Pyridine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid23.89 ± 0.12kcal/molCcbHubbard, Frow, et al., 1961ALS
Δfliquid23.95 ± 0.36kcal/molCcbCox, Challoner, et al., 1954ALS
Δfliquid16.7kcal/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
Δcliquid-651.3kcal/molCcbStrepikheev, Baranov, et al., 1962ALS
Δcliquid-664.95 ± 0.10kcal/molCcbHubbard, Frow, et al., 1961ALS
Δcliquid-665.00 ± 0.36kcal/molCcbCox, Challoner, et al., 1954ALS
Δcliquid-659.2kcal/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
liquid42.519cal/mol*KN/AMcCullough, Douslin, et al., 1957DH
liquid42.81cal/mol*KN/AParks, Todd, et al., 1936Extrapolation below 90 K, 50.04 J/mol*K.; DH
liquid50.289cal/mol*KN/APearce and Bakke, 1936Extrapolation below 90 K, 89.33 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
46.22293.Rastorguev and Ganiev, 1967T = 293 to 353 K.; DH
31.8298.15Hubbard, Frow, et al., 1961DH
35.11332.Swietoslawski and Zielenkiewicz, 1958Mean value 22 to 96°C.; DH
31.721298.15McCullough, Douslin, et al., 1957T = 10 to 350 K.; DH
32.249298.1Parks, Todd, et al., 1936T = 90 to 300 K.; DH
31.859298.1Pearce and Bakke, 1936T = 90 to 298 K. Value is unsmoothed experimental datum.; DH
30.90289.Radulescu and Jula, 1934DH
32.349273.4Swietoslawski, Tybicka, et al., 1931DH
32.41290.Swietoslawski, Tybicka, et al., 1931, 2DH
30.911294.Mathews, Krause, et al., 1917DH
31.19283.Bramley, 1916Mean value, 0 to 20°C.; DH

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5H4N- + Hydrogen cation = Pyridine

By formula: C5H4N- + H+ = C5H5N

Quantity Value Units Method Reference Comment
Δr389.9 ± 2.0kcal/molIMRESchafman and Wenthold, 2007gas phase; B
Δr391.0 ± 2.5kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Δr382.7 ± 2.0kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr384.0 ± 3.0kcal/molIMRBDePuy, Kass, et al., 1988gas phase; Comparable to water in acidity; B
Δr<376.3 ± 2.0kcal/molIMRBBruins, Ferrer-Correia, et al., 1978gas phase; O- deprotonates; B

C5H6N+ + Pyridine = (C5H6N+ • Pyridine)

By formula: C5H6N+ + C5H5N = (C5H6N+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr25.2kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr24.6kcal/molPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Δr26.3kcal/molHPMSHolland and Castleman, 1982gas phase; M
Δr23.7kcal/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Δr23.7kcal/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr29.6cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr28.2cal/mol*KPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Δr32.1cal/mol*KHPMSHolland and Castleman, 1982gas phase; M
Δr28.cal/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M
Δr28.cal/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M

Pyridine + 3Hydrogen = Piperidine

By formula: C5H5N + 3H2 = C5H11N

Quantity Value Units Method Reference Comment
Δr-46.31 ± 0.18kcal/molEqkHales and Herington, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -48.32 ± 0.18 kcal/mol; At 400-550 K; ALS
Δr-46.12 ± 0.50kcal/molEqkBurrows and King, 1935liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -45.00 kcal/mol; At 423-443 K; ALS

Chlorine anion + Pyridine = (Chlorine anion • Pyridine)

By formula: Cl- + C5H5N = (Cl- • C5H5N)

Quantity Value Units Method Reference Comment
Δr12.7 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.7cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr6.8 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(C5H6N+ • 2Pyridine) + Pyridine = (C5H6N+ • 3Pyridine)

By formula: (C5H6N+ • 2C5H5N) + C5H5N = (C5H6N+ • 3C5H5N)

Quantity Value Units Method Reference Comment
Δr13.6kcal/molHPMSHolland and Castleman, 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr37.9cal/mol*KHPMSHolland and Castleman, 1982gas phase; Entropy change is questionable; M

Lithium ion (1+) + Pyridine = (Lithium ion (1+) • Pyridine)

By formula: Li+ + C5H5N = (Li+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr43.2 ± 3.5kcal/molCIDTAmunugama and Rodgers, 2000RCD
Δr44.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Potassium ion (1+) + Pyridine = (Potassium ion (1+) • Pyridine)

By formula: K+ + C5H5N = (K+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr21.6 ± 0.9kcal/molCIDTAmunugama and Rodgers, 2000RCD
Δr20.7kcal/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr18.6cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Silver ion (1+) • 2Pyridine) + Pyridine = (Silver ion (1+) • 3Pyridine)

By formula: (Ag+ • 2C5H5N) + C5H5N = (Ag+ • 3C5H5N)

Quantity Value Units Method Reference Comment
Δr16.7kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr28.0cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 3Pyridine) + Pyridine = (Silver ion (1+) • 4Pyridine)

By formula: (Ag+ • 3C5H5N) + C5H5N = (Ag+ • 4C5H5N)

Quantity Value Units Method Reference Comment
Δr17.9kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr40.3cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Chlorine anion • Pyridine) + Pyridine = (Chlorine anion • 2Pyridine)

By formula: (Cl- • C5H5N) + C5H5N = (Cl- • 2C5H5N)

Quantity Value Units Method Reference Comment
Δr11.7kcal/molPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M

(C5H6N+ • Pyridine) + Pyridine = (C5H6N+ • 2Pyridine)

By formula: (C5H6N+ • C5H5N) + C5H5N = (C5H6N+ • 2C5H5N)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr29.7cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

H2O3- + Pyridine + Water = C5H7NO3-

By formula: H2O3- + C5H5N + H2O = C5H7NO3-

Quantity Value Units Method Reference Comment
Δr32.7 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Oxygen anion + Pyridine = C5H5NO2-

By formula: O2- + C5H5N = C5H5NO2-

Quantity Value Units Method Reference Comment
Δr21.7 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Pyridine = C5H5N2O-

By formula: NO- + C5H5N = C5H5N2O-

Quantity Value Units Method Reference Comment
Δr13.6 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

3Pyridine, 1-oxide + potassium chloride = 3Pyridine + KClO3

By formula: 3C5H5NO + ClK = 3C5H5N + KClO3

Quantity Value Units Method Reference Comment
Δr75.2 ± 2.4kcal/molCmShaofeng and Pilcher, 1988solid phase; ALS

3Pyridine, 1-oxide + potassium bromide = 3Pyridine + KBrO3

By formula: 3C5H5NO + BrK = 3C5H5N + KBrO3

Quantity Value Units Method Reference Comment
Δr75.0 ± 2.3kcal/molCmShaofeng and Pilcher, 1988solid phase; ALS

Iron ion (1+) + Pyridine = (Iron ion (1+) • Pyridine)

By formula: Fe+ + C5H5N = (Fe+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr53.4 ± 2.2kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Chromium ion (1+) + Pyridine = (Chromium ion (1+) • Pyridine)

By formula: Cr+ + C5H5N = (Cr+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr47.1 ± 2.8kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Titanium ion (1+) + Pyridine = (Titanium ion (1+) • Pyridine)

By formula: Ti+ + C5H5N = (Ti+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr51.9 ± 2.3kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Manganese ion (1+) + Pyridine = (Manganese ion (1+) • Pyridine)

By formula: Mn+ + C5H5N = (Mn+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr43.4 ± 2.1kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Scandium ion (1+) + Pyridine = (Scandium ion (1+) • Pyridine)

By formula: Sc+ + C5H5N = (Sc+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr55.3 ± 2.5kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Magnesium ion (1+) + Pyridine = (Magnesium ion (1+) • Pyridine)

By formula: Mg+ + C5H5N = (Mg+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr47.8 ± 1.6kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Vanadium ion (1+) + Pyridine = (Vanadium ion (1+) • Pyridine)

By formula: V+ + C5H5N = (V+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr52.2 ± 3.2kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Nickel ion (1+) + Pyridine = (Nickel ion (1+) • Pyridine)

By formula: Ni+ + C5H5N = (Ni+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr60.9 ± 3.7kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Aluminum ion (1+) + Pyridine = (Aluminum ion (1+) • Pyridine)

By formula: Al+ + C5H5N = (Al+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr45.5 ± 2.5kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Zinc ion (1+) + Pyridine = (Zinc ion (1+) • Pyridine)

By formula: Zn+ + C5H5N = (Zn+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr59.0 ± 1.7kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Cobalt ion (1+) + Pyridine = (Cobalt ion (1+) • Pyridine)

By formula: Co+ + C5H5N = (Co+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr59.0 ± 3.0kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Copper ion (1+) + Pyridine = (Copper ion (1+) • Pyridine)

By formula: Cu+ + C5H5N = (Cu+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr58.7 ± 2.5kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Sodium ion (1+) + Pyridine = (Sodium ion (1+) • Pyridine)

By formula: Na+ + C5H5N = (Na+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr30.3 ± 0.7kcal/molCIDTAmunugama and Rodgers, 2000RCD

Gas phase ion energetics data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.26 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)222.kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity214.7kcal/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
223.8 ± 2.0Wind, Papp, et al., 2005T = 298K; MM

Protonation entropy at 298K

Protonation entropy (cal/mol*K) Reference Comment
-0.2 ± 2.4Wind, Papp, et al., 2005T = 298K; MM

Ionization energy determinations

IE (eV) Method Reference Comment
9.34 ± 0.03EIArimura and Yoshikawa, 1984LBLHLM
9.25TRPILifshitz, 1982LBLHLM
9.60PEKimura, Katsumata, et al., 1981LLK
9.26PEUtsunomiya, Kobayashi, et al., 1978LLK
9.25PIEland, Berkowitz, et al., 1978LLK
9.74 ± 0.05EIZaretskii, Oren, et al., 1976LLK
~9.5EIVan Veen and Plantenga, 1975LLK
9.9 ± 0.1EIStefanovic and Grutzmacher, 1974LLK
9.263PEKing, Murrell, et al., 1972LLK
9.66 ± 0.03EIJohnstone and Mellon, 1972LLK
9.70 ± 0.05EIDistefano, Foffani, et al., 1971LLK
9.70EIDistefano, Foffani, et al., 1971, 2LLK
9.30 ± 0.01PIPotapov and Sorokin, 1970RDSH
9.10PEGoffart, Momigny, et al., 1969RDSH
9.10 ± 0.01PIGoffart, Momigny, et al., 1969RDSH
9.31PEDewar and Worley, 1969RDSH
9.28PEAl-Joboury and Turner, 1964RDSH
9.20 ± 0.05PIAkopyan and Vilesov, 1964RDSH
9.4PITerenin, 1961RDSH
9.266SEl-Sayed, Kaaba, et al., 1961RDSH
9.23 ± 0.03PIWatanabe, 1957RDSH
9.8 ± 0.2EIHustrulid, Kusch, et al., 1938RDSH
9.51PEKlasinc, Novak, et al., 1978Vertical value; LLK
9.66PEKobayashi and Nagakura, 1974Vertical value; LLK
9.7PEBatich, Heilbronner, et al., 1973Vertical value; LLK
9.6 ± 0.5PEHeilbronner, Hornung, et al., 1972Vertical value; LLK
9.59PEGleiter, Heilbronner, et al., 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H3+14.00 ± 0.10?EIMomigny, Urbain, et al., 1965RDSH
C3H3N+13.84 ± 0.10C2H2EIMomigny, Urbain, et al., 1965RDSH
C4H2+16.17 ± 0.10HCN+H2EIMomigny, Urbain, et al., 1965RDSH
C4H3+16.61 ± 0.10HCN+HEIMomigny, Urbain, et al., 1965RDSH
C4H4+11.84 ± 0.05HCNTRPILifshitz and Malinovich, 1984LBLHLM
C4H4+12.6 ± 0.1HCNEIBurgers and Holmes, 1984LBLHLM
C4H4+12.34 ± 0.05HCNEIBurgers and Holmes, 1984LBLHLM
C4H4+12.0 ± 0.2HCNTRPILifshitz, 1982LBLHLM
C4H4+12.15 ± 0.02HCNPIPECORosenstock, Stockbauer, et al., 1981LLK
C4H4+11.8HCNPIEland, Berkowitz, et al., 1978LLK
C4H4+12.3 ± 0.1HCNEIRosenstock, McCulloh, et al., 1977LLK
C4H4+13.41 ± 0.05HCNEIZaretskii, Oren, et al., 1976LLK
C4H4+13.28HCNEIBeynon, Hopkinson, et al., 1969RDSH
C5H3N+12.42 ± 0.10H2EIMomigny, Urbain, et al., 1965RDSH
C5H4N+14.00 ± 0.10HEIMomigny, Urbain, et al., 1965RDSH

De-protonation reactions

C5H4N- + Hydrogen cation = Pyridine

By formula: C5H4N- + H+ = C5H5N

Quantity Value Units Method Reference Comment
Δr389.9 ± 2.0kcal/molIMRESchafman and Wenthold, 2007gas phase; B
Δr391.0 ± 2.5kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Δr382.7 ± 2.0kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr384.0 ± 3.0kcal/molIMRBDePuy, Kass, et al., 1988gas phase; Comparable to water in acidity; B
Δr<376.3 ± 2.0kcal/molIMRBBruins, Ferrer-Correia, et al., 1978gas phase; O- deprotonates; B

References

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hubbard, Frow, et al., 1961
Hubbard, W.N.; Frow, F.R.; Waddington, G., The heats of combustion and formation of pyridine and hippuric acid, J. Phys. Chem., 1961, 65, 1326-1328. [all data]

Cox, Challoner, et al., 1954
Cox, J.D.; Challoner, A.R.; Meetham, A.R., The heats of combustion of pyridine and certain of its derivatives, J. Chem. Soc., 1954, 265-271. [all data]

Constam and White, 1903
Constam, E.J.; White, J., Physico-chemical investigations in the pyridine series, Am. Chem. J., 1903, 29, 1-49. [all data]

Strepikheev, Baranov, et al., 1962
Strepikheev, Yu.A.; Baranov, Yu.I.; Burmistrova, O.A., Determination of the heats of combustion and the heat capacities of several mono- and di-isocyanates, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1962, 5, 387-390. [all data]

McCullough, Douslin, et al., 1957
McCullough, J.P.; Douslin, D.R.; Messerly, J.F.; Hossenlopp, I.A.; Kincheloe, T.C.; Waddington, G., Pyridine: experimental and calculated chemical thermodynamic properties between 0 and 1500 K., a revised vibrational assignment, J. Am. Chem. Soc., 1957, 79, 4289-4295. [all data]

Parks, Todd, et al., 1936
Parks, G.S.; Todd, S.S.; Moore, W.A., Thermal data on organic compounds. XVI. Some heat capacity, entropy and free energy data for typical benzene derivatives and heterocyclic compounds, J. Am. Chem. Soc., 1936, 58, 398-401. [all data]

Pearce and Bakke, 1936
Pearce, J.N.; Bakke, H.M., The heat capacity and the free energy of formation of pyridine, Proc. Iowa Acad. Sci., 1936, 43, 171-174. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat of some ternary azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]

Radulescu and Jula, 1934
Radulescu, D.; Jula, O., Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen, Z. Phys. Chem., 1934, B26, 390-393. [all data]

Swietoslawski, Tybicka, et al., 1931
Swietoslawski, W.; Tybicka, S.; Solodkowska, W., Sur un microcalorimetre adiabatique, adapte aux mesures de la chaleur specifique de substances solides et liquides, Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math Nat. Ser A, 1931, 1931, 322-335. [all data]

Swietoslawski, Tybicka, et al., 1931, 2
Swietoslawski, W.; Tybicka, S.; Solodkowska, W., Sur un microcalorimetre adiabatique, adapte aux mesures de la chaleur specifique de substances solides et liquides, Rocz. Chem., 1931, 11, 65-77. [all data]

Mathews, Krause, et al., 1917
Mathews, J.H.; Krause, E.L.; Bohnson, B.L., a contribution to the thermal chemistry of pyridine, J. Am. Chem. Soc., 1917, 39, 398-413. [all data]

Bramley, 1916
Bramley, A., The study of binary mixtures. Part IV. Heats of reaction and specific heats, J. Chem. Soc. (London), 1916, 109, 496-515. [all data]

Schafman and Wenthold, 2007
Schafman, B.S.; Wenthold, P.G., Regioselectivity of pyridine deprotonation in the gas phase, J. Org. Chem., 2007, 72, 5, 1645-1651, https://doi.org/10.1021/jo062117x . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Bruins, Ferrer-Correia, et al., 1978
Bruins, A.P.; Ferrer-Correia, A.J.; Harrison, A.G.; Jennings, K.R.; Mithcum, R.K., Negative ion chemical ionization mass spectrometry of some aromatic compounds using O-. as the reagent ion, Adv. Mass Spectrom., 1978, 7, 355. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Meot-Ner M. and Sieck, 1983
Meot-Ner M.; Sieck, L.W., The Ionic Hydrogen Bond. 1. Sterically Hindered Bonds. Solvation and Clustering of Sterically Hindered Amines and Pyridines, J. Am. Chem. Soc., 1983, 105, 10, 2956, https://doi.org/10.1021/ja00348a005 . [all data]

Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W., The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes, J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497 . [all data]

Meot-Ner (Mautner), 1979
Meot-Ner (Mautner), M., Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. II. Intrinsic Basicities and Hydrogen Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases, J. Am. Chem. Soc., 1979, 101, 9, 2396, https://doi.org/10.1021/ja00503a027 . [all data]

Hales and Herington, 1957
Hales, J.L.; Herington, E.F.G., Equilibrium between pyridine and piperidine, Trans. Faraday Soc., 1957, 53, 616-622. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Burrows and King, 1935
Burrows, G.H.; King, L.A., Jr., The free energy change that accompanies hydrogenation of pyridine to piperidine, J. Am. Chem. Soc., 1935, 57, 1789-1791. [all data]

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I), Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4 . [all data]

Amunugama and Rodgers, 2000
Amunugama, R.; Rodgers, M.T., Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and Ab Initio Theory, Int. J. Mass Spectrom., 2000, 195/196, 439, https://doi.org/10.1016/S1387-3806(99)00145-1 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Shaofeng and Pilcher, 1988
Shaofeng, L.; Pilcher, G., Enthalpy of formation of pyridine-N-oxide: the dissociation enthalpy of the (N-O) bond, J. Chem. Thermodyn., 1988, 20, 463-465. [all data]

Rodgers, Stanley, et al., 2000
Rodgers, M.T.; Stanley, J.R.; Amunugama, R., Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory, J. Am. Chem. Soc., 2000, 122, 44, 10969, https://doi.org/10.1021/ja0027923 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Wind, Papp, et al., 2005
Wind, J.J.; Papp, L.; Happel, M.; Hahn, K.; Andriole, E.J.; Poutsma, J.C., Proton Affinity of beta-Oxalylaminoalanine (BOAA): Incorporation of Direct Entropy Correction into the Single-Reference Kinetic Method, J. Am. Soc. Mass Spectrom., 2005, 16, 1151. [all data]

Arimura and Yoshikawa, 1984
Arimura, M.; Yoshikawa, Y., Ionization efficiency and ionization energy of cyclic compounds by electron impact, Mass Spectrosc. (Tokyo), 1984, 32, 375. [all data]

Lifshitz, 1982
Lifshitz, C., Time-dependent mass spectra and breakdown graphs. 2. The kinetic shift in pyridine, J. Phys. Chem., 1982, 86, 606. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Utsunomiya, Kobayashi, et al., 1978
Utsunomiya, C.; Kobayashi, T.; Nagakura, S., Photoelectron angular distribution measurements for some pyridines, Bull. Chem. Soc. Jpn., 1978, 451, 3482. [all data]

Eland, Berkowitz, et al., 1978
Eland, J.H.D.; Berkowitz, J.; Schulte, H.; Frey, R., Rates of unimolecular pyridine ion decay and the heat of formation of C4H4+, Int. J. Mass Spectrom. Ion Phys., 1978, 28, 297. [all data]

Zaretskii, Oren, et al., 1976
Zaretskii, Z.V.I.; Oren, D.; Kelner, L., Automatic method for the measurement of the electron impact ionization and appearance potentials, Appl. Spectrosc., 1976, 30, 366. [all data]

Van Veen and Plantenga, 1975
Van Veen, E.H.; Plantenga, F.L., Threshold electron-impact excitation spectrum of pyridine, Chem. Phys. Lett., 1975, 30, 28. [all data]

Stefanovic and Grutzmacher, 1974
Stefanovic, D.; Grutzmacher, H.F., The ionisation potential of some substituted pyridines, Org. Mass Spectrom., 1974, 9, 1052. [all data]

King, Murrell, et al., 1972
King, G.H.; Murrell, J.N.; Suffolk, R.J., The vacuum-ultraviolet photoelectron spectra of fluoropyridines, J. Chem. Soc. Dalton Trans., 1972, 564. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Distefano, Foffani, et al., 1971
Distefano, G.; Foffani, A.; Innorta, G.; Pignataro, S., Mass spectrometric study of transition metal complexes with ligands having nitrogen or sulphur as donor atom, Adv. Mass Spectrom., 1971, 5, 696. [all data]

Distefano, Foffani, et al., 1971, 2
Distefano, G.; Foffani, A.; Innorta, G.; Pignataro, S., Electron impact ionization potentials of some manganese, chromium and tungsten organometallic derivatives, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 383. [all data]

Potapov and Sorokin, 1970
Potapov, V.K.; Sorokin, V.V., Investigation of ionic molecular reactions proceeding during photoionization of aromatic compounds and alcohols, Dokl. Akad. Nauk SSSR, 1970, 195, 616, In original 848. [all data]

Goffart, Momigny, et al., 1969
Goffart, C.; Momigny, J.; Natalis, P., Photoionization studies by total ionization measurements and photoelectron spectra. II.Pyridine, Intern. J. Mass Spectrom. lon Phys., 1969, 3, 371. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. II.The ionization potentials of azabenzenes and azanaphthalenes, J. Chem. Phys., 1969, 51, 263. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Akopyan and Vilesov, 1964
Akopyan, M.E.; Vilesov, F.I., Excited states of positive ions and dissociative photoionization of aromatic amines, Dokl. Akad. Nauk SSSR, 1964, 158, 1386, In original 965. [all data]

Terenin, 1961
Terenin, A., Charge transfer in organic solids, induced by light, Proc. Chem. Soc., London, 1961, 321. [all data]

El-Sayed, Kaaba, et al., 1961
El-Sayed, M.F.A.; Kaaba, M.; Tanaka, Y., Ionization potentials of benzene, hexadeuterobenzene, and pyridine from their observed Rydberg series in the region 600-2000 A, J. Chem. Phys., 1961, 34, 334. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Hustrulid, Kusch, et al., 1938
Hustrulid, A.; Kusch, P.; Tate, J.T., The dissociation of benzene (C6H6), pyridine (C5H5N) and cyclohexane (C6H12) by electron impact, Phys. Rev., 1938, 54, 1037. [all data]

Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G., Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode, Croat. Chem. Acta, 1978, 51, 43. [all data]

Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S., Photoelectron spectra of aminopyridines and cyanopyridines, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 207. [all data]

Batich, Heilbronner, et al., 1973
Batich, C.; Heilbronner, E.; Hornung, V.; Ashe, A.J.; Clark, D.T.; Cobley, U.T.; Kilcast, D.; Scanlan, I., Photoelectron spectra of phosphabenzen, arsabenzene, and stibabenzene, J. Am. Chem. Soc., 1973, 95, 928. [all data]

Heilbronner, Hornung, et al., 1972
Heilbronner, E.; Hornung, V.; Pinkerton, F.H.; Thames, S.F., 31. Photoelectron spectra of azabenzenes and azanaphthalenes: III. The orbital sequence in methyl- and trimethylsilyl- substituted pyridines, Helv. Chim. Acta, 1972, 55, 289. [all data]

Gleiter, Heilbronner, et al., 1970
Gleiter, R.; Heilbronner, E.; Hornung, V., Lone pair interaction in pyridazine, pyrimidine, and pyrazine, Angew. Chem. Int. Ed. Engl., 1970, 9, 901. [all data]

Momigny, Urbain, et al., 1965
Momigny, J.; Urbain, J.; Wankenne, H., Les effets de l'impact electronique sur la pyridine et les diazines isomeres, Bull. Soc. Roy. Sci. Liege, 1965, 34, 337. [all data]

Lifshitz and Malinovich, 1984
Lifshitz, C.; Malinovich, Y., Time resolved photoionization mass spectrometry in the millisecond range, Int. J. Mass Spectrom. Ion Processes, 1984, 60, 99. [all data]

Burgers and Holmes, 1984
Burgers, P.C.; Holmes, J.L., Fragmentation rate constants and appearance energies for reactions having a large kinetic shift and the energy partitioning in their metastable decomposition, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 15. [all data]

Rosenstock, Stockbauer, et al., 1981
Rosenstock, H.M.; Stockbauer, R.; Parr, A.C., Unimolecular kinetis of pyridine ion fragmentation, Int. J. Mass Spectrom. Ion Phys., 1981, 38, 323. [all data]

Rosenstock, McCulloh, et al., 1977
Rosenstock, H.M.; McCulloh, K.E.; Lossing, F.P., On the mechanisms of C6H6 ionization fragmentation, Int. J. Mass Spectrom. Ion Phys., 1977, 25, 327. [all data]

Beynon, Hopkinson, et al., 1969
Beynon, J.H.; Hopkinson, J.A.; Lester, G.R., Mass spectrometry-the appearance potentials of "meta-stable peaks" in some aromatic nitro compounds - a chemical reaction in the mass spectrometer, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 291. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References