Iodine atom

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C12H4F3IO4W (g) + Bromine (g) = C12H4BrF3O4W (g) + Iodine atom (g)

By formula: C12H4F3IO4W (g) + Br (g) = C12H4BrF3O4W (g) + I (g)

Quantity Value Units Method Reference Comment
Δr-55.kJ/molEqSFischer and Seitz, 1984The reaction enthalpy relies on a single measurement of the equilibrium constant in 1,1,2-trichloroethane (at 263 K) for the reaction W(CO)4(CC6H4CF3)(I)(solution) + Br(-)(solution) = W(CO)4(CC6H4CF3)(Br)(solution) + I(-)(solution), and on solvation and electron affinity data. It assumes that the reaction entropy is negligible Fischer and Seitz, 1984; MS

C12H7IO4W (g) + Bromine (g) = C12H7BrO4W (g) + Iodine atom (g)

By formula: C12H7IO4W (g) + Br (g) = C12H7BrO4W (g) + I (g)

Quantity Value Units Method Reference Comment
Δr-54.kJ/molEqSFischer and Seitz, 1984The reaction enthalpy relies on a single measurement of the equilibrium constant in 1,1,2-trichloroethane (at 263 K) for the reaction W(CO)4(CC6H4Me)(I)(solution) + Br(-)(solution) = W(CO)4(CC6H4Me)(Br)(solution) + I(-)(solution), and on solvation and electron affinity data. It assumes that the reaction entropy is negligible Fischer and Seitz, 1984; MS

C11H5IO4W (g) + Bromine (g) = C11H5BrO4W (g) + Iodine atom (g)

By formula: C11H5IO4W (g) + Br (g) = C11H5BrO4W (g) + I (g)

Quantity Value Units Method Reference Comment
Δr-54.kJ/molEqSFischer and Seitz, 1984The reaction enthalpy relies on a single measurement of the equilibrium constant in 1,1,2-trichloroethane (at 263 K) for the reaction W(CO)4(CPh)(I)(solution) + Br(-)(solution) = W(CO)4(CPh)(Br)(solution) + I(-)(solution), and on solvation and electron affinity data. It assumes that the reaction entropy is negligible Fischer and Seitz, 1984; MS

(I2- • 4294967295Iodine atom) + Iodine atom = I2-

By formula: (I2- • 4294967295I) + I = I2-

Quantity Value Units Method Reference Comment
Δr99.54 ± 0.71kJ/molN/AZanni, Taylor, et al., 1997gas phase; B

Ethane, 1-chloro-2-iodo- = Iodine atom + Chlorine atom + Ethylene

By formula: C2H4ClI = I + Cl + C2H4

Quantity Value Units Method Reference Comment
Δr320. ± 4.2kJ/molKinMinton, Felder, et al., 1984gas phase; ALS

Iodine atom (g) + Germane (g) = Hydrogen iodide (g) + Germyl radical (g)

By formula: I (g) + H4Ge (g) = HI (g) + H3Ge (g)

Quantity Value Units Method Reference Comment
Δr47.0 ± 4.1kJ/molKinGNoble and Walsh, 1983MS

Iodine atom (g) + C3H10Ge (g) = C3H9Ge (g) + Hydrogen iodide (g)

By formula: I (g) + C3H10Ge (g) = C3H9Ge (g) + HI (g)

Quantity Value Units Method Reference Comment
Δr42.0 ± 1.8kJ/molKinGDoncaster and Walsh, 1979MS

C4BrClO4Re + Iodine atom = C4BrIO4Re-

By formula: C4BrClO4Re + I = C4BrIO4Re-

Quantity Value Units Method Reference Comment
Δr>239.3kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

C4ClO4Re + Iodine atom = C4ClIO4Re-

By formula: C4ClO4Re + I = C4ClIO4Re-

Quantity Value Units Method Reference Comment
Δr>239.3kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

C4BrIMnO4 + Iodine atom = C4BrIMnO4-

By formula: C4BrIMnO4 + I = C4BrIMnO4-

Quantity Value Units Method Reference Comment
Δr>230.1kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

C4ClIMnO4 + Iodine atom = C4ClIMnO4-

By formula: C4ClIMnO4 + I = C4ClIMnO4-

Quantity Value Units Method Reference Comment
Δr>230.1kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

C6H5O3Re + Iodine atom = C6H5IO3Re-

By formula: C6H5O3Re + I = C6H5IO3Re-

Quantity Value Units Method Reference Comment
Δr>239.3kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

CAS Reg. No. 121175-69-7 + Iodine atom = C6H5IMnO3-

By formula: CAS Reg. No. 121175-69-7 + I = C6H5IMnO3-

Quantity Value Units Method Reference Comment
Δr>239.3kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

C5CrO5- + Iodine atom = C5CrIO5-

By formula: C5CrO5- + I = C5CrIO5-

Quantity Value Units Method Reference Comment
Δr>239.3kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

C3NiO3- + Iodine atom = C3INiO3-

By formula: C3NiO3- + I = C3INiO3-

Quantity Value Units Method Reference Comment
Δr>230.1kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

C4FeO4- + Iodine atom = C4FeIO4-

By formula: C4FeO4- + I = C4FeIO4-

Quantity Value Units Method Reference Comment
Δr>230.1kJ/molIMRBJones, McDonald, et al., 1989gas phase; B

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to I+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.45126eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)608.2kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity583.5kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
3.05900 ± 0.00010N/APelaez, Blondel, et al., 2009Given: 3.0590463(38) eV; B
3.059036 ± 0.000044LPDHanstorp and Gustafsson, 1992Given: 3.059038±0.000010 eV; B
3.05917 ± 0.00039LOGWebster, McDermid, et al., 1983B
3.0620 ± 0.0020N/ANeiger, 1975B
3.060 ± 0.040N/APiani, Becucci, et al., 2008Stated electron affinity is the Vertical Detachment Energy; B
3.0630 ± 0.0030N/ABerry and Reimann, 1963B
3.34476N/ACheck, Faust, et al., 2001Fe(CO)2-(q); ; ΔS(EA)=5.0; B

Ionization energy determinations

IE (eV) Method Reference Comment
10.45126EVALLide, 1992LL
10.43 ± 0.05PIGrade and Rosinger, 1985LBLHLM
10.4 ± 0.1EIHoareau, Cabaud, et al., 1981LLK
10.5EIPittermann and Weil, 1980LLK
10.45PEImre and Koenig, 1980LLK
10.43 ± 0.02PEDe Leeuw, Mooyman, et al., 1978LLK
10.451SMoore, 1970RDSH
10.45126SMinnhagen, 1962RDSH

Anion protonation reactions

Iodide + Hydrogen cation = Hydrogen iodide

By formula: I- + H+ = HI

Quantity Value Units Method Reference Comment
Δr1315.24 ± 0.084kJ/molD-EAPelaez, Blondel, et al., 2009gas phase; Given: 3.0590463(38) eV; B
Δr1312.1kJ/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)2-(q); ; ΔS(EA)=5.0; B
Quantity Value Units Method Reference Comment
Δr1294.03 ± 0.25kJ/molH-TSPelaez, Blondel, et al., 2009gas phase; Given: 3.0590463(38) eV; B
Δr1290.8kJ/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)2-(q); ; ΔS(EA)=5.0; B

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Fischer and Seitz, 1984
Fischer, H.; Seitz, F., J. Organometal. Chem., 1984, 268, 247. [all data]

Zanni, Taylor, et al., 1997
Zanni, M.T.; Taylor, T.R.; Greenblatt, J.; Soep, B.; Neumark, D.M., Characterization of the I2- Anion Ground State Using Conventional and Femtosecond Photoelectron Spectroscopy, J. Chem. Phys., 1997, 107, 19, 7613, https://doi.org/10.1063/1.475110 . [all data]

Minton, Felder, et al., 1984
Minton, T.K.; Felder, P.; Brudzynski, R.J.; Lee, Y.T., Photodissociation of 1,2-chloroiodoethane at 248 and 266 nm: The enthalpy of formation of CH2ClCH2I, J. Chem. Phys., 1984, 81, 1759-1769. [all data]

Noble and Walsh, 1983
Noble, P.N.; Walsh, R., Kinetics of the gas phase reaction between iodine and monogermane and the bond dissociation energy D(H3Ge-H), Int. J. Chem. Kinet., 1983, 15, 547. [all data]

Doncaster and Walsh, 1979
Doncaster, A.M.; Walsh, R., J. Phys. Chem., 1979, 83, 578. [all data]

Jones, McDonald, et al., 1989
Jones, M.T.; McDonald, R.N.; Schell, P.L.; Ali, M.H., Kinetics and Mechanism of Halogen Atom Transfer Reactions between Haloalkanes and Several 17-Electron Transition Metal Complex Negative Ions in the Gas Phase, J. Am. Chem. Soc., 1989, 111, 16, 5983, https://doi.org/10.1021/ja00198a001 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Pelaez, Blondel, et al., 2009
Pelaez, R.J.; Blondel, C.; Delsart, C.; Drag, C., Pulsed photodetachment microscopy and the electron affinity of iodine, J. Phys. B: Atom. Mol. Opt. Phys., 2009, 42, 12, 125001, https://doi.org/10.1088/0953-4075/42/12/125001 . [all data]

Hanstorp and Gustafsson, 1992
Hanstorp, D.; Gustafsson, M., Determination of the Electron Affinity of Iodine, J. Phys. B: Atom. Mol. Opt. Phys., 1992, 25, 8, 1773, https://doi.org/10.1088/0953-4075/25/8/012 . [all data]

Webster, McDermid, et al., 1983
Webster, C.R.; McDermid, I.S.; Rettner, C.T., Laser optogalvanic photodetachment spectroscopy: A new technique for studying photodetachment thresholds with application to I-, J. Chem. Phys., 1983, 78, 646. [all data]

Neiger, 1975
Neiger, M., Quantitative Investifgation of the Radiation of the Negative Iodine Ion, Z. Naturfor., 1975, 30, 474. [all data]

Piani, Becucci, et al., 2008
Piani, G.; Becucci, M.; Bowen, M.S.; Oakman, J.; Hu, Q.; Continetti, R.E., Photodetachment and dissociation dynamics of microsolvated iodide clusters, Phys. Scripta, 2008, 78, 5, 058110, https://doi.org/10.1088/0031-8949/78/05/058110 . [all data]

Berry and Reimann, 1963
Berry, R.S.; Reimann, C.W., Absorption Spectrum of Gaseous Fluoride and the Electron Affinities of the Halogen Atoms, J. Chem. Phys., 1963, 38, 7, 1540, https://doi.org/10.1063/1.1776916 . [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Lide, 1992
Lide, D.R. (Editor), Ionization potentials of atoms and atomic ions in Handbook of Chem. and Phys., 1992, 10-211. [all data]

Grade and Rosinger, 1985
Grade, M.; Rosinger, W., Correlation of electronic structures and stabilities of gaseous FeI2, Fe2I2 and Fe2I4 molecules, solid [FeI2], and iodine adsorbed on [Fe], Surf. Sci., 1985, 156, 920. [all data]

Hoareau, Cabaud, et al., 1981
Hoareau, A.; Cabaud, B.; Melinon, P., Time-of-flight mass spectroscopy of supersonic beam of metallic vapours: Intensities and appearance potentials of Mx aggregates, Surf. Sci., 1981, 106, 195. [all data]

Pittermann and Weil, 1980
Pittermann, U.; Weil, K.G., Massenspektrometrische Untersuchungen an Silberhalogeniden V: Verdampfung von Silberiodid, Ber. Bunsen-Ges. Phys. Chem., 1980, 84, 542. [all data]

Imre and Koenig, 1980
Imre, D.; Koenig, T., The He(I) photoelectron spectrum of atomic iodine by photodissociation of molecular iodine, Chem. Phys. Lett., 1980, 73, 62. [all data]

De Leeuw, Mooyman, et al., 1978
De Leeuw, D.M.; Mooyman, R.; De Lange, C.A., He(I) photoelectron spectroscopy of halogen atoms, Chem. Phys. Lett., 1978, 54, 231. [all data]

Moore, 1970
Moore, C.E., Ionization potentials and ionization limits derived from the analyses of optical spectra, Natl. Stand. Ref. Data Ser., (U.S. Natl. Bur. Stand.), 1970, 34, 1. [all data]

Minnhagen, 1962
Minnhagen, L., The energy levels of neutral atomic iodine, Ark. Fys., 1962, 21, 415. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References