Naphthalene
- Formula: C10H8
- Molecular weight: 128.1705
- IUPAC Standard InChIKey: UFWIBTONFRDIAS-UHFFFAOYSA-N
- CAS Registry Number: 91-20-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Albocarbon; Dezodorator; Moth flakes; Naphthalin; Naphthaline; Naphthene; Tar camphor; White tar; Camphor tar; Moth balls; Naftalen; NCI-C52904; Mighty 150; Mighty RD1; Rcra waste number U165; UN 1334; UN 2304; NSC 37565
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°liquid | 217.59 | J/mol*K | N/A | Chirico, Knipmeyer, et al., 1993 | DH |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | 77. ± 10. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -5160. ± 20. | kJ/mol | AVG | N/A | Average of 18 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 167.40 | J/mol*K | N/A | McCullough, Finke, et al., 1957 | DH |
S°solid,1 bar | 162.84 | J/mol*K | N/A | Southard and Brickwedde, 1933 | DH |
S°solid,1 bar | 166.86 | J/mol*K | N/A | Pearce and Tanner, 1934 | Extrapolation below 90 K, 58.32 J/mol*K.; DH |
S°solid,1 bar | 166.9 | J/mol*K | N/A | Huffman, Parks, et al., 1930 | Extrapolation below 90 K, 53.09 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
196.06 | 298.15 | Chirico, Knipmeyer, et al., 1993 | T = 260 to 700 K.; DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
213. | 330. | David, 1964 | T = 298 to 353 K. Mean value. T = uncertain.; DH |
188.4 | 342. | Rastogi and Bassi, 1964 | T = 342, 384 K.; DH |
165.69 | 298.15 | McCullough, Finke, et al., 1957 | T = 10 to 370 K.; DH |
156.1 | 298.15 | Ueberreiter and Orthmann, 1950 | T = 293 to 368 K. Equation only.; DH |
195.8 | 298.1 | Eibert, 1944 | T = 30 to 200°C, equations only in t°C. Cp(c) = 0.365 cal/g*K (30 to 80°C); Cp(liq) = 0.329 + 0.000824t cal/g*K (80 to 200°C).; DH |
161.5 | 298.1 | Schmidt, 1941 | T = 22 to 200°C, equations only, in t°C. Cp(c) = 0.2595 + 0.001672t cal/g*K (22 to 80°C); Cp(liq) = 0.3360 + 0.0008180t cal/g*K (80 to 200°C).; DH |
168.11 | 301.58 | Hicks, 1938 | T = 58 to 304 K. Value is unsmoothed experimental datum.; DH |
168.07 | 297.6 | Pearce and Tanner, 1934 | T = 94 to 298 K. Value is unsmoothed experimental datum.; DH |
165.48 | 294.68 | Southard and Brickwedde, 1933 | T = 15 to 295 K. Value is unsmoothed experimental datum.; DH |
169.0 | 303. | Spaght, Thomas, et al., 1932 | T = 30 to 190°C.; DH |
163.6 | 295.1 | Huffman, Parks, et al., 1930 | T = 91 to 295 K.; DH |
159.4 | 298. | Andrews, Lynn, et al., 1926 | T = 12 to 300°C.; DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C10H7- + =
By formula: C10H7- + H+ = C10H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1649. ± 5.0 | kJ/mol | Bran | Reed and Kass, 2000 | gas phase; B |
ΔrH° | 1649. ± 5.0 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrH° | 1648. ± 21. | kJ/mol | CIDC | Lardin, Squires, et al., 2001 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1613. ± 5.4 | kJ/mol | H-TS | Reed and Kass, 2000 | gas phase; B |
ΔrG° | 1606. ± 5.0 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrG° | 1613. ± 21. | kJ/mol | H-TS | Lardin, Squires, et al., 2001 | gas phase; B |
By formula: C6H7N+ + C10H8 = (C6H7N+ • C10H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.4 | kJ/mol | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
31. | 324. | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
By formula: C12H8+ + C10H8 = (C12H8+ • C10H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.7 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21. | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
By formula: C12H9+ + C10H8 = (C12H9+ • C10H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.2 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 27. | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
By formula: 2H2 + C10H8 = C10H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -125. | kJ/mol | Eqk | Frye and Weitkamp, 1969 | gas phase; ALS |
ΔrH° | -120.5 ± 5.0 | kJ/mol | Eqk | Wilson, Caflisch, et al., 1958 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -133.9 ± 5.0 kJ/mol; At 400 K; ALS |
By formula: C10H8 = C10H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -248.5 ± 8.0 | kJ/mol | Eqk | Dreeskamp, Kapahnke, et al., 1988 | liquid phase; solvent: Heptane; Isomerization; ALS |
ΔrH° | -249.2 ± 8.0 | kJ/mol | Ciso | Grimme and Heinze, 1978 | liquid phase; solvent: Heptane; ALS |
By formula: C10H8+ + C10H8 = (C10H8+ • C10H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.5 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; M |
C10H7- + =
By formula: C10H7- + H+ = C10H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1655. ± 5.4 | kJ/mol | Bran | Reed and Kass, 2000 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1619. ± 5.9 | kJ/mol | H-TS | Reed and Kass, 2000 | gas phase; B |
By formula: H4O4- + C10H8 + 2H2O = C10H12O4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 219. ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: H2O3- + C10H8 + H2O = C10H10O3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 158. ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: C10H9+ + C10H8 = (C10H9+ • C10H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.0 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; M |
+ = C10H8O2-
By formula: O2- + C10H8 = C10H8O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 92.5 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
+ = C10H8NO-
By formula: NO- + C10H8 = C10H8NO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.7 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: C10H8NO- + 2C10H8 = C20H16NO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 99.6 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: 5H2 + C10H8 = C10H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -318. | kJ/mol | Eqk | Frye and Weitkamp, 1969 | gas phase; ALS |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C10H8+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.144 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 802.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 779.4 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
-0.2 | LPES | Lyapustina, Xu, et al., 2000 | Extrapolated from EAs of solvation series naphthalene-...(H2O)n; B |
-0.18 | N/A | Song, Han, et al., 2002 | Extrapolated from LPES EAs of (naphthalene)n; B |
-0.200 ± 0.050 | LPES | Schiedt, Knott, et al., 2000 | Extrapolated from EAs of (H2O)n..naphthalene-. series; B |
-0.1908 | ETS | Burrow, Michejda, et al., 1987 | The question of whether the naphthalene radical anion is bound or not has not been settled; B |
0.140 ± 0.050 | ECD | Zlatkis, Lee, et al., 1983 | However, see Heinis, Chowdhury, et al., 1993 for a discussion; it may not be bound.; B |
<0.134 ± 0.043 | ECD | Wojnarovits and Foldiak, 1981 | EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.3 eV, anion unbound.; B |
0.1480 ± 0.0060 | ECD | Becker and Chen, 1966 | B |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
800.0 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
774.5 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
C10H7- + =
By formula: C10H7- + H+ = C10H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1649. ± 5.0 | kJ/mol | Bran | Reed and Kass, 2000 | gas phase; B |
ΔrH° | 1649. ± 5.0 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrH° | 1648. ± 21. | kJ/mol | CIDC | Lardin, Squires, et al., 2001 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1613. ± 5.4 | kJ/mol | H-TS | Reed and Kass, 2000 | gas phase; B |
ΔrG° | 1606. ± 5.0 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrG° | 1613. ± 21. | kJ/mol | H-TS | Lardin, Squires, et al., 2001 | gas phase; B |
C10H7- + =
By formula: C10H7- + H+ = C10H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1655. ± 5.4 | kJ/mol | Bran | Reed and Kass, 2000 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1619. ± 5.9 | kJ/mol | H-TS | Reed and Kass, 2000 | gas phase; B |
References
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chirico, Knipmeyer, et al., 1993
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V.,
The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene,
J. Chem. Thermodyn., 1993, 25, 1461-1494. [all data]
McCullough, Finke, et al., 1957
McCullough, J.P.; Finke, H.L.; Messerly, J.F.; Kincheloe, T.C.; Waddington, G.,
The low temperature thermodynamic properties of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,3,4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene,
J. Phys. Chem., 1957, 61, 1105-1116. [all data]
Southard and Brickwedde, 1933
Southard, J.C.; Brickwedde, F.G.,
Low temperature specific heats. I. An improved calorimeter for use from 14 to 300 K. The heat capacity and entropy of naphthalene. J. Am. Chem. Soc., 1933, 4378-4384. [all data]
Pearce and Tanner, 1934
Pearce, J.N.; Tanner, W.B.,
The heat capacity and the free energy of formation of naphthalene,
Proc. Iowa Acad. Sci., 1934, 41, 123-126. [all data]
Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C.,
Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]
David, 1964
David, D.J.,
Determination of specific heat and heat of fusion by differential thermal analysis. Study of theory and operating parameters,
Anal. Chem., 1964, 36, 2162-2166. [all data]
Rastogi and Bassi, 1964
Rastogi, R.P.; Bassi, P.S.,
Mechanism of eutectic crystallization,
J. Phys. Chem., 1964, 68, 2398-2406. [all data]
Ueberreiter and Orthmann, 1950
Ueberreiter, K.; Orthmann, H.-J.,
Specifische Wärme, spezifisches Volumen, Temperatur- und Wärme-leittähigkeit einiger disubstituierter Benzole und polycyclischer Systeme,
Z. Natursforsch. 5a, 1950, 101-108. [all data]
Eibert, 1944
Eibert, J.,
Thesis Washington University (St. Louis), 1944. [all data]
Schmidt, 1941
Schmidt, W.R.,
Thesis Washington University (St. Louis), 1941. [all data]
Hicks, 1938
Hicks, J.F.G., Jr.,
A low temperature calorimeter. The heat capacity and entropy of thallium from 14 to 300°K. Low temperature studies. No. 3,
J. Am. Chem. Soc., 1938, 60, 1000-1004. [all data]
Spaght, Thomas, et al., 1932
Spaght, M.E.; Thomas, S.B.; Parks, G.S.,
Some heat capacity data on organic compounds obtained with a radiation calorimeter,
J. Phys. Chem., 1932, 36, 882-888. [all data]
Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J.,
The heat capacities and heat of crystallization of some isomeric aromatic compounds,
J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]
Reed and Kass, 2000
Reed, D.R.; Kass, S.R.,
Experimental determination of the alpha and beta C-H bond dissociation energies in naphthalene,
J. Mass Spectrom., 2000, 35, 4, 534-539, https://doi.org/10.1002/(SICI)1096-9888(200004)35:4<534::AID-JMS964>3.0.CO;2-T
. [all data]
Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A.,
Ionic Probes of Aromaticity in Annelated Rings,
J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001
. [all data]
Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B.,
Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine,
J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z
. [all data]
Lardin, Squires, et al., 2001
Lardin, H.A.; Squires, R.R.; Wenthold, P.G.,
Determination of the electron affinities of alpha- and beta- naphthyl radicals using the kinetic method with full entropy analysis. The C-H bond dissociation energies of naphthalene,
J. Mass Spectrom., 2001, 36, 6, 607-615, https://doi.org/10.1002/jms.159
. [all data]
El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M.,
Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors,
J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017
. [all data]
Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M.,
Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization,
J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012
. [all data]
Frye and Weitkamp, 1969
Frye, C.G.; Weitkamp, A.W.,
Equilibrium hydrogenations of multi-ring aromatics,
J. Chem. Eng. Data, 1969, 14, 372-376. [all data]
Wilson, Caflisch, et al., 1958
Wilson, T.P.; Caflisch, E.G.; Hurley, G.F.,
The naphthalene-tetralin-hydrogen equilibrium at elevated temperature and pressure,
J. Phys. Chem., 1958, 62, 1059. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Dreeskamp, Kapahnke, et al., 1988
Dreeskamp, H.; Kapahnke, P.; Tochtermann, W.,
Photo valence isomerization of sterically strained aromatic hydrocarbons: 8,9-dicarbethoxy[6]paracyclophane,
Radiat. Phys. Chem., 1988, 32, 537-539. [all data]
Grimme and Heinze, 1978
Grimme, W.; Heinze, U.,
Kinetics and enthalpy of isomerization of benzobicyclo[2.2.0]hexa-2,5-diene,
Chem. Ber., 1978, 111, 2563-2570. [all data]
Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H.,
Microsolvation of small anions by aromatic molecules: An exploratory study,
J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Lyapustina, Xu, et al., 2000
Lyapustina, S.A.; Xu, S.K.; Nilles, J.M.; Bowen, K.H.,
Solvent-induced stabilization of the naphthalene anion by water molecules: A negative cluster ion photoelectron spectroscopic study,
J. Chem. Phys., 2000, 112, 15, 6643-6648, https://doi.org/10.1063/1.481237
. [all data]
Song, Han, et al., 2002
Song, J.K.; Han, S.Y.; Chu, I.H.; Kim, J.H.; Kim, S.K.; Lyapustina, S.A.; Xu, S.J.; Nilles, J.M.; Bowen, K.H.,
Photoelectron spectroscopy of naphthalene cluster anions,
J. Chem. Phys., 2002, 116, 11, 4477-4481, https://doi.org/10.1063/1.1449869
. [all data]
Schiedt, Knott, et al., 2000
Schiedt, J.; Knott, W.J.; Le Barbu, K.; Schlag, E.W.; Weinkauf, R.,
Microsolvation of similar-sized aromatic molecules: Photoelectron spectroscopy of bithiophene-, azulene-, and naphthalene-water anion clusters,
J. Chem. Phys., 2000, 113, 21, 9470-9478, https://doi.org/10.1063/1.1319874
. [all data]
Burrow, Michejda, et al., 1987
Burrow, P.D.; Michejda, J.A.; Jordan, K.D.,
Electron Transmission Study of the Temporary Negative Ion States of Selected Benzenoid and Conjugated Aromatic Hydrocarbons.,
J. Chem. Phys., 1987, 86, 1, 9, https://doi.org/10.1063/1.452598
. [all data]
Zlatkis, Lee, et al., 1983
Zlatkis, A.; Lee, C.K.; Wentworth, W.E.; Chen, E.C.M.,
Constant current linearization for determination of electron capture mechanisms,
Anal. Chem., 1983, 55, 1596. [all data]
Heinis, Chowdhury, et al., 1993
Heinis, T.; Chowdhury, S.; Kebarle, P.,
Electron Affinities of Naphthalene, Anthracene and Substituted Naphthalenes and Anthracenes,
Org. Mass Spectrom., 1993, 28, 4, 358, https://doi.org/10.1002/oms.1210280416
. [all data]
Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G.,
Electron capture detection of aromatic hydrocarbons,
J. Chromatogr. Sci., 1981, 206, 511. [all data]
Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E.,
Experimental Determination of Electron Affinities of Organic Molecules,
Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]
Becker and Chen, 1966
Becker, R.S.; Chen, E.,
Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons,
J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Gotkis, Oleinikova, et al., 1993
Gotkis, Y.; Oleinikova, M.; Naor, M.; Lifshitz, C.,
Time-independent mass spectra and breakdown graphs. 17. Naphthalene and phenanthrene,
J. Phys. Chem., 1993, 97, 12282. [all data]
Cockett, Ozeki, et al., 1993
Cockett, M.C.R.; Ozeki, H.; Okuyama, K.; Kimura, K.,
Vibronic coupling in the ground cationic state of naphthalene: A laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study,
J. Chem. Phys., 1993, 98, 7763. [all data]
Jochims, Rasekh, et al., 1992
Jochims, H.-W.; Rasekh, H.; Ruhl, E.; Baumgartel, H.; Leach, S.,
The photofragmentation of naphthalene and azulene monocations in the energy range 7-22 eV,
Chem. Phys., 1992, 168, 159. [all data]
Stahl and Maquin, 1984
Stahl, D.; Maquin, F.,
Charge-stripping mass spectrometry of molecular ions from polyacenes and molecular orbital theory,
Chem. Phys. Lett., 1984, 108, 613. [all data]
Duncan, Dietz, et al., 1981
Duncan, M.A.; Dietz, T.G.; Smalley, R.E.,
Two-color photoionization of naphthalene and benzene at threshold,
J. Chem. Phys., 1981, 75, 2118. [all data]
Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M.,
Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite,
J. Phys. Chem., 1980, 84, 2716. [all data]
Schafer, Schweig, et al., 1975
Schafer, W.; Schweig, A.; Vermeer, H.; Bickel-haupt, F.; De Graaf, H.,
On the nature of the "free electron pair" on phosphorus in aromatic phosphorus compounds: the photoelectron spectrum of 2-phosphanaphthalene,
J. Electron Spectrosc. Relat. Phenom., 1975, 6, 91. [all data]
Schafer, Schweig, et al., 1973
Schafer, W.; Schweig, A.; Markl, G.; Heier, K.-H.,
Zur elektronenstruktur der lambda3- und lambda5-phosphanaphthaline--ungewohnlich grosse MO destabilisierungen,
Tetrahedron Lett., 1973, 3743. [all data]
Pitt, 1973
Pitt, C.G.,
Hyperconjugation and its role in group IV chemistry,
J. Organomet. Chem., 1973, 61, 49. [all data]
Clark, Brogli, et al., 1972
Clark, P.A.; Brogli, F.; Heilbronner, E.,
The π-orbital energies of the acenes,
Helv. Chim. Acta, 1972, 55, 1415. [all data]
Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.,
Perfluoro effect in photoelectron spectroscopy. II. Aromatic molecules,
J. Am. Chem. Soc., 1972, 94, 1466. [all data]
Brogli, Heilbronner, et al., 1972
Brogli, F.; Heilbronner, E.; Kobayashi, T.,
Photoelectron spectra of azabenzenes and azanaphthalenes: II. A reinvestigation of azanaphthalenes by high-resolution photoelectron spectroscopy,
Helv. Chim. Acta, 1972, 55, 274. [all data]
Johnstone, Mellon, et al., 1970
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D.,
Online acquisition of ionization efficiency data,
Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 241. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Yencha and El-Sayed, 1968
Yencha, A.J.; El-Sayed, M.A.,
Lowest ionization potentials of some nitrogen heterocyclics,
J. Chem. Phys., 1968, 48, 3469. [all data]
Kitagawa, 1968
Kitagawa, T.,
Absorption spectra and photoionization of polycyclic aromatics in vacuum ultraviolet region,
J. Mol. Spectry., 1968, 26, 1. [all data]
Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J.,
Inner ionization potentials of aromatic compounds,
Z. Naturforsch., 1968, 23a, 355. [all data]
Angus, Christ, et al., 1968
Angus, J.G.; Christ, B.J.; Morris, G.C.,
Absorption spectra in the vacuum ultraviolet and the ionization potentials of naphthalene and naphthalene-d, molecules,
Australian J. Chem., 1968, 21, 2153. [all data]
Bonnier, Gelus, et al., 1965
Bonnier, J.-M.; Gelus, M.; Nounou, P.,
Contribution a l'etude de l'effet inductif et de l'effet d'hyperconjugaison dans quelques methylaromatiques,
J. Chim. Phys., 1965, 10, 1191. [all data]
Kuroda, 1964
Kuroda, H.,
Ionization potentials of polycyclic aromatic hydrocarbons,
Nature, 1964, 201, 1214. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Terenin, 1961
Terenin, A.,
Charge transfer in organic solids, induced by light,
Proc. Chem. Soc., London, 1961, 321. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N.,
The photoionization of the vapors of certain organic compounds,
Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Kaim, Tesmann, et al., 1980
Kaim, W.; Tesmann, H.; Bock, H.,
Me3C-, Me3Si-, Me3Ge-, Me3Sn- und Me3Pb-substituierte benzol- und naphthalin-derivate und ihre radikalanionen,
Chem. Ber., 1980, 113, 3221. [all data]
Schmidt, 1977
Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series,
J. Chem. Phys., 1977, 66, 828. [all data]
Heilbronner, Hoshi, et al., 1976
Heilbronner, E.; Hoshi, T.; von Rosenberg, J.L.; Hafner, K.,
Alkyl-induced, natural hypsochromic shifts of the 2A←2X and 2B←2X transitions of azulene and naphthalene radical cations,
Nouv. J. Chim., 1976, 1, 105. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Marschner and Goetz, 1974
Marschner, F.; Goetz, H.,
Korrelation zwischen photoelektronen- und elektronen-spektren. II. Untersuchung aromatischer π-systeme mit modifizierten PPP-SCF-CI-parametern,
Tetrahedron, 1974, 30, 3159. [all data]
Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J.,
Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten,
Chem. Ber., 1972, 105, 3850. [all data]
Bock and Wagner, 1972
Bock, H.; Wagner, G.,
Electron lone pairs in organic sulfides and disulfides,
Angew. Chem. Int. Ed. Engl., 1972, 11, 119. [all data]
Jochims, Rasekh, et al., 1993
Jochims, H.-W.; Rasekh, H.; Ruhl, E.; Baumgartel, H.; Leach, S.,
Deuterium isotope effects in the photofragmentation of naphthalene monocations,
J. Phys. Chem., 1993, 97, 1312. [all data]
VanBrunt and Wacks, 1964
VanBrunt, R.J.; Wacks, M.E.,
Electron-impact studies of aromatic hydrocarbons. III. Azulene and naphthalene,
J. Chem. Phys., 1964, 41, 3195. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid EA Electron affinity IE (evaluated) Recommended ionization energy S°liquid Entropy of liquid at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) T Temperature ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.