Carbon monoxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Manganese, tricarbonyl(η5-2,4-cyclopentadien-1-yl)- (solution) + Heptane (solution) = C14H21MnO2 (solution) + Carbon monoxide (solution)

By formula: C8H5MnO3 (solution) + C7H16 (solution) = C14H21MnO2 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr47. ± 2.kcal/molAVGN/AAverage of 18 values; Individual data points

Chromium hexacarbonyl (solution) + Heptane (solution) = C12H16CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27.1 ± 0.8kcal/molAVGN/AAverage of 13 values; Individual data points

Chromium hexacarbonyl (solution) = C5CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) = C5CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr40.20 ± 0.60kcal/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(solution) with PBu3(solution).; MS
Δr38.10kcal/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Cr(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS

Molybdenum hexacarbonyl (solution) = C5MoO5 (solution) + Carbon monoxide (solution)

By formula: C6MoO6 (solution) = C5MoO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr31.7 ± 1.4kcal/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Mo(CO)6(solution) with PBu3(solution).; MS
Δr30.21kcal/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Mo(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS

Tungsten hexacarbonyl (solution) = C5O5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) = C5O5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr39.9 ± 1.6kcal/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(solution) with PBu3(solution).; MS
Δr39.01kcal/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of W(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS

C11H2O11Os (solution) + Carbon monoxide (solution) = Hydrogen (g) + Osmium, dodecacarbonyltri-, triangulo (solution)

By formula: C11H2O11Os (solution) + CO (solution) = H2 (g) + C12O12Os3 (solution)

Quantity Value Units Method Reference Comment
Δr-9.0 ± 2.3kcal/molES/KSPoë, Sampson, et al., 1993solvent: Decalin; Calculated from equilibrium and kinetic data Poë, Sampson, et al., 1993.; MS
Δr-18.5 ± 2.3kcal/molN/APoë, Sampson, et al., 1993solvent: Decalin; Calculated from data for the reactions Os3(CO)10(H)2(solution) + CO(solution) = Os3(CO)11(H)2(solution) (hrxn [kJ/mol]=-39.7±1.3, srxn [J/(mol K)]=-80.3±3.8) and Os3(CO)11(H)2(solution) + CO(solution) = Os3(CO)12(solution) + H2(g) (hrxn [kJ/mol]=-37.7±9.6, srxn [J/(mol K)]=-32.6±27.6) Poë, Sampson, et al., 1993.; MS

Iron pentacarbonyl (g) = C4FeO4 (g) + Carbon monoxide (g)

By formula: C5FeO5 (g) = C4FeO4 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr41.5 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984Please also see Smith and Laine, 1981. Temperature range: 670-780 K. The reaction enthalpy at 298 K relies on an activation energy of 40.01 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -173.0 ± 1.6 kcal/mol for the enthalpy of formation of Fe(CO)5(g). At least two other estimates of the activation energy for the Fe(CO)4(g) + CO(g) recombination have been reported: 1.7 kcal/mol Miller and Grant, 1985 and 3.99 kcal/mol Walsh, 1986. In Lewis, Golden, et al., 1984 authors have considered that the Fe(CO)4(g) fragment is in its singlet excited state. However, it has also been suggested that the fragment is formed in its triplet ground state Ray, Brandow, et al., 1988 Sunderlin, Wang, et al., 1992; MS
Δr55. ± 11.kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

Molybdenum hexacarbonyl (g) = C5MoO5 (g) + Carbon monoxide (g)

By formula: C6MoO6 (g) = C5MoO5 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr34.9 ± 5.0kcal/molKinGGanske and Rosenfeld, 1990MS
Δr40.5 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984The reaction enthalpy at 298 K relies on an activation energy of 39.01 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -218.8 ± 0.50 kcal/mol for the enthalpy of formation of Mo(CO)6(g); MS
Δr30.21kcal/molKinGCetini and Gambino, 1963Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Mo(CO)6(g) with CO(g) Cetini and Gambino, 1963. The results were quoted from Graham and Angelici, 1967.; MS

Tungsten hexacarbonyl (g) = C5O5W (g) + Carbon monoxide (g)

By formula: C6O6W (g) = C5O5W (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr46.0 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984The reaction enthalpy at 298 K relies on an activation energy of 44.50 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -211.3 ± 0.65 kcal/mol for the enthalpy of formation of W(CO)6(g); MS
Δr39.79kcal/molKinGCetini and Gambino, 1963, 2Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(g) with CO(g) Cetini and Gambino, 1963, 2. The results were quoted from Graham and Angelici, 1967.; MS

Chromium hexacarbonyl (g) = C5CrO5 (g) + Carbon monoxide (g)

By formula: C6CrO6 (g) = C5CrO5 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr37.0 ± 5.0kcal/molKinGFletcher and Rosenfeld, 1988MS
Δr36.8 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984Temperature range: 740-820 K. The reaction enthalpy at 298 K relies on an activation energy of 35.30 kcal/mol and assumes a negligible activation barrier for product recombination.; MS
Δr38.70kcal/molKinGPajaro, Calderazzo, et al., 1960Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(g) with CO(g) Pajaro, Calderazzo, et al., 1960. The results were quoted from Graham and Angelici, 1967.; MS

C10H5CrNO5 (solution) + Carbon monoxide (solution) = Chromium hexacarbonyl (solution) + 1,3-Diazine (solution)

By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)

Quantity Value Units Method Reference Comment
Δr-14.8kcal/molKinSWovkulich and Atwood, 1980solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 25.4 ± 1.1 kcal/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 40.20 ± 0.60 kcal/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin; MS

CO+ + Carbon monoxide = (CO+ • Carbon monoxide)

By formula: CO+ + CO = (CO+ • CO)

Quantity Value Units Method Reference Comment
Δr16.kcal/molPIPECONorwood, Guo, et al., 1988gas phase; CO+ in state B, ΔrH>; M
Δr22.4kcal/molPILinn, Ono, et al., 1981gas phase; M
Δr28. ± 7.kcal/molEIMunson and Franlin, 1962gas phase; from IP'switching reaction and heats of formation; M
Δr25.4kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.9340.HPMSChong and Franklin, 1971gas phase; equilibrium uncertain; M
11.5695.PHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M

Tungsten hexacarbonyl (cr) = 6Carbon monoxide (g) + tungsten (cr)

By formula: C6O6W (cr) = 6CO (g) + W (cr)

Quantity Value Units Method Reference Comment
Δr71.4 ± 1.1kcal/molTD-HFC, HAL-HFCAl-Takhin, Connor, et al., 1984The reaction enthalpy corresponds to the TD experiments and leads to -229.9 ± 1.1 kcal/mol for the enthalpy of formation. The value -960±3 was recommended by the authors Al-Takhin, Connor, et al., 1984. Other values for the enthalpy of sublimation have been reported: 17.5 ± 0.2 kcal/mol Adedeji, Brown, et al., 1975, 17.7 ± 1.0 kcal/mol Hieber and Romberg, 1935, 16.7 ± 1.0 kcal/mol Rezukhina and Shvyrev, 1952, and 18.9 ± 0.26 kcal/mol Daamen, Ernsting, et al., 1979 Boxhoorn, Ernsting, et al., 1980. See also Pilcher, Ware, et al., 1975; MS
Δr70.77 ± 0.43kcal/molTD-HZCBarnes, Pilcher, et al., 1974Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS

Tri-ruthenium dodecacarbonyl (solution) + 3Carbon monoxide (solution) = 3C5O5Ru (solution)

By formula: C12O12Ru3 (solution) + 3CO (solution) = 3C5O5Ru (solution)

Quantity Value Units Method Reference Comment
Δr-3.11 ± 0.26kcal/molEqSKoelliker and Bor, 1991solvent: Isooctane; Temperature range: 373-448 K; MS
Δr-6.48 ± 0.45kcal/molEqSBor, 1986solvent: n-Hexane; Temperature range: ca. 348-448 K; MS

Dicobalt octacarbonyl (solution) = C7Co2O7 (solution) + Carbon monoxide (solution)

By formula: C8Co2O8 (solution) = C7Co2O7 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr22.2kcal/molKinSUngváry and Markó, 1974solvent: Heptane; Temperature range: 298-328 K; MS
Δr21.0kcal/molKinSUngváry, 1972solvent: Heptane; Temperature range: 307-337 K; MS

Tungsten hexacarbonyl (cr) + 1,3-Diazine (l) = C10H5NO5W (cr) + Carbon monoxide (g)

By formula: C6O6W (cr) + C4H4N2 (l) = C10H5NO5W (cr) + CO (g)

Quantity Value Units Method Reference Comment
Δr8.27kcal/molN/ANakashima and Adamson, 1982The reaction enthalpy was calculated from the enthalpy of the reaction W(CO)6(solution) + py(solution) = W(CO)5(py)(solution) + CO(solution) in cyclohexane, 6.55 ± 0.69 kcal/mol, together with the enthalpies of solution of W(CO)6(cr), W(CO)5(py)(cr), and py(l), 35.7, 36.4, and 1.9 kcal/mol, respectively Nakashima and Adamson, 1982.; MS

Formyl cation + Carbon monoxide = (Formyl cation • Carbon monoxide)

By formula: CHO+ + CO = (CHO+ • CO)

Quantity Value Units Method Reference Comment
Δr10.8kcal/molPHPMSJennings, Headley, et al., 1982gas phase; M
Δr12.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr11.7kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr22.5cal/mol*KPHPMSJennings, Headley, et al., 1982gas phase; M
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr20.9cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M

Cobalt ion (1+) + Carbon monoxide = (Cobalt ion (1+) • Carbon monoxide)

By formula: Co+ + CO = (Co+ • CO)

Quantity Value Units Method Reference Comment
Δr41.6 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr39. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.5 (+1.6,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M
39.0 (+4.8,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Molybdenum hexacarbonyl (solution) + Heptane (solution) = C12H16MoO5 (solution) + Carbon monoxide (solution)

By formula: C6MoO6 (solution) + C7H16 (solution) = C12H16MoO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.3 ± 2.9kcal/molPACJohnson, Popov, et al., 1991solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation.; MS
Δr31.8 ± 1.3kcal/molPACMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS

C2FeO2 (g) = Carbon monoxide (g) + CFeO (g)

By formula: C2FeO2 (g) = CO (g) + CFeO (g)

Quantity Value Units Method Reference Comment
Δr36.7 ± 3.5kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr>27.0kcal/molN/AVenkataraman, Bandukwalla, et al., 1989Method: Velocity distributions of photofragments from Fe(CO)5.; MS
Δr23.9 ± 6.9kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

Nickel tetracarbonyl (g) = 4Carbon monoxide (g) + nickel (cr)

By formula: C4NiO4 (g) = 4CO (g) + Ni (cr)

Quantity Value Units Method Reference Comment
Δr38.34 ± 0.60kcal/molEqGMonteil, Raffin, et al., 1988The reaction enthalpy is the average of several 2nd and 3rd law results Monteil, Raffin, et al., 1988; MS

Nickel ion (1+) + Carbon monoxide = (Nickel ion (1+) • Carbon monoxide)

By formula: Ni+ + CO = (Ni+ • CO)

Quantity Value Units Method Reference Comment
Δr39. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; determined from MKER and theory; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.7 (+2.5,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
42.5 (+2.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

C3FeO3 (g) = Carbon monoxide (g) + C2FeO2 (g)

By formula: C3FeO3 (g) = CO (g) + C2FeO2 (g)

Quantity Value Units Method Reference Comment
Δr29.0 ± 5.8kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr25.1kcal/molN/AVenkataraman, Bandukwalla, et al., 1989Method: Velocity distributions of photofragments from Fe(CO)5.; MS
Δr32.7 ± 6.9kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

CFeO (g) = Carbon monoxide (g) + iron (g)

By formula: CFeO (g) = CO (g) + Fe (g)

Quantity Value Units Method Reference Comment
Δr8.4 ± 3.5kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr<39.0kcal/molN/AVenkataraman, Bandukwalla, et al., 1989Method: Velocity distributions of photofragments from Fe(CO)5.; MS
Δr21. ± 6.9kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

C4FeO4 (g) = C3FeO3 (g) + Carbon monoxide (g)

By formula: C4FeO4 (g) = C3FeO3 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr28.0 ± 8.6kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr10.kcal/molN/AVenkataraman, Bandukwalla, et al., 1989Method: Velocity distributions of photofragments from Fe(CO)5.; MS
Δr4.5 ± 9.3kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

Nickel tetracarbonyl (solution) = C3NiO3 (solution) + Carbon monoxide (solution)

By formula: C4NiO4 (solution) = C3NiO3 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr22.6kcal/molKinSTurner, Simpson, et al., 1983solvent: Liquid krypton; The reaction enthalpy relies on the experimental value for the activation enthalpy, 22.6 kcal/mol, and on the assumption that the activation enthalpy for product recombination is negligible Turner, Simpson, et al., 1983.; MS

(CAS Reg. No. 71564-27-7 • 4294967295Carbon monoxide) + Carbon monoxide = CAS Reg. No. 71564-27-7

By formula: (CAS Reg. No. 71564-27-7 • 4294967295CO) + CO = CAS Reg. No. 71564-27-7

Quantity Value Units Method Reference Comment
Δr34.7 ± 9.6kcal/molN/ANakajima, Taguwa, et al., 1994gas phase; Vertical Detachment Energy: 3.02±0.13 eV; B
Δr36. ± 12.kcal/molN/AEngelking and Lineberger, 1979gas phase; B
Δr41.7 ± 2.5kcal/molCIDTSunderlin, Wang, et al., 1992gas phase; Affinity: CO..Fe(CO)3-; B

2-Cyclopropen-1-one, 2,3-diphenyl- = Diphenylacetylene + Carbon monoxide

By formula: C15H10O = C14H10 + CO

Quantity Value Units Method Reference Comment
Δr-6.7 ± 1.2kcal/molCphaHung and Grabowski, 1992liquid phase; solvent: Alkane; ALS
Δr4.2 ± 2.5kcal/molCphaHerman and Goodman, 1989solid phase; solvent: Acetonitrile/water; ALS
Δr-9.9 ± 2.9kcal/molCphaGrabowski, Simon, et al., 1984liquid phase; solvent: Benzene; ALS

(Formyl cation • 2Carbon monoxide) + Carbon monoxide = (Formyl cation • 3Carbon monoxide)

By formula: (CHO+ • 2CO) + CO = (CHO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr4.7 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.3kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr26.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 3Carbon monoxide) + Carbon monoxide = (Formyl cation • 4Carbon monoxide)

By formula: (CHO+ • 3CO) + CO = (CHO+ • 4CO)

Quantity Value Units Method Reference Comment
Δr4.5 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.2kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr29.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 4Carbon monoxide) + Carbon monoxide = (Formyl cation • 5Carbon monoxide)

By formula: (CHO+ • 4CO) + CO = (CHO+ • 5CO)

Quantity Value Units Method Reference Comment
Δr4.2 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr5.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr32.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • Carbon monoxide) + Carbon monoxide = (Formyl cation • 2Carbon monoxide)

By formula: (CHO+ • CO) + CO = (CHO+ • 2CO)

Quantity Value Units Method Reference Comment
Δr4.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.6kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr15.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

CNiO (g) = Carbon monoxide (g) + nickel (g)

By formula: CNiO (g) = CO (g) + Ni (g)

Quantity Value Units Method Reference Comment
Δr40.6 ± 5.8kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr25.8kcal/molN/AMcQuaid, Morris, et al., 1988Method: Chemiluminescence spectroscopy.; MS
Δr29. ± 15.kcal/molN/AStevens, Feigerle, et al., 1982Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

(Cobalt ion (1+) • Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 2Carbon monoxide)

By formula: (Co+ • CO) + CO = (Co+ • 2CO)

Quantity Value Units Method Reference Comment
Δr36.6 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
36.4 (+2.1,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M
32.9 (+4.8,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Iron ion (1+) + Carbon monoxide = (Iron ion (1+) • Carbon monoxide)

By formula: Fe+ + CO = (Fe+ • CO)

Quantity Value Units Method Reference Comment
Δr30.8 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr32. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; determined from MKER and theory; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.3 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Manganese, pentacarbonylmethyl- (solution) + Carbon monoxide (solution) = Manganese, acetylpentacarbonyl-, (OC-6-21)- (solution)

By formula: C6H3MnO5 (solution) + CO (solution) = C7H3MnO6 (solution)

Quantity Value Units Method Reference Comment
Δr-13.4 ± 1.0kcal/molRSCNolan, López de la Vega, et al., 1986solvent: Tetrahydrofuran; MS
Δr-12.6kcal/molEqSCalderazzo, 1977solvent: 2,2'-diethoxydiethyl ether; MS

Cobalt, tetracarbonylhydro- (g) = 0.5Hydrogen (g) + 4Carbon monoxide (g) + cobalt (cr)

By formula: C4HCoO4 (g) = 0.5H2 (g) + 4CO (g) + Co (cr)

Quantity Value Units Method Reference Comment
Δr30.38 ± 0.50kcal/molEqGBronshstein, Gankin, et al., 1966Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. Temperature range: ca. 423-533 K; MS

(Sodium ion (1+) • Carbon monoxide) + Carbon monoxide = (Sodium ion (1+) • 2Carbon monoxide)

By formula: (Na+ • CO) + CO = (Na+ • 2CO)

Quantity Value Units Method Reference Comment
Δr5.7 ± 0.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr5.7 ± 0.7kcal/molCIDTWalter, Sievers, et al., 1998RCD
Δr7.5kcal/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr15.1cal/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

Tungsten hexacarbonyl (solution) + 1,3-Diazine (solution) = C10H5NO5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C4H4N2 (solution) = C10H5NO5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr6.55 ± 0.69kcal/molPCNakashima and Adamson, 1982solvent: Cyclohexane; MS
Δr5.95 ± 0.69kcal/molPCNakashima and Adamson, 1982solvent: Benzene; MS
Δr4.40 ± 0.1kcal/molPCNakashima and Adamson, 1982solvent: Tetrahydrofuran; MS

Sodium ion (1+) + Carbon monoxide = (Sodium ion (1+) • Carbon monoxide)

By formula: Na+ + CO = (Na+ • CO)

Quantity Value Units Method Reference Comment
Δr7.6 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr7.6 ± 1.9kcal/molCIDTWalter, Sievers, et al., 1998RCD
Δr12.6kcal/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

Nickel tetracarbonyl (g) = C3NiO3 (g) + Carbon monoxide (g)

By formula: C4NiO4 (g) = C3NiO3 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr25. ± 2.kcal/molN/AStevens, Feigerle, et al., 1982Please also see Compton and Stockdale, 1976. The enthalpy of formation relies on -144.0 ± 0.62 kcal/mol for the enthalpy of formation of Ni(CO)4(g) Method: LPS and collision with low energy electrons.; MS

(CO+ • 2Carbon monoxide) + Carbon monoxide = (CO+ • 3Carbon monoxide)

By formula: (CO+ • 2CO) + CO = (CO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr7.21kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M
Quantity Value Units Method Reference Comment
Δr24.5cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M

(CO+ • 5Carbon monoxide) + Carbon monoxide = (CO+ • 6Carbon monoxide)

By formula: (CO+ • 5CO) + CO = (CO+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.70kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M

C34H52OTh (solution) + Carbon monoxide (solution) = C35H52O2Th (solution)

By formula: C34H52OTh (solution) + CO (solution) = C35H52O2Th (solution)

Quantity Value Units Method Reference Comment
Δr-5.9 ± 1.5kcal/molEqSMoloy and Marks, 1984solvent: Toluene; Temperature range: ca. 180-200 K; MS

C29H50OTh (solution) + Carbon monoxide (solution) = C30H50O2Th (solution)

By formula: C29H50OTh (solution) + CO (solution) = C30H50O2Th (solution)

Quantity Value Units Method Reference Comment
Δr-4.49 ± 0.91kcal/molEqSMoloy and Marks, 1984solvent: Toluene; Temperature range: ca. 180-220 K; MS

Molybdenum hexacarbonyl (cr) = 6Carbon monoxide (g) + molybdenum (cr)

By formula: C6MoO6 (cr) = 6CO (g) + Mo (cr)

Quantity Value Units Method Reference Comment
Δr77.89 ± 0.36kcal/molTD-HZCBarnes, Pilcher, et al., 1974, 2Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS
Δr71.0 ± 1.0kcal/molTD-HFCConnor, Skinner, et al., 1972Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS

(Formyl cation • 14Carbon monoxide) + Carbon monoxide = (Formyl cation • 15Carbon monoxide)

By formula: (CHO+ • 14CO) + CO = (CHO+ • 15CO)

Quantity Value Units Method Reference Comment
Δr1.76kcal/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

bis(η(5)-Cyclopentadienyl) chromium (solution) + Carbon monoxide (solution) = C11H10CrO (solution)

By formula: C10H10Cr (solution) + CO (solution) = C11H10CrO (solution)

Quantity Value Units Method Reference Comment
Δr-18.8 ± 0.50kcal/molEqSWong and Brintzinger, 1975solvent: Toluene; Temperature range: 280-308 K; MS

Chromium hexacarbonyl (cr) = 6Carbon monoxide (g) + chromium (cr)

By formula: C6CrO6 (cr) = 6CO (g) + Cr (cr)

Quantity Value Units Method Reference Comment
Δr63.6 ± 1.kcal/molTD-HFCAl-Takhin, Connor, et al., 1984, 2MS
Δr75.3 ± 0.2kcal/molTD-HZCPittam, Pilcher, et al., 1975Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS
Δr64.4 ± 1.1kcal/molTD-HFCConnor, Skinner, et al., 1972MS

2Dicobalt octacarbonyl (solution) = C12Co4O12 (solution) + 4Carbon monoxide (solution)

By formula: 2C8Co2O8 (solution) = C12Co4O12 (solution) + 4CO (solution)

Quantity Value Units Method Reference Comment
Δr29.49 ± 0.50kcal/molEqSBor and Dietler, 1980solvent: Hexane; Temperature range: 378-418 K; MS

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to CO+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)14.014 ± 0.0003eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)142.kcal/molN/AHunter and Lias, 1998at C; HL
Proton affinity (review)101.9kcal/molN/AHunter and Lias, 1998at O; HL
Quantity Value Units Method Reference Comment
Gas basicity134.5kcal/molN/AHunter and Lias, 1998at C; HL
Gas basicity96.13kcal/molN/AHunter and Lias, 1998at O; HL
Quantity Value Units Method Reference Comment
Δf(+) ion296.7kcal/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K296.0kcal/molN/AN/A 

Electron affinity determinations

EA (eV) Method Reference Comment
1.32608R-ARefaey and Franklin, 1976G3MP2B3 calculations indicate an EA of ca.-1.6 eV, anion unbound; B

Ionization energy determinations

IE (eV) Method Reference Comment
14.0142 ± 0.0003LSErman, Karawajczyk, et al., 1993LL
14.1PEKimura, Katsumata, et al., 1981LLK
14.014SFock, Gurtler, et al., 1980LLK
14.07 ± 0.05EIHille and Mark, 1978LLK
14.0PIRabalais, Debies, et al., 1974LLK
14.01PENatalis, 1973LLK
14.0139SOgawa and Ogawa, 1972LLK
14.01PEHotop and Niehaus, 1970RDSH
14.01PECollin and Natalis, 1969RDSH
14.00PETurner and May, 1966RDSH
14.013 ± 0.004SKrupenie, 1966RDSH
13.985PICook, Metzger, et al., 1965RDSH
14.01PEPotts and Williams, 1974Vertical value; LLK
14.01PEKatrib, Debies, et al., 1973Vertical value; LLK
14.0PEThomas, 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+20.94 ± 0.02O-PIOertel, Schenk, et al., 1980LLK
C+20.89O-(2P)EISmyth, Schiavone, et al., 1974LLK
C+20.88 ± 0.02O-EILocht and Momigny, 1971LLK
C+22.45 ± 0.10OEIHierl and Franklin, 1967RDSH
C+20.82 ± 0.05O-EIHierl and Franklin, 1967RDSH
C+22.57 ± 0.20OEIFineman and Petrocelli, 1961RDSH
C+20.89 ± 0.09O-EIFineman and Petrocelli, 1961RDSH
CO+19.5 ± 0.2O-?PIWeissler, Samson, et al., 1959RDSH
O+23.44C-EISmyth, Schiavone, et al., 1974LLK
O+23.20 ± 0.05C-EIHierl and Franklin, 1967RDSH
O+24.65 ± 0.05CEIHierl and Franklin, 1967RDSH
O+23.41 ± 0.17C-EIFineman and Petrocelli, 1961RDSH
O+24.78 ± 0.23CEIFineman and Petrocelli, 1961RDSH

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Werner and Prinz, 1966
Werner, H.; Prinz, R., Chem. Ber., 1966, 99, 3582. [all data]

Poë, Sampson, et al., 1993
Poë, A.J.; Sampson, C.N.; Smith, R.T.; Zheng, Y., J. Am. Chem. Soc., 1993, 115, 3174. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Smith and Laine, 1981
Smith, G.P.; Laine, R.M., Organometallic bond dissociation energies. Laser pyrolysis of Fe(CO)5, J. Phys. Chem., 1981, 85, 1620. [all data]

Miller and Grant, 1985
Miller, M.E.; Grant, E.R., J. Am. Chem. Soc., 1985, 107, 3386. [all data]

Walsh, 1986
Walsh, R., NATO Advanced Workshop on the Design, Activation and Transformation of Organometallics into Common and Exotic Materials, Montpellier, France, 1986. [all data]

Ray, Brandow, et al., 1988
Ray, U.; Brandow, S.L.; Bandukwalla, G.; Venkataraman, B.K.; Zhang, Z.; Vernon, M., J. Chem. Phys., 1988, 89, 4092. [all data]

Sunderlin, Wang, et al., 1992
Sunderlin, L.S.; Wang, D.; Squires, R.R., Metal Carbonyl Bond Strengths in Fe(CO)n- and Ni(CO)n-, J. Am. Chem. Soc., 1992, 114, 8, 2788, https://doi.org/10.1021/ja00034a004 . [all data]

Engelking and Lineberger, 1979
Engelking, P.C.; Lineberger, W.C., Laser photoelectron spectrometry of the negative ions of iron and iron carbonyls. Electron affinity determination for the series Fe(CO)n,n=0,1,2,3,4, J. Am. Chem. Soc., 1979, 101, 5569. [all data]

Compton and Stockdale, 1976
Compton, R.N.; Stockdale, J.A.D., Formation of gas phase negative ions in Fe(CO)5 and Ni(CO)4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 47. [all data]

Ganske and Rosenfeld, 1990
Ganske, J.A.; Rosenfeld, R.N., J. Phys. Chem., 1990, 94, 4315. [all data]

Cetini and Gambino, 1963
Cetini, G.; Gambino, O., Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat., 1963, 97, 757. [all data]

Cetini and Gambino, 1963, 2
Cetini, G.; Gambino, O., Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat., 1963, 97, 1197. [all data]

Fletcher and Rosenfeld, 1988
Fletcher, R.T.; Rosenfeld, R.N., Recombination of Cr(CO)n with CO: Kinetics and Bond Dissociation Energies, J. Am. Chem. Soc., 1988, 110, 7, 2097, https://doi.org/10.1021/ja00215a014 . [all data]

Pajaro, Calderazzo, et al., 1960
Pajaro, G.; Calderazzo, F.; Ercoli, R., Gazz. Chim. Ital., 1960, 90, 1486. [all data]

Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D., J. Organometal. Chem., 1980, 184, 77. [all data]

Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J., Inorg. Chem., 1972, 11, 72. [all data]

Norwood, Guo, et al., 1988
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y., A Photoion - Photoelectron Coincidence Study of (CO)2, J. Chem. Phys., 1988, 88, 6, 4098, https://doi.org/10.1063/1.453814 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Munson and Franlin, 1962
Munson, M.S.B. Field; Franlin, J.L., High-Pressure Mass Spectrometric Study of Reactions of Rare Gases with N2 and CO, J. Chem. Phys., 1962, 37, 8, 1790, https://doi.org/10.1063/1.1733370 . [all data]

Meot-Ner (Mautner) and Field, 1974
Meot-Ner (Mautner), M.; Field, F.H., Kinetics and Thermodynamics of the Association of CO+ with CO and of N2+ with N2 between 120 and 650 K, J. Chem. Phys., 1974, 61, 9, 3742, https://doi.org/10.1063/1.1682560 . [all data]

Chong and Franklin, 1971
Chong, S.L.; Franklin, J.L., High-Pressure Ion-Molecule Reactions in Carbon Monoxide and Carbon Monoxide - Methane Mixtures, J. Chem. Phys., 1971, 54, 4, 1487, https://doi.org/10.1063/1.1675043 . [all data]

Al-Takhin, Connor, et al., 1984
Al-Takhin, G.; Connor, J.A.; Pilcher, G.; Skinner, H.A., J. Organomet. Chem., 1984, 265, 263. [all data]

Adedeji, Brown, et al., 1975
Adedeji, F.A.; Brown, D.L.S.; Connor, J.A.; Leung, M.; Paz-Andrade, I.M.; Skinner, H.A., J. Organometal. Chem., 1975, 97, 221. [all data]

Hieber and Romberg, 1935
Hieber, W.; Romberg, E., Z. Anorg. Allg. Chem., 1935, 221, 321. [all data]

Rezukhina and Shvyrev, 1952
Rezukhina, T.N.; Shvyrev, V.V., Vestn. Moskov. Univ., 1952, 7, 41. [all data]

Daamen, Ernsting, et al., 1979
Daamen, H.; Ernsting, J.M.; Oskam, A., Thermochim. Acta, 1979, 33, 217. [all data]

Boxhoorn, Ernsting, et al., 1980
Boxhoorn, G.; Ernsting, J.M.; Stufkens, D.J.; Oskam, A., Thermochim. Acta, 1980, 42, 315. [all data]

Pilcher, Ware, et al., 1975
Pilcher, G.; Ware, M.J.; Pittam, D.A., J. Less-Common Met., 1975, 42, 223. [all data]

Barnes, Pilcher, et al., 1974
Barnes, D.S.; Pilcher, G.; Pittam, D.A.; Skinner, H.A.; Todd, D., J. Less-Common Met., 1974, 38, 53. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Tel'noi and Rabinovich, 1977
Tel'noi, V.I.; Rabinovich, I.B., Russ. Chem. Rev., 1977, 46, 689. [all data]

Koelliker and Bor, 1991
Koelliker, R.; Bor, G., J. Organometal. Chem., 1991, 417, 439. [all data]

Bor, 1986
Bor, G., Pure & Appl. Chem., 1986, 58, 543. [all data]

Ungváry and Markó, 1974
Ungváry, F.; Markó, L., J. Organometal. Chem., 1974, 71, 283. [all data]

Ungváry, 1972
Ungváry, F., J. Organometal. Chem., 1972, 36, 363. [all data]

Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W., J. Phys. Chem., 1982, 86, 2905. [all data]

Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S., The Temperature Dependence of Ion - Molecule Association Reactions, Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.M.; Bowers, M.T., Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone, J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021 . [all data]

Goebel, Haynes, et al., 1995
Goebel, S.; Haynes, C.L.; Khan, F.A.; Armentrout, P.B., Collision-Induced Dissociation Studies of Co(CO)x, x = 1-5: Sequential Bond Energies and the Heat of Formation of Co(CO)4, J. Am. Chem. Soc., 1995, 117, 26, 6994, https://doi.org/10.1021/ja00131a023 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J., Mendeleev Commun., 1991, 145.. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Venkataraman, Bandukwalla, et al., 1989
Venkataraman, B.K.; Bandukwalla, G.; Zhang, Z.; Vernon, M., J. Chem. Phys., 1989, 90, 5510. [all data]

Monteil, Raffin, et al., 1988
Monteil, Y.; Raffin, P.; Bouix, J., Thermochim. Acta, 1988, 125, 327. [all data]

Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B., Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]], J. Phys. Chem., 1995, 99, 7819. [all data]

Turner, Simpson, et al., 1983
Turner, J.J.; Simpson, M.B.; Poliakoff, M.; Maier II, W.B., J. Am. Chem. Soc., 1983, 105, 3898. [all data]

Nakajima, Taguwa, et al., 1994
Nakajima, A.; Taguwa, T.; Kaya, K., Photoelectron Spectroscopy of Iron Carbonyl Cluster Anions (Fen(CO)m(-), n=1-4), Chem. Phys. Lett., 1994, 221, 5-6, 436, https://doi.org/10.1016/0009-2614(94)00301-7 . [all data]

Hung and Grabowski, 1992
Hung, R.R.; Grabowski, J.J., Enthalpy measurements in organic solvents by photoacoustic calorimetry: a solution to the reaction volume problem, J. Am. Chem. Soc., 1992, 114, 351-353. [all data]

Herman and Goodman, 1989
Herman, M.S.; Goodman, J.L., Determination of the enthalpy and reaction volume changes of organic photoreactions using photoacoustic calorimetry, J. Am. Chem. Soc., 1989, 111, 1849-1854. [all data]

Grabowski, Simon, et al., 1984
Grabowski, J.J.; Simon, J.D.; Peters, K.S., Heat of formation of diphenylcyclopropenone by photoacoustic calorimetry, J. Am. Chem. Soc., 1984, 106, 4615-4616. [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14, Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8 . [all data]

McQuaid, Morris, et al., 1988
McQuaid, M.J.; Morris, K.; Gole, J.L., J. Am. Chem. Soc., 1988, 110, 5280. [all data]

Stevens, Feigerle, et al., 1982
Stevens, A.E.; Feigerle, C.S.; Lineberger, W.C., Laser Photoelectron Spectrometry of Ni(CO)n-, n=1-3, J. Am. Chem. Soc., 1982, 104, 19, 5026, https://doi.org/10.1021/ja00383a004 . [all data]

Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D., J. Am. Chem. Soc., 1986, 108, 7852. [all data]

Calderazzo, 1977
Calderazzo, F., Angew. Chem. Int. Ed. Engl., 1977, 16, 299. [all data]

Bronshstein, Gankin, et al., 1966
Bronshstein, Yu.E.; Gankin, V.Yu.; Krinkin, D.P.; Rudkovskii, D.M., Russ. J. Phys. Chem., 1966, 40, 802. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Walter, Sievers, et al., 1998
Walter, D.; Sievers, M.R.; Armentrout, P.B., Alkali Ion Carbonyls: Sequential Bond Energies of Li+(CO)x (x=1-3), Na+(CO)x (x=1, 2), and K+(CO), Int. J. Mass Spectrom., 1998, 175, 1-2, 93, https://doi.org/10.1016/S0168-1176(98)00109-8 . [all data]

Castleman, Peterson, et al., 1983
Castleman, A.W.; Peterson, K.I.; Upschulte, B.L.; Schelling, F.J., Energetics and Structure of Na+ Cluster Ions, Int. J. Mass Spectrom. Ion Phys., 1983, 47, 203, https://doi.org/10.1016/0020-7381(83)87171-X . [all data]

Hiraoka and Mori, 1991
Hiraoka, K.; Mori, T., On the formation of the Isomeric Cluster Ions (CO)n+, J. Chem. Phys., 1991, 94, 4, 2697, https://doi.org/10.1063/1.459844 . [all data]

Moloy and Marks, 1984
Moloy, K.G.; Marks, T.J., J. Am. Chem. Soc., 1984, 106, 7051. [all data]

Barnes, Pilcher, et al., 1974, 2
Barnes, D.S.; Pilcher, G.; Pittam, D.A.; Skinner, H.A.; Todd, D.; Virmani, Y., J. Less-Common Met., 1974, 36, 177. [all data]

Connor, Skinner, et al., 1972
Connor, J.A.; Skinner, H.A.; Virmani, Y., Microcalorimetric studies. Thermal decomposition and iodination of metal carbonyls, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 0, 1754, https://doi.org/10.1039/f19726801754 . [all data]

Wong and Brintzinger, 1975
Wong, K.L.T.; Brintzinger, H.H., J. Am. Chem. Soc., 1975, 97, 5143. [all data]

Al-Takhin, Connor, et al., 1984, 2
Al-Takhin, G.; Connor, J.A.; Skinner, H.A.; Zaharani-Moettar, M.T., J. Organomet. Chem., 1984, 260, 189. [all data]

Pittam, Pilcher, et al., 1975
Pittam, D.A.; Pilcher, G.; Barnes, D.S.; Skinner, H.A.; Todd, D., J. Less-Common Met., 1975, 42, 217. [all data]

Bor and Dietler, 1980
Bor, G.; Dietler, U.K., J. Organometal. Chem., 1980, 191, 295. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Refaey and Franklin, 1976
Refaey, K.M.A.; Franklin, J.L., Endoergic ion-molecule-collision processes of negative ions. III. Collisions of I- on O2, CO and CO2, Int. J. Mass Spectrom. Ion Phys., 1976, 20, 19. [all data]

Erman, Karawajczyk, et al., 1993
Erman, P.; Karawajczyk, A.; Rachlew-Kallne, E.; Stromholm, C.; Larsson, J.; Persson, A.; Zerne, R., Direct determination of the ionization potential of CO by resonantly enhanced multiphoton ionization mass spectrometry, Chem. Phys. Lett., 1993, 215, 173. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Fock, Gurtler, et al., 1980
Fock, J.-H.; Gurtler, P.; Koch, E.E., Molecular Rydberg transitions in carbon monoxide: term value/ionization energy correlation of BF, CO and N2., Chem. Phys., 1980, 47, 87. [all data]

Hille and Mark, 1978
Hille, E.; Mark, T.D., Cross section for single and double ionization of carbon monoxide by electron impact from threshold up to 180 eV, J. Chem. Phys., 1978, 69, 4600. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Ogawa and Ogawa, 1972
Ogawa, M.; Ogawa, S., Absorption spectrum of CO in the Hopfield helium continuum region, 600-1020 A, J. Mol. Spectrosc., 1972, 41, 393. [all data]

Hotop and Niehaus, 1970
Hotop, H.; Niehaus, A., Reactions of excited atoms and molecules with atoms and molecules. V.Comparison of Penning electron and photoelectron spectra of H2, N2 and CO, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 415. [all data]

Collin and Natalis, 1969
Collin, J.E.; Natalis, P., Ionic states and photon impact-enhanced vibrational excitation in diatomic molecules by photoelectron spectroscopy. Photoelectron spectra of N2, CO and O2, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 231. [all data]

Turner and May, 1966
Turner, D.W.; May, D.P., Franck-Condon factors in ionization: experimental measurement using molecular photoelectron spectroscopy, J. Chem. Phys., 1966, 45, 471. [all data]

Krupenie, 1966
Krupenie, P.H., The band spectrum of carbon monoxide, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. NSRDS-NBS, 1966, 5. [all data]

Cook, Metzger, et al., 1965
Cook, G.R.; Metzger, P.H.; Ogawa, M., Photoionization and absorption coefficients of CO in the 600 to 1000 A region, Can. J. Phys., 1965, 43, 1706. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Katrib, Debies, et al., 1973
Katrib, A.; Debies, T.P.; Colton, R.J.; Lee, T.H.; Rabalais, J.W., The use of differential photoionization cross sections as a function of excitation energy in assigning photoelectron spectra, Chem. Phys. Lett., 1973, 22, 196. [all data]

Thomas, 1970
Thomas, T.D., X-ray photoelectron spectroscopy of carbon monoxide, J. Chem. Phys., 1970, 53, 1744. [all data]

Oertel, Schenk, et al., 1980
Oertel, H.; Schenk, H.; Baumgartel, H., Ion pair formation from photon irradiation of O2, NO and CO in 17-30 eV, Chem. Phys., 1980, 46, 251. [all data]

Smyth, Schiavone, et al., 1974
Smyth, K.C.; Schiavone, J.A.; Freund, R.S., Dissociative excitation of CO by electron impact: Translational spectroscopy of long-lived high-Rydberg fragment atoms, J. Chem. Phys., 1974, 60, 1358. [all data]

Locht and Momigny, 1971
Locht, R.; Momigny, J., Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]

Hierl and Franklin, 1967
Hierl, P.M.; Franklin, J.L., Appearance potentials and kinetic energies of ions from N2, CO, and NO, J. Chem. Phys., 1967, 47, 3154. [all data]

Fineman and Petrocelli, 1961
Fineman, M.A.; Petrocelli, A.W., Molecular studies with a Lozier electron impact apparatus, Planetary Space Sci., 1961, 3, 187. [all data]

Weissler, Samson, et al., 1959
Weissler, G.L.; Samson, J.A.R.; Ogawa, M.; Cook, G.R., Photoionization analysis by mass spectroscopy, J. Opt. Soc. Am., 1959, 49, 338. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References