min, 190. C @ 50. min
CapillaryDB-Wax1003.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySOLGel-Wax988.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySupelcowax-101013.Soria, Martinez-Castro, et al., 200950. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillarySupelcowax 101013.Soria, Martinez-Castro, et al., 200850. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillaryPolyethylene Glycol1002.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.1011.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.1045.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M1010.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Solvation of Halide Ions with H2O and CH3CN in the Gas Phase, J. Phys. Chem., 1988, 92, 13, 3943, https://doi.org/10.1021/j100324a051 . [all data]

Yamabe, Furumiya, et al., 1986
Yamabe, S.; Furumiya, Y.; Hiraoka, K.; Morise, K., Theoretical Van't Hoff plots of gas phase ion equilibria of Cl- ion in water, methanol and acetonitrile, Chem. Phys. Lett., 1986, 131, 261. [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Yamdagni and Kebarle, 1972
Yamdagni, R.; Kebarle, P., Solvation of negative ions by protic and aprotic solvents. Gas phase solvation of halide ions by acetonitrile and water molecules, J. Am. Chem. Soc., 1972, 94, 2940. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Li, Ross, et al., 1996
Li, C.; Ross, P.; Szulejko, J.; McMahon, T.B., High-Pressure Mass Spectrometric Investigations of the Potential Energy Surfaces of Gas-Phase Sn2 Reactions., J. Am. Chem. Soc., 1996, 118, 39, 9360, https://doi.org/10.1021/ja960565o . [all data]

Markovich, Perera, et al., 1996
Markovich, G.; Perera, L.; Berkowitz, M.L.; Cheshnovsky, O., The Solvation of Cl-, Br-, and I- in Acetonitrile Cluster: Photoelectron Spectroscopy and Molecular Dynamics Simulations., J. Chem. Phys., 1996, 105, 7, 2675, https://doi.org/10.1063/1.472131 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M., Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR, J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p . [all data]

Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y., Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN, Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8 . [all data]

Dessent, Bailey, et al., 1995
Dessent, C.E.H.; Bailey, C.G.; Johnson, M.A., Dipole-bound excited states of the I-center dot CH3CN and I-center dot(CH3CN)2 ion-molecule complexes: Evidence for asymmetric solvation, J. Chem. Phys., 1995, 103, 6, 2006, https://doi.org/10.1063/1.469727 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Zimmerman and Brauman, 1977
Zimmerman, A.H.; Brauman, J.I., Electron photodetachment from negative ions of C2v symmetry. Electron affinities of allyl and cyanomethyl radicals, J. Am. Chem. Soc., 1977, 99, 3565. [all data]

Heni and Illenberger, 1986
Heni, M.; Illenberger, E., Electron attachment by saturated nitriles. Acrylonitrile (CH2H3CN), and benzonitrile (C6H5CN), Int. J. Mass Spectrom. Ion Phys., 1986, 73, 127. [all data]

Honma, Sunderlin, et al., 1993
Honma, K.; Sunderlin, L.S.; Armentrout, P.B., Guided-Ion Beam Studies of the Reactions of Protonated Water Clusters, H(H2O)n+ (n = 1-4), with Acetonitrile, J. Chem. Phys., 1993, 99, 3, 1623, https://doi.org/10.1063/1.465331 . [all data]

Allison, Cramer, et al., 1991
Allison, C.E.; Cramer, J.A.; Hop, C.E.C.A.; Szulejko, J.E.; McMahon, T.B., Strong Hydrogen Bonding in Gas - Phase Ions. A High - Pressure Mass Spectrometric Study of the Proton Affinity, Proton Transfer Kinetics, and Hydrogen - Bonding Capability of Iron Pentacarbonyl, J. Am. Chem. Soc., 1991, 113, 12, 4469, https://doi.org/10.1021/ja00012a014 . [all data]

Deakyne, Meot-Ner (Mautner), et al., 1986
Deakyne, C.A.; Meot-Ner (Mautner), M.; Campbell, C.L.; Hughes, M.G.; Murphy, S.P., Multicomponent Cluster Ions. 1. The Acetonitrile - Water System, J. Chem. Phys., 1986, 90, 4648. [all data]

Speller and Meot-Ner (Mautner), 1985
Speller, C.V.; Meot-Ner (Mautner), M., The Ionic Hydrogen Bond and Ion Solvation. 3. Bonds Involving Cyanides. Correlations with Proton Affinites, J. Phys. Chem., 1985, 81, 24, 5217, https://doi.org/10.1021/j100270a020 . [all data]

Meot-Ner (Mautner), 1978
Meot-Ner (Mautner), M., Solvation of the Proton by HCN and CH3CN. Condensation of HCN with Ions in the Gas Phase., J. Am. Chem. Soc., 1978, 100, 15, 4694, https://doi.org/10.1021/ja00483a012 . [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-ner, 1988, 2
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W., The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters, J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Adedeji, Connor, et al., 1978
Adedeji, F.A.; Connor, J.A.; Demain, C.P.; Martinho Simões, J.A.; Skinner, H.A.; Zafarani- Moattar, M.T., J. Organometal. Chem., 1978, 149, 333. [all data]

Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P., Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Chowdhury, 1987
Chowdhury, S. Grimsrud, Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Valina, 2001
Valina, A.B., Collision-Induced Dissociation and Theoretical Studies of Na+-Acetonitrile Complexes, J. Phys. Chem. A, 2001, 105, 49, 11057, https://doi.org/10.1021/jp0128123 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Ions by Acetonitrile, J. Am. Chem. Soc., 1976, 98, 20, 6125, https://doi.org/10.1021/ja00436a010 . [all data]

Yamdagni, Payzant, et al., 1973
Yamdagni, R.; Payzant, J.D.; Kebarle, P., Solvation of Cl- and O2- with H2O, CH3OH, and CH3CN in the gas phase, Can. J. Chem., 1973, 51, 2507. [all data]

El-Shall, Olafsdottir, et al., 1991
El-Shall, M.S.; Olafsdottir, S.; Meot-ner (Mautner), M.; Sieck, L.W., Energy effects on cluster ion distributions: Beam expansion and thermochemical studies on mixed clusters of methanol and acetonitrile, Chem. Phys. Lett., 1991, 185, 3-4, 193, https://doi.org/10.1016/S0009-2614(91)85046-Y . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Suess, Liu, et al., 2003
Suess, L.; Liu, Y.; Parthasarathy, R.; Dunning, F.B., Dipole-bound negative ions: Collisional destruction and blackbody-radiation-induced photodetachment, J. Chem. Phys., 2003, 119, 24, 12890-12894, https://doi.org/10.1063/1.1628215 . [all data]

Bailey, Dessent, et al., 1996
Bailey, C.G.; Dessent, C.E.H.; Johnson, M.A.; Bowen, K.A., Jr., Vibronic Effects in the Photon Energy Dependent Photoelectron Spectra of the CH3CN- Dipole-bound Anion, J. Chem. Phys., 1996, 104, 18, 6976, https://doi.org/10.1063/1.471415 . [all data]

Desfrancois, Abdoul-Carime, et al., 1994
Desfrancois, C.; Abdoul-Carime, H.; Khelifa, N.; Schermann, J.P., Fork 1/r to 1/r2 Potentials: Electron Exchange between Rydberg Atoms and Polar Molecules, Phys. Rev. Lett., 1994, 73, 18, 2436, https://doi.org/10.1103/PhysRevLett.73.2436 . [all data]

Williams, Denault, et al., 2001
Williams, T.I.; Denault, J.W.; Cooks, R.G., Proton Affinity of Deuterated Acetonitrile Estimated by the Kinetic Method with Full Entropy Analysis, Int. J. Mass Spectrom., 2001, 210/211, 133. [all data]

Gochel-Dupuis, Delwiche, et al., 1992
Gochel-Dupuis, M.; Delwiche, J.; Hubin-Franskin, M.-J.; Collin, J.E., High-resolution HeI photoelectron spectrum of acetonitrile, Chem. Phys. Lett., 1992, 193, 41. [all data]

Harland and McIntosh, 1985
Harland, P.W.; McIntosh, B.J., Enthalpies of formation for the isomeric ions HxCCN+ and HxCNC+ (x = 0-3) by monochromatic electron impact on C2N2, CH3CN and CH3NC., Int. J. Mass Spectrom. Ion Processes, 1985, 67, 29. [all data]

Chess, Lapp, et al., 1982
Chess, E.K.; Lapp, R.L.; Gross, M.L., The question of tautomerism of alkylnitrile and isonitrile radical cations, Org. Mass Spectrom., 1982, 17, 475. [all data]

Allam, Migahed, et al., 1982
Allam, S.H.; Migahed, M.D.; El-Khodary, A., Electron impact ionization and dissociation of deuterated and non-deuterated methanol, methyl cyanide, nitromethane and nitrobenzene, Egypt. J. Phys., 1982, 13, 167. [all data]

Rider, Ray, et al., 1981
Rider, D.M.; Ray, G.W.; Darland, E.J.; Leroi, G.E., A photoionization mass spectrometric investigation of CH3CN and CD3CN, J. Chem. Phys., 1981, 74, 1652. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Staley, Kleckner, et al., 1976
Staley, R.H.; Kleckner, J.E.; Beauchamp, J.L., Relationship between orbital ionization energies and molecular properties. Proton affinities and photoelectron spectra of nitriles, J. Am. Chem. Soc., 1976, 98, 2081. [all data]

Lake and Thompson, 1970
Lake, R.F.; Thompson, H., The photoelectron spectra of some molecules containing the C N group, Proc. Roy. Soc. (London), 1970, A317, 187. [all data]

Frost, Herring, et al., 1970
Frost, D.C.; Herring, F.G.; McDowell, C.A.; Stenhouse, I.A., The ionization potentials of methyl cyanide and methyl acetylene by photoelectron spectroscopy and semi-rigorous LCAO SCF calculations, Chem. Phys. Lett., 1970, 4, 533. [all data]

Dibeler and Liston, 1968
Dibeler, V.H.; Liston, S.K., Mass-spectrometric study of photoionization. IX. Hydrogen cyanide and acetonitrile, J. Chem. Phys., 1968, 48, 4765. [all data]

Franklin, Wada, et al., 1966
Franklin, J.L.; Wada, Y.; Natalis, P.; Hierl, P.M., Ion-molecule reactions in acetonitrile and propionitrile, J. Phys. Chem., 1966, 70, 2353. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Asbrink, Von Niessen, et al., 1980
Asbrink, L.; Von Niessen, W.; Bieri, G., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 21, 93. [all data]

Reed and Snedden, 1956
Reed, R.I.; Snedden, W., Studies in electron impact methods. Part 6.-The formation of the methine and carbon ions, J. Chem. Soc. Faraday Trans., 1956, 55, 876. [all data]

Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L., Correlation of excess energies of electron-impact dissociations with the translational energies of the products, J.Chem. Phys., 1968, 48, 4093. [all data]

Holmes, Lossing, et al., 1993
Holmes, J.L.; Lossing, F.P.; Mayer, P.M., The effects of methyl substitution on the structure and thermochemistry of the cyanomethyl radical and cation, Chem. Phys. Lett., 1993, 212, 134. [all data]

Pottie and Lossing, 1961
Pottie, R.F.; Lossing, F.P., Free radicals by mass spectrometry. XXV. Ionization potentials of cyanoalkyl radicals, J. Am. Chem. Soc., 1961, 83, 4737. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Görgényi and Héberger, 2003
Görgényi, M.; Héberger, K., Minimum in the temperature dependence of the Kováts retention indices of nitroalkanes and alkanenitriles on an apolar phase, J. Chromatogr. A, 2003, 985, 1-2, 11-19, https://doi.org/10.1016/S0021-9673(02)01842-3 . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Do and Raulin, 1989
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. I. Analysis of low-molecular-weight hydrocarbons and nitriles with a PoraPLOT Q porous polymer coated open-tubular capillary column, J. Chromatogr., 1989, 481, 45-54, https://doi.org/10.1016/S0021-9673(01)96751-2 . [all data]

de Zeeuw, de Nijs, et al., 1988
de Zeeuw, J.; de Nijs, R.C.M.; Buyten, J.C.; Peene, J.A.; Mohne, M., PoraPLOT Q: A porous layer open tubular column coated with styrene-divinylbenzene copolymer, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1988, 11, 2, 162-167, https://doi.org/10.1002/jhrc.1240110204 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Rohrschneider, 1966
Rohrschneider, L., Eine methode zur charakterisierung von gaschromatographischen trennflüssigkeiten, J. Chromatogr., 1966, 22, 6-22, https://doi.org/10.1016/S0021-9673(01)97064-5 . [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

de la Fuente, Martinez-Castro, et al., 2005
de la Fuente, E.; Martinez-Castro, I.; Sanz, J., Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography-mass spectrometry, J. Sep. Sci., 2005, 28, 9-10, 1093-1100, https://doi.org/10.1002/jssc.200500018 . [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Soria, Martinez-Castro, et al., 2003
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Analysis of volatile composition of honey by solid phase microextraction and gas chromatographymass spectrometry, J. Sep. Sci., 2003, 26, 9-10, 793-801, https://doi.org/10.1002/jssc.200301368 . [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Soria, Martinez-Castro, et al., 2009
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Study of the precision in the purge-and-trap-gas-chromatography-mass-spectrometry analysis of volatile compounds in honey, J. Chromatogr. A., 2009, 1216, 15, 3300-3304, https://doi.org/10.1016/j.chroma.2009.01.065 . [all data]

Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Some aspects of dynamic headspace analysis of volatile components in honey, Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References