Methane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

CH3- + Hydrogen cation = Methane

By formula: CH3- + H+ = CH4

Quantity Value Units Method Reference Comment
Δr416.74 ± 0.70kcal/molD-EAEllison, Engelking, et al., 1978gas phase; B
Δr418.0 ± 3.5kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr>404.18 ± 0.10kcal/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Δr414.80kcal/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B
Quantity Value Units Method Reference Comment
Δr408.66 ± 0.80kcal/molH-TSEllison, Engelking, et al., 1978gas phase; B
Δr409.9 ± 3.6kcal/molH-TSGraul and Squires, 1990gas phase; B
Δr>396.10kcal/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B
Δr407.30kcal/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B

(CH5+ • Methane) + Methane = (CH5+ • 2Methane)

By formula: (CH5+ • CH4) + CH4 = (CH5+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr5.3 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr5.9kcal/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr1.5kcal/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr24.9cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr24.4cal/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr7.2cal/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

CH5+ + Methane = (CH5+ • Methane)

By formula: CH5+ + CH4 = (CH5+ • CH4)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr7.4kcal/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr4.1kcal/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr22.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr20.8cal/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr12.4cal/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

C2H5+ + Methane = (C2H5+ • Methane)

By formula: C2H5+ + CH4 = (C2H5+ • CH4)

Quantity Value Units Method Reference Comment
Δr5.50kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr6.6kcal/molPHPMSHiroka and Kebarle, 1975gas phase; M
Δr2.4kcal/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr22.2cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr23.4cal/mol*KPHPMSHiroka and Kebarle, 1975gas phase; M
Δr8.6cal/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

(Cobalt ion (1+) • 2Methane) + Methane = (Cobalt ion (1+) • 3Methane)

By formula: (Co+ • 2CH4) + CH4 = (Co+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr11.kcal/molSIDTKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
9.8 (+1.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
0.7477.SIDTKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Methane = (Cobalt ion (1+) • Methane)

By formula: Co+ + CH4 = (Co+ • CH4)

Quantity Value Units Method Reference Comment
Δr19.8cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(530 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.5 (+1.6,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID; M
21.5 (+1.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
22.5 (+0.5,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(530 K); M

(Cobalt ion (1+) • Methane) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Methane)

By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)

Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
17.4 (+0.8,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

(Cobalt ion (1+) • Hydrogen) + Methane = (Cobalt ion (1+) • Methane • Hydrogen)

By formula: (Co+ • H2) + CH4 = (Co+ • CH4 • H2)

Quantity Value Units Method Reference Comment
Δr21.8cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
22.6 (+1.2,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Manganese, pentacarbonylmethyl- (g) = C5MnO5 (g) + Methane (g)

By formula: C6H3MnO5 (g) = C5MnO5 (g) + CH4 (g)

Quantity Value Units Method Reference Comment
Δr45.9 ± 3.6kcal/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 224.8 ± 1.1 kcal/mol, using Mn(CO)5(Me) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 179. ± 3.3 kcal/mol Martinho Simões and Beauchamp, 1990; MS

(Cobalt ion (1+) • Methane) + Methane = (Cobalt ion (1+) • 2Methane)

By formula: (Co+ • CH4) + CH4 = (Co+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr26.1cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(500 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
22.9 (+1.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
24.8 (+1.0,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(500 K); M

(CH5+ • 2Methane) + Methane = (CH5+ • 3Methane)

By formula: (CH5+ • 2CH4) + CH4 = (CH5+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr3.1 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr4.1kcal/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr22.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr26.1cal/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

(CH5+ • 3Methane) + Methane = (CH5+ • 4Methane)

By formula: (CH5+ • 3CH4) + CH4 = (CH5+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr3.0 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr3.9kcal/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr23.7cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr26.6cal/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

Hydrogen bromide (g) + CH3BrMg (solution) = Methane (solution) + Br2Mg (solution)

By formula: HBr (g) + CH3BrMg (solution) = CH4 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-65.61 ± 0.53kcal/molRSCHolm, 1981solvent: Diethyl ether; The enthalpy of formation was calculated using the assumptions and the auxiliary data in Holm, 1981, except for the organic compound, whose enthalpy of formation was quoted from Pedley, 1994; MS

(Cobalt ion (1+) • Methane) + Ethane = (Cobalt ion (1+) • Ethane • Methane)

By formula: (Co+ • CH4) + C2H6 = (Co+ • C2H6 • CH4)

Quantity Value Units Method Reference Comment
Δr25.9cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.4 (+1.3,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

C63H91CoN13O14P (solution) = Cyanocobalamin (solution) + Methane (solution)

By formula: C63H91CoN13O14P (solution) = C63H88CoN14O14P (solution) + CH4 (solution)

Quantity Value Units Method Reference Comment
Δr37.0 ± 3.1kcal/molKinSMartin and Finke, 1990solvent: Ethylene glycol; Please also see Martin and Finke, 1992. The reaction enthalpy relies on 41.0 ± 3.0 kcal/mol for the reaction activation enthalpy. The reaction refers to "base-on" cobalamine.; MS

C3H7+ + Methane = (C3H7+ • Methane)

By formula: C3H7+ + CH4 = (C3H7+ • CH4)

Quantity Value Units Method Reference Comment
Δr2.59kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr3.4kcal/molPHPMSHiraoka and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr20.cal/mol*KPHPMSHiraoka and Kebarle, 1976gas phase; M

Hydrogen iodide + Methane, iodo- = Methane + Iodine

By formula: HI + CH3I = CH4 + I2

Quantity Value Units Method Reference Comment
Δr-12.56 ± 0.13kcal/molEqkGolden, Walsh, et al., 1965gas phase; ALS
Δr-12.67 ± 0.05kcal/molEqkGoy and Pritchard, 1965gas phase; ALS
Δr-11.0 ± 1.3kcal/molCmNichol and Ubbelohde, 1952gas phase; ALS

(C2H5+ • 9Methane) + Methane = (C2H5+ • 10Methane)

By formula: (C2H5+ • 9CH4) + CH4 = (C2H5+ • 10CH4)

Quantity Value Units Method Reference Comment
Δr1.91kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(C3H7+ • 7Methane) + Methane = (C3H7+ • 8Methane)

By formula: (C3H7+ • 7CH4) + CH4 = (C3H7+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr1.98kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(C4H9+ • 8Methane) + Methane = (C4H9+ • 9Methane)

By formula: (C4H9+ • 8CH4) + CH4 = (C4H9+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr1.86kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(CH5+ • 8Methane) + Methane = (CH5+ • 9Methane)

By formula: (CH5+ • 8CH4) + CH4 = (CH5+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr1.54kcal/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(Cobalt ion (1+) • Water) + Methane = (Cobalt ion (1+) • Methane • Water)

By formula: (Co+ • H2O) + CH4 = (Co+ • CH4 • H2O)

Quantity Value Units Method Reference Comment
Δr27.0cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(525 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
25.9 (+0.7,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(525 K); M

(Hydronium cation • Methane) + Methane = (Hydronium cation • 2Methane)

By formula: (H3O+ • CH4) + CH4 = (H3O+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr3.4kcal/molHPMSBennet and Field, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr8.1cal/mol*KHPMSBennet and Field, 1972gas phase; Entropy change is questionable; M

(Cobalt ion (1+) • Ethane) + Methane = (Cobalt ion (1+) • Methane • Ethane)

By formula: (Co+ • C2H6) + CH4 = (Co+ • CH4 • C2H6)

Quantity Value Units Method Reference Comment
Δr26.4cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
24.4 (+1.1,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

NH4+ + Methane = (NH4+ • Methane)

By formula: H4N+ + CH4 = (H4N+ • CH4)

Quantity Value Units Method Reference Comment
Δr3.6kcal/molHPMSBennet and Field, 1972, 2gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr15.5cal/mol*KHPMSBennet and Field, 1972, 2gas phase; Entropy change is questionable; M

Hydrogen bromide (g) + methyllithium (cr) = Methane (g) + Lithium bromide (cr)

By formula: HBr (g) + CH3Li (cr) = CH4 (g) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-75.84 ± 0.48kcal/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

2Hydrogen + Methylene chloride = Methane + 2Hydrogen chloride

By formula: 2H2 + CH2Cl2 = CH4 + 2HCl

Quantity Value Units Method Reference Comment
Δr-39.05 ± 0.30kcal/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -40.07 ± 0.30 kcal/mol; At 250 C; ALS

Dimethylzinc (l) + (Sulfuric Acid • 100Water) (solution) = 2Methane (g) + (zinc sulphate • 100Water) (solution)

By formula: C2H6Zn (l) + (H2O4S • 100H2O) (solution) = 2CH4 (g) + (O4SZn • 100H2O) (solution)

Quantity Value Units Method Reference Comment
Δr-81.7 ± 0.2kcal/molRSCCarson, Hartley, et al., 1949Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

(CH5+ • 4Methane) + Methane = (CH5+ • 5Methane)

By formula: (CH5+ • 4CH4) + CH4 = (CH5+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr2.8 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr24.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 5Methane) + Methane = (CH5+ • 6Methane)

By formula: (CH5+ • 5CH4) + CH4 = (CH5+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr2.7 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr25.3cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 6Methane) + Methane = (CH5+ • 7Methane)

By formula: (CH5+ • 6CH4) + CH4 = (CH5+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr2.7 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr26.5cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 7Methane) + Methane = (CH5+ • 8Methane)

By formula: (CH5+ • 7CH4) + CH4 = (CH5+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr21.6cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(C2H5+ • 2Methane) + Methane = (C2H5+ • 3Methane)

By formula: (C2H5+ • 2CH4) + CH4 = (C2H5+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr2.28kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 3Methane) + Methane = (C2H5+ • 4Methane)

By formula: (C2H5+ • 3CH4) + CH4 = (C2H5+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr2.26kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr18.4cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 4Methane) + Methane = (C2H5+ • 5Methane)

By formula: (C2H5+ • 4CH4) + CH4 = (C2H5+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr2.22kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr18.9cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 5Methane) + Methane = (C2H5+ • 6Methane)

By formula: (C2H5+ • 5CH4) + CH4 = (C2H5+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr2.21kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr19.4cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 6Methane) + Methane = (C2H5+ • 7Methane)

By formula: (C2H5+ • 6CH4) + CH4 = (C2H5+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr2.13kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr20.7cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 7Methane) + Methane = (C2H5+ • 8Methane)

By formula: (C2H5+ • 7CH4) + CH4 = (C2H5+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr2.10kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr21.0cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 8Methane) + Methane = (C2H5+ • 9Methane)

By formula: (C2H5+ • 8CH4) + CH4 = (C2H5+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr2.08kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr21.8cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 2Methane) + Methane = (C3H7+ • 3Methane)

By formula: (C3H7+ • 2CH4) + CH4 = (C3H7+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr2.26kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr18.4cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 3Methane) + Methane = (C3H7+ • 4Methane)

By formula: (C3H7+ • 3CH4) + CH4 = (C3H7+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr2.20kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr19.0cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 4Methane) + Methane = (C3H7+ • 5Methane)

By formula: (C3H7+ • 4CH4) + CH4 = (C3H7+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr2.20kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr20.9cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 5Methane) + Methane = (C3H7+ • 6Methane)

By formula: (C3H7+ • 5CH4) + CH4 = (C3H7+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr2.19kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr21.0cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 6Methane) + Methane = (C3H7+ • 7Methane)

By formula: (C3H7+ • 6CH4) + CH4 = (C3H7+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr2.16kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr21.8cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 2Methane) + Methane = (C4H9+ • 3Methane)

By formula: (C4H9+ • 2CH4) + CH4 = (C4H9+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr2.37kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr19.7cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 3Methane) + Methane = (C4H9+ • 4Methane)

By formula: (C4H9+ • 3CH4) + CH4 = (C4H9+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr2.36kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr20.0cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 4Methane) + Methane = (C4H9+ • 5Methane)

By formula: (C4H9+ • 4CH4) + CH4 = (C4H9+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr2.21kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr19.4cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 5Methane) + Methane = (C4H9+ • 6Methane)

By formula: (C4H9+ • 5CH4) + CH4 = (C4H9+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr2.09kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr19.3cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 6Methane) + Methane = (C4H9+ • 7Methane)

By formula: (C4H9+ • 6CH4) + CH4 = (C4H9+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr2.05kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr19.7cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 7Methane) + Methane = (C4H9+ • 8Methane)

By formula: (C4H9+ • 7CH4) + CH4 = (C4H9+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr1.99kcal/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr20.1cal/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CH4+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)12.61 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)129.9kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity124.4kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
12.61 ± 0.01PIBerkowitz, Greene, et al., 1987LBLHLM
12.6 ± 0.4EIChatham, Hils, et al., 1984LBLHLM
12.63 ± 0.02EIPlessis, Marmet, et al., 1983LBLHLM
13.6PEKimura, Katsumata, et al., 1981LLK
12.75 ± 0.02PEBieri, Burger, et al., 1977LLK
12.82 ± 0.02EISelim and El-Kholy, 1975LLK
12.6PEDebies and Rabalais, 1975LLK
12.6PIRabalais, Debies, et al., 1974LLK
12.8EIMorrison and Traeger, 1973LLK
12.64PEPotts and Price, 1972LLK
12.94 ± 0.04EIFinney and Harrison, 1972LLK
12.51PEBergmark, Rabalais, et al., 1972LLK
~12.51PERabalais, Bergmark, et al., 1971LLK
≤12.615 ± 0.010PIChupka and Berkowitz, 1971LLK
12.78PEPullen, Carlson, et al., 1970RDSH
12.75PEBrundle, Robin, et al., 1970RDSH
≤12.70EILossing and Semeluk, 1969RDSH
12.99 ± 0.05EIWilliams and Hamill, 1968RDSH
12.75 ± 0.05TEVillarejo, Stockbauer, et al., 1968RDSH
12.9CICermak, 1968RDSH
12.70PEBaker, Baker, et al., 1968RDSH
12.55 ± 0.05PIBrehm, 1966RDSH
12.704 ± 0.008PINicholson, 1965RDSH
12.71 ± 0.02PIDibeler, Krauss, et al., 1965RDSH
13.00 ± 0.02EIMelton and Hamill, 1964RDSH
13.6PEBieri and Asbrink, 1980Vertical value; LLK
13.6 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK
13.60EIHarshbarger, Robin, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+25. ± 2.?EIChatham, Hils, et al., 1984LBLHLM
C+19.56 ± 0.202H2EIPlessis, Marmet, et al., 1983LBLHLM
C+≤25.2?EIMorrison and Traeger, 1973LLK
CH+22.2 ± 0.4?EIChatham, Hils, et al., 1984LBLHLM
CH+19.11 ± 0.20H-+H2EIPlessis, Marmet, et al., 1983LBLHLM
CH+19.87 ± 0.20H+H2EIPlessis, Marmet, et al., 1983LBLHLM
CH+22.4H2+H?EIMorrison and Traeger, 1973LLK
CH2+15.1 ± 0.4H2EIChatham, Hils, et al., 1984LBLHLM
CH2+15.06 ± 0.02H2EIPlessis, Marmet, et al., 1983LBLHLM
CH2+15.16 ± 0.02H2PIMcCulloh and Dibeler, 1976T = 0K; LLK
CH2+15.3H2EIMorrison and Traeger, 1973LLK
CH2+15.19 ± 0.02H2PIChupka, 1968RDSH
CH2+15.16 ± 0.04H2PIDibeler, Krauss, et al., 1965RDSH
CH3+14.3 ± 0.4HEIChatham, Hils, et al., 1984LBLHLM
CH3+13.25 ± 0.08H-EIPlessis, Marmet, et al., 1983LBLHLM
CH3+14.01 ± 0.08HEIPlessis, Marmet, et al., 1983LBLHLM
CH3+14.30HPIPECOStockbauer, 1977LLK
CH3+14.324 ± 0.003HPIMcCulloh and Dibeler, 1976T = 0K; LLK
CH3+14.4HEIMorrison and Traeger, 1973LLK
CH3+14.30HEILossing and Semeluk, 1970RDSH
CH3+14.24 ± 0.05HEIWilliams and Hamill, 1968RDSH
CH3+13.50 ± 0.05H-PIChupka, 1968RDSH
CH3+14.320 ± 0.004HPIChupka, 1968RDSH
CH3+14.23 ± 0.05HPIBrehm, 1966RDSH
CH3+14.25 ± 0.02HPIDibeler, Krauss, et al., 1965RDSH
H+21.3 ± 0.3CH3EILocht, Olivier, et al., 1979LLK
H+24.0 ± 0.5CH3EIAppell and Kubach, 1971LLK

De-protonation reactions

CH3- + Hydrogen cation = Methane

By formula: CH3- + H+ = CH4

Quantity Value Units Method Reference Comment
Δr416.74 ± 0.70kcal/molD-EAEllison, Engelking, et al., 1978gas phase; B
Δr418.0 ± 3.5kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr>404.18 ± 0.10kcal/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Δr414.80kcal/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B
Quantity Value Units Method Reference Comment
Δr408.66 ± 0.80kcal/molH-TSEllison, Engelking, et al., 1978gas phase; B
Δr409.9 ± 3.6kcal/molH-TSGraul and Squires, 1990gas phase; B
Δr>396.10kcal/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B
Δr407.30kcal/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ellison, Engelking, et al., 1978
Ellison, G.B.; Engelking, P.C.; Lineberger, W.C., An experimental determination of the geometry and electron affinity of CH3, J. Am. Chem. Soc., 1978, 100, 2556. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas - Phase Stability and Structure of Cluster Ions CH5+(CH4)n with n = 1 - 9, Chem. Phys. Lett., 1989, 161, 2, 111, https://doi.org/10.1016/0009-2614(89)85040-7 . [all data]

Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P., Energetics, Stabilities and Possible Structures of CH5+(CH4)n Clusters from Gas Phase Study of Equilibria CH5+(CH4)n - 1 + CH4 = CH5+(CH4)n for n = 1 - 5, J. Am. Chem. Soc., 1975, 97, 15, 4179, https://doi.org/10.1021/ja00848a005 . [all data]

Field and Beggs, 1971
Field, F.H.; Beggs, D.P., Reversible Reactions of Gas Phase Ions. III. Studies with Methane at 0.1-1.0 Torr and 77-300 K, J. Am. Chem. Soc., 1971, 93, 7, 1585, https://doi.org/10.1021/ja00736a003 . [all data]

Hiraoka, Mori, et al., 1993
Hiraoka, K.; Mori, T.; Yamabe, S., The Gas-Phase Solvation of C2H5+, s-C3H7+ and s-C4H9+ with CH4. The Isomeric Structures of C2H5+ and C2H5+.CH4, Chem. Phys. Lett., 1993, 207, 2-3, 178, https://doi.org/10.1016/0009-2614(93)87011-Q . [all data]

Hiroka and Kebarle, 1975
Hiroka, K.; Kebarle, P., Information on the Proton Affinity and Protolysis of Propane from Measurement of the Ion Cluster Equilibrium: C2H5+ + CH4 = C3H9+, Can. J. Phys., 1975, 53, 970. [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B., Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy, Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7 . [all data]

Kemper, Bushnell, et al., 1993, 2
Kemper, P.R.; Bushnell, J.; Von Helden, G.; Bowers, M.T., Co+(H2)n Clusters: Binding Energies and Molecular Parameters, J. Chem Phys., 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012 . [all data]

Martinho Simões and Beauchamp, 1990
Martinho Simões, J.A.; Beauchamp, J.L., Chem. Rev., 1990, 90, 629. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Pedley, 1994
Pedley, J.B., Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]

Martin and Finke, 1990
Martin, B.D.; Finke, R.G., J. Am. Chem. Soc., 1990, 112, 2419. [all data]

Martin and Finke, 1992
Martin, B.D.; Finke, R.G., J. Am. Chem. Soc., 1992, 114, 585. [all data]

Hiraoka and Kebarle, 1976
Hiraoka, K.; Kebarle, P., Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C2H7+ Ions and Some Higher Analogues: C3H9+ and C4H11+, J. Am. Chem. Soc., 1976, 98, 20, 6119, https://doi.org/10.1021/ja00436a009 . [all data]

Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical, J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]

Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O., Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide, J. Phys. Chem., 1965, 69, 3040-3041. [all data]

Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2, J. Am. Chem. Soc., 1952, 415-421. [all data]

Bennet and Field, 1972
Bennet, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. V. The Methane - Water System at Low Temperatures, J. Am. Chem. Soc., 1972, 94, 15, 5188, https://doi.org/10.1021/ja00770a008 . [all data]

Bennet and Field, 1972, 2
Bennet, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. VI. The NH3 - CH4, H2S - CH4 and CF4 - CH4 Systems at Low Temperatures, J. Am. Chem. Soc., 1972, 94, 18, 6305, https://doi.org/10.1021/ja00773a009 . [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A., Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I., Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159 . [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Berkowitz, Greene, et al., 1987
Berkowitz, J.; Greene, J.P.; Cho, H.; Ruscic, B., The ionization potentials of CH4 and CD4, J. Chem. Phys., 1987, 86, 674. [all data]

Chatham, Hils, et al., 1984
Chatham, H.; Hils, D.; Robertson, R.; Gallagher, A., Total and partial electron collisional ionization cross sections for CH4, C2H6, SiH4, and Si2H6, J. Chem. Phys., 1984, 81, 1770. [all data]

Plessis, Marmet, et al., 1983
Plessis, P.; Marmet, P.; Dutil, R., Ionization and appearance potentials of CH4 by electron impact, J. Phys. B:, 1983, 16, 1283. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Selim and El-Kholy, 1975
Selim, E.T.M.; El-Kholy, S.B., Mass spectrometric ionization and dissociation of methane, Indian J. Pure Appl. Phys., 1975, 13, 233. [all data]

Debies and Rabalais, 1975
Debies, T.P.; Rabalais, J.W., Calculated photoionization cross-sections and angular distributions for the isoelectronic series Ne, HF, H2O, NH3, and CH4, J. Am. Chem. Soc., 1975, 97, 487. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Morrison and Traeger, 1973
Morrison, J.D.; Traeger, J.C., Ionization and dissociation by electron impact. III. CH4 and SiH4, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 289. [all data]

Potts and Price, 1972
Potts, A.W.; Price, W.C., The photoelectron spectra of methane, silane germane and stannane, Proc. R. Soc. London A:, 1972, 165. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Bergmark, Rabalais, et al., 1972
Bergmark, T.; Rabalais, J.W.; Werme, L.O.; Karlsson, L.; Siegbahn, K., High-resolution electron spectra of methane, thiophene, 2-bromothiphene, and 3-bromothiophene in Electron Spectroscopy, ed. D.A. Shirley (North-Holland Pub. Co., Amsterdam), 1972. [all data]

Rabalais, Bergmark, et al., 1971
Rabalais, J.W.; Bergmark, T.; Werme, L.O.; Karlsson, L.; Siegbahn, K., The Jahn-Teller effect in the electron spectrum of methane, Phys. Scr., 1971, 3, 13. [all data]

Chupka and Berkowitz, 1971
Chupka, W.A.; Berkowitz, J., Photoionization of methane: ionization potential and proton affinity of CH4, J. Chem. Phys., 1971, 54, 4256. [all data]

Pullen, Carlson, et al., 1970
Pullen, B.P.; Carlson, T.A.; Moddeman, W.E.; Schweitzer, G.K.; Bull, W.E., Photoelectron spectra of methane, silane, germane, methyl fluoride, difluoromethane, and trifluoromethane, J. Chem. Phys., 1970, 53, 768. [all data]

Brundle, Robin, et al., 1970
Brundle, C.R.; Robin, M.B.; Basch, H., Electronic energies and electronic structures of the fluoromethanes, J. Chem. Phys., 1970, 53, 2196. [all data]

Lossing and Semeluk, 1969
Lossing, F.P.; Semeluk, G.P., Threshold ionization efficiency curves for monoenergetic electron impact on H2, D2, CH4 and CD4, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 408. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Villarejo, Stockbauer, et al., 1968
Villarejo, D.; Stockbauer, R.; Inghram, M.G., Measurement of threshold electrons in the photoionization of small molecules, Bull. Am. Phys. Soc., 1968, 13, 39. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W., The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Dibeler, Krauss, et al., 1965
Dibeler, V.H.; Krauss, M.; Reese, R.M.; Harllee, F.N., Mass-spectrometric study of photoionization. III. Methane and methane-d4, J. Chem. Phys., 1965, 42, 3791. [all data]

Melton and Hamill, 1964
Melton, C.E.; Hamill, W.H., Appearance potentials by the retarding potential-difference method for secondary ions produced by excited-neutral, excited ion-neutral, and ion-neutral reactions, J. Chem. Phys., 1964, 41, 1469. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Harshbarger, Robin, et al., 1973
Harshbarger, W.R.; Robin, M.B.; Lassettre, E.N., The electron impact spectra of the fluoromethanes, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 319. [all data]

McCulloh and Dibeler, 1976
McCulloh, K.E.; Dibeler, V.H., Enthalpy of formation of methyl and methylene radicals of photoionization studies of methane and ketene, J. Chem. Phys., 1976, 64, 4445. [all data]

Chupka, 1968
Chupka, W.A., Mass-spectrometric study of the photoionization of methane, J. Chem. Phys., 1968, 48, 2337. [all data]

Stockbauer, 1977
Stockbauer, R., A threshold photoelectron-photoion coincidence mass spectrometer for measureing ion kinetic energy release on fragmentation, Int. J. Mass Spectrom. Ion Processes, 1977, 25, 89. [all data]

Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P., Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals, Can. J. Chem., 1970, 48, 955. [all data]

Locht, Olivier, et al., 1979
Locht, R.; Olivier, J.L.; Momigny, J., Dissociative autoionization as a mechanism for the proton formation from methane and methane-d4 by low energy electron impact, Chem. Phys., 1979, 43, 425. [all data]

Appell and Kubach, 1971
Appell, J.; Kubach, C., On the formation of energetic protons by electron impact on methane, Chem. Phys. Lett., 1971, 11, 486. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References