Acetone

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-218.5 ± 0.59kJ/molCmWiberg, Crocker, et al., 1991ALS
Δfgas-217.1 ± 0.50kJ/molCmChao and Zwolinski, 1976ALS
Δfgas-217.5 ± 0.67kJ/molEqkBuckley and Herington, 1965ALS
Δfgas-216.4kJ/molCmPennington and Kobe, 1957ALS
Quantity Value Units Method Reference Comment
Δcgas-1821.4 ± 0.84kJ/molCcbMiles and Hunt, 1941Corresponding Δfgas = -216.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
51.73100.Chao J., 1986p=1 bar. Recommended values agree with results of statistical calculations [ Pennington R.E., 1957, Chao J., 1976] within 0.5-2.8 J/mol*K.; GT
56.18150.
61.20200.
71.09273.15
75.02 ± 0.11298.15
75.32300.
92.06400.
108.08500.
122.20600.
134.43700.
145.00800.
154.15900.
162.091000.
168.961100.
174.921200.
180.091300.
184.581400.
188.491500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
80.58 ± 0.81332.6Chao J., 1976Experimental data [ Vilcu R., 1975] differ substantially from data selected here. Their correctness seems to be doubtful (see [ Kabo G.J., 1995]). Please also see Bennewitz K., 1938, Collins B.T., 1949, Pennington R.E., 1957.; GT
80.96 ± 0.81334.
81.50 ± 0.16338.2
83.35 ± 0.83347.8
83.39 ± 0.83348.
87.03 ± 0.87363.
87.19 ± 0.17371.2
87.53 ± 0.88372.3
89.24 ± 0.89378.
91.84 ± 0.92393.
92.93 ± 0.19405.2
94.18 ± 0.94408.
93.30410.
96.8 ± 1.9422.6
99.4 ± 2.0428.
100.5 ± 2.0438.
98.66 ± 0.20439.2

Phase change data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil329.3 ± 0.3KAVGN/AAverage of 117 out of 129 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus178.7 ± 0.9KAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple178.5KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.3 K; TRC
Ttriple176.6KN/AKelley, 1929Crystal phase 1 phase; Uncertainty assigned by TRC = 0.15 K; deduced from appearance of a small maximum in heat capacity; TRC
Ttriple177.6KN/AParks and Kelley, 1928Uncertainty assigned by TRC = 0.3 K; TRC
Ttriple177.6KN/AParks and Kelley, 1925Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc508. ± 2.KAVGN/AAverage of 19 values; Individual data points
Quantity Value Units Method Reference Comment
Pc48. ± 4.barAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
ρc4.63mol/lN/ACampbell and Chatterjee, 1969Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc4.03mol/lN/ACampbell and Chatterjee, 1968Uncertainty assigned by TRC = 0.026 mol/l; TRC
ρc4.79mol/lN/AKobe, Crawford, et al., 1955Uncertainty assigned by TRC = 0.17 mol/l; TRC
ρc4.70mol/lN/ARosenbaum, 1951Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc4.34mol/lN/AHerz and Neukirch, 1923Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap31.27kJ/molN/AMajer and Svoboda, 1985 
Δvap31.3kJ/molN/AAmbrose, Ellender, et al., 1975AC
Δvap29.7 ± 0.004kJ/molVMathews, 1926ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
329.30.027Buckingham and Donaghy, 1982BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
29.1329.3N/AMajer and Svoboda, 1985 
32.1308.N/ASoni, Ramjugernath, et al., 2008Based on data from 298. to 318. K.; AC
29.9344.AStephenson and Malanowski, 1987Based on data from 329. to 488. K.; AC
32.9228.AStephenson and Malanowski, 1987Based on data from 178. to 243. K.; AC
33.8254.AStephenson and Malanowski, 1987Based on data from 203. to 269. K.; AC
30.6338.AStephenson and Malanowski, 1987Based on data from 323. to 379. K.; AC
29.5389.AStephenson and Malanowski, 1987Based on data from 374. to 464. K.; AC
29.7472.AStephenson and Malanowski, 1987Based on data from 457. to 508. K.; AC
32.8274.AStephenson and Malanowski, 1987Based on data from 259. to 351. K. See also Ambrose, Sprake, et al., 1974 and Ambrose, Ellender, et al., 1975.; AC
32.7276.A,EBStephenson and Malanowski, 1987Based on data from 261. to 328. K. See also Boublík and Aim, 1972.; AC
31.9300.EBBaliah and Gnanasekaran, 1986Based on data from 285. to 329. K.; AC
26.1373.CDmitriev, Kachurina, et al., 1986AC
21.7423.CDmitriev, Kachurina, et al., 1986AC
15.3473.CDmitriev, Kachurina, et al., 1986AC
9.2498.CDmitriev, Kachurina, et al., 1986AC
31.8319.N/ACastellari, Francesconi, et al., 1984Based on data from 305. to 333. K.; AC
32.6285.N/ASokolov, Zhilina, et al., 1963Based on data from 278. to 293. K.; AC
31.1319.N/ABrown and Smith, 1957Based on data from 310. to 329. K.; AC
29.09338.CPennington and Kobe, 1957ALS
35.253.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC
32.1293.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC
30.7313.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
300. to 345.46.950.2826508.2Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
259.16 to 507.604.424481312.253-32.445Ambrose, Sprake, et al., 1974Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
5.715176.62Kelley, 1929, 2DH
5.72176.6Domalski and Hearing, 1996AC
5.690177.6Parks and Kelley, 1928, 2DH
4.770178.5Maass and Walbauer, 1925DH
5.690177.6Parks and Kelley, 1925, 2DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
32.36176.62Kelley, 1929, 2DH
32.0177.6Parks and Kelley, 1928, 2DH
26.7178.5Maass and Walbauer, 1925DH
32.03177.6Parks and Kelley, 1925, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C3H6O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.703 ± 0.006eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)812.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity782.1kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.00152EFDDesfrancois, Abdoul-Carime, et al., 1994EA: 1.5 meV. Dipole-bound state.; B

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
>815.2Bouchoux, Buisson, et al., 2003MM
>814.3Bouchoux, Buisson, et al., 2003MM
>812.6 ± 0.2Bouchoux, Buisson, et al., 2003MM
811.5 ± 3.4Bouchoux and Salpin, 1999T = 301K; Re-evaluated thermokinetic parametric fitting by the authors using reference base GBs and PAs from Hunter and Lias, 1998; MM
811.5 ± 3.4Bouchoux and Salpin, 1999T = 298K; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
784.7Bouchoux, Buisson, et al., 2003MM
782.2Bouchoux, Buisson, et al., 2003MM
782.0 ± 0.2Bouchoux, Buisson, et al., 2003MM
782.1 ± 1.5Bouchoux and Salpin, 1999T = 301K; Re-evaluated thermokinetic parametric fitting by the authors using reference base GBs and PAs from Hunter and Lias, 1998; MM
782.1 ± 1.5Bouchoux and Salpin, 1999T = 298K; MM

Ionization energy determinations

IE (eV) Method Reference Comment
9.70PITraeger, McLouglin, et al., 1982LBLHLM
9.694 ± 0.006PITrott, Blais, et al., 1978LLK
9.68PIStaley, Wieting, et al., 1977LLK
9.709 ± 0.005PEHernandez, Masclet, et al., 1977LLK
9.71 ± 0.03EIMouvier and Hernandez, 1975LLK
9.71 ± 0.01PEMouvier and Hernandez, 1975LLK
9.71PETam, Yee, et al., 1974LLK
9.71SOgata, Kitayama, et al., 1974LLK
9.700 ± 0.001PIKnowles and Nicholson, 1974LLK
9.705SHuebner, Celotta, et al., 1973LLK
9.71 ± 0.01PIPotapov and Sorokin, 1972LLK
9.75 ± 0.025PEJohnstone and Mellon, 1972LLK
9.72PEBrundle, Robin, et al., 1972LLK
9.74EIJohnstone, Mellon, et al., 1971LLK
9.71 ± 0.01PECocksey, Eland, et al., 1971LLK
9.74 ± 0.03EIJohnstone, Mellon, et al., 1970RDSH
9.68PEDewar and Worley, 1969RDSH
9.71 ± 0.01PIPotapov, Filyugina, et al., 1968RDSH
9.7 ± 0.1EIDorman, 1965RDSH
9.68 ± 0.02PIMurad and Inghram, 1964RDSH
9.67PEAl-Joboury and Turner, 1964RDSH
9.71 ± 0.03PIVilesov, 1960RDSH
9.71 ± 0.03PIVilesov and Terenin, 1957RDSH
9.69 ± 0.01PIWatanabe, 1954RDSH
9.705SWatanabe, 1954RDSH
9.8PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
9.72PEKobayashi, 1978Vertical value; LLK
9.68PEBenoit and Harrison, 1977Vertical value; LLK
9.71 ± 0.02PEYoung and Cheng, 1976Vertical value; LLK
9.5PERao, 1975Vertical value; LLK
9.70PEKimura, Katsumata, et al., 1975Vertical value; LLK
9.709PEAue, Webb, et al., 1975Vertical value; LLK
9.71PEKelder, Cerfontain, et al., 1974Vertical value; LLK
9.72PEHentrich, Gunkel, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+15.61?PEPowis and Danby, 1979LLK
CH3+15.2?EIMajer, Olavesen, et al., 1971LLK
CH3+14.93?EIPotzinger and Bunau, 1969RDSH
CH3+15.36?EIHaney and Franklin, 1969RDSH
C2H2O+10.7 ± 0.1CH4EIShigorin, Filyugina, et al., 1966RDSH
C2H3+16.9?EIKanomata, 1961RDSH
C2H3O+10.38CH3PITraeger, McLouglin, et al., 1982LBLHLM
C2H3O+12.22CH3PEPowis and Danby, 1979LLK
C2H3O+10.52 ± 0.02CH3PITrott, Blais, et al., 1978LLK
C2H3O+10.36CH3PIStaley, Wieting, et al., 1977LLK
C2H3O+10.30CH3EIMouvier and Hernandez, 1975LLK
C2H3O+10.42 ± 0.03CH3PIPotapov and Sorokin, 1972LLK
C2H3O+10.28 ± 0.05CH3EIJohnstone and Mellon, 1972LLK
C2H3O+11.3CH3EIMajer, Olavesen, et al., 1971LLK
C2H3O+10.28CH3EIJohnstone, Mellon, et al., 1970RDSH
C2H3O+10.42CH3PIPotapov, Filyugina, et al., 1968RDSH
C2H3O+10.2 ± 0.1CH3EIDorman, 1965RDSH
C2H3O+10.37CH3PIMurad and Inghram, 1964, 2RDSH
C3H4O+15.2 ± 0.15H2EIShigorin, Filyugina, et al., 1966RDSH
C3H5O+13.1 ± 0.2HEIPotapov and Shigorin, 1966RDSH

De-protonation reactions

C3H5O- + Hydrogen cation = Acetone

By formula: C3H5O- + H+ = C3H6O

Quantity Value Units Method Reference Comment
Δr1543. ± 8.8kJ/molD-EABrinkman, Berger, et al., 1993gas phase; B
Δr1544. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1546. ± 11.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1538. ± 7.5kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1514. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1516. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Acetone = (Silver ion (1+) • Acetone)

By formula: Ag+ + C3H6O = (Ag+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr160. ± 19.kJ/molRAKHo, Yang, et al., 1997RCD

(Aluminum ion (1+) • Acetone) + Acetone = (Aluminum ion (1+) • 2Acetone)

By formula: (Al+ • C3H6O) + C3H6O = (Al+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr118.kJ/molHPMSBauschlicher, Bouchard, et al., 1991gas phase; laser desorption; M
Quantity Value Units Method Reference Comment
Δr128.J/mol*KHPMSBauschlicher, Bouchard, et al., 1991gas phase; laser desorption; M

CH6N+ + Acetone = (CH6N+ • Acetone)

By formula: CH6N+ + C3H6O = (CH6N+ • C3H6O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr100.kJ/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KPHPMSMeot-Ner, 1984gas phase; M

CN- + Acetone = (CN- • Acetone)

By formula: CN- + C3H6O = (CN- • C3H6O)

Quantity Value Units Method Reference Comment
Δr62. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr33. ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

C2H3O+ + Acetone = (C2H3O+ • Acetone)

By formula: C2H3O+ + C3H6O = (C2H3O+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPITrott, Blais, et al., 1978gas phase; M

MeCO2 anion + Acetone = (MeCO2 anion • Acetone)

By formula: C2H3O2- + C3H6O = (C2H3O2- • C3H6O)

Bond type: Hydrogen bonds of deprotonated acids to ketones/

Quantity Value Units Method Reference Comment
Δr65.7 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr38. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

(MeCO2 anion • Acetone) + Acetone = (MeCO2 anion • 2Acetone)

By formula: (C2H3O2- • C3H6O) + C3H6O = (C2H3O2- • 2C3H6O)

Bond type: Hydrogen bonds of deprotonated acids to ketones/

Quantity Value Units Method Reference Comment
Δr45.2kJ/molPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSMeot-ner, 1988gas phase; M

C2H7OS+ + Acetone = (C2H7OS+ • Acetone)

By formula: C2H7OS+ + C3H6O = (C2H7OS+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr101.kJ/molPHPMSLau, Saluja, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSLau, Saluja, et al., 1980gas phase; M

C3H5O+ + Acetone = (C3H5O+ • Acetone)

By formula: C3H5O+ + C3H6O = (C3H5O+ • C3H6O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
35.295.FAMackay, Rakshit, et al., 1982gas phase; M

C3H5O- + Acetone = (C3H5O- • Acetone)

By formula: C3H5O- + C3H6O = (C3H5O- • C3H6O)

Quantity Value Units Method Reference Comment
Δr>108.4kJ/molIMRBSheldon and Bowie, 1983gas phase; MeOH..F- + Me2CO ->; B
Quantity Value Units Method Reference Comment
Δr>82.42kJ/molIMRBSheldon and Bowie, 1983gas phase; MeOH..F- + Me2CO ->; B

C3H6O+ + Acetone = (C3H6O+ • Acetone)

By formula: C3H6O+ + C3H6O = (C3H6O+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr51.9kJ/molPITrott, Blais, et al., 1978gas phase; ΔrH>; M

C3H7O+ + Acetone = (C3H7O+ • Acetone)

By formula: C3H7O+ + C3H6O = (C3H7O+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr128.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; M
Δr126.kJ/molPHPMSSzulejko and McMahon, 1991gas phase; M
Δr124.kJ/molPHPMSHiraoka and Takimoto, 1986gas phase; M
Δr132.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr126.kJ/molPHPMSLau, Saluja, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; M
Δr128.J/mol*KPHPMSSzulejko and McMahon, 1991gas phase; M
Δr123.J/mol*KPHPMSHiraoka and Takimoto, 1986gas phase; M
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr127.J/mol*KPHPMSLau, Saluja, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

(C3H7O+ • Acetone) + Acetone = (C3H7O+ • 2Acetone)

By formula: (C3H7O+ • C3H6O) + C3H6O = (C3H7O+ • 2C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr51.0kJ/molPHPMSHiraoka, Morise, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSHiraoka, Morise, et al., 1986gas phase; M

(C3H7O+ • 2Acetone) + Acetone = (C3H7O+ • 3Acetone)

By formula: (C3H7O+ • 2C3H6O) + C3H6O = (C3H7O+ • 3C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr36.kJ/molPHPMSHiraoka, Takimoto, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka, Takimoto, et al., 1986gas phase; M

C3H7O2+ + Acetone = (C3H7O2+ • Acetone)

By formula: C3H7O2+ + C3H6O = (C3H7O2+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr126.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr121.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr89.5kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H9Si+ + Acetone = (C3H9Si+ • Acetone)

By formula: C3H9Si+ + C3H6O = (C3H9Si+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr188.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
131.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C3H9Sn+ + Acetone = (C3H9Sn+ • Acetone)

By formula: C3H9Sn+ + C3H6O = (C3H9Sn+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr156.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr88.7kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

pyrrolide anion + Acetone = (pyrrolide anion • Acetone)

By formula: C4H4N- + C3H6O = (C4H4N- • C3H6O)

Quantity Value Units Method Reference Comment
Δr54.8 ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr29. ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B

(pyrrolide anion • Acetone) + Acetone = (pyrrolide anion • 2Acetone)

By formula: (C4H4N- • C3H6O) + C3H6O = (C4H4N- • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr44.8kJ/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C4H9O+ + Acetone = (C4H9O+ • Acetone)

By formula: C4H9O+ + C3H6O = (C4H9O+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr130.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr128.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr91.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H9O+ + Acetone = (C4H9O+ • Acetone)

By formula: C4H9O+ + C3H6O = (C4H9O+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr86.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

cyclopentadienide anion + Acetone = (cyclopentadienide anion • Acetone)

By formula: C5H5- + C3H6O = (C5H5- • C3H6O)

Quantity Value Units Method Reference Comment
Δr56.5 ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr29. ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B

(cyclopentadienide anion • Acetone) + Acetone = (cyclopentadienide anion • 2Acetone)

By formula: (C5H5- • C3H6O) + C3H6O = (C5H5- • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr41.kJ/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr68.6J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C5H11O+ + Acetone = (C5H11O+ • Acetone)

By formula: C5H11O+ + C3H6O = (C5H11O+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr119.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr121.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr83.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C6H5NO2- + Acetone = (C6H5NO2- • Acetone)

By formula: C6H5NO2- + C3H6O = (C6H5NO2- • C3H6O)

Quantity Value Units Method Reference Comment
Δr59.41 ± 0.84kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr26.8 ± 1.7kJ/molTDAsSieck, 1985gas phase; B

Chlorine anion + Acetone = (Chlorine anion • Acetone)

By formula: Cl- + C3H6O = (Cl- • C3H6O)

Quantity Value Units Method Reference Comment
Δr56. ± 6.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSSieck, 1985gas phase; M
Δr82.0J/mol*KPHPMSFrench, Ikuta, et al., 1982gas phase; M
Δr71.5J/mol*KPHPMSHiraoka, Takimoto, et al., 1986gas phase; M
Δr82.4J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Quantity Value Units Method Reference Comment
Δr33.8 ± 0.84kJ/molTDAsBofdanov and McMahon, 2002gas phase; B
Δr30.5kJ/molTDAsHiraoka, Morise, et al., 1986gas phase; B
Δr36.8 ± 1.3kJ/molTDAsSieck, 1985gas phase; B
Δr34. ± 8.4kJ/molIMRELarson and McMahon, 1984, 2gas phase; B,M
Δr33. ± 8.4kJ/molTDAsFrench, Ikuta, et al., 1982gas phase; B

(Chlorine anion • Acetone) + Acetone = (Chlorine anion • 2Acetone)

By formula: (Cl- • C3H6O) + C3H6O = (Cl- • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr48.1 ± 4.2kJ/molTDAsHiraoka, Takimoto, et al., 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr84.9J/mol*KPHPMSHiraoka, Takimoto, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr23. ± 9.2kJ/molTDAsHiraoka, Takimoto, et al., 1986gas phase; B

(Chlorine anion • 2Acetone) + Acetone = (Chlorine anion • 3Acetone)

By formula: (Cl- • 2C3H6O) + C3H6O = (Cl- • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr43.5 ± 8.4kJ/molTDAsHiraoka, Takimoto, et al., 1986gas phase; Entropy estimated; B,M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Takimoto, et al., 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr16. ± 19.kJ/molTDAsHiraoka, Takimoto, et al., 1986gas phase; Entropy estimated; B

Chromium ion (1+) + Acetone = (Chromium ion (1+) • Acetone)

By formula: Cr+ + C3H6O = (Cr+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr175. ± 14.kJ/molRAKLin, Chen, et al., 1997RCD

Copper ion (1+) + Acetone = (Copper ion (1+) • Acetone)

By formula: Cu+ + C3H6O = (Cu+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr199. ± 4.2kJ/molCIDTChu, 2002RCD
Δr62.3kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr31.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(Copper ion (1+) • Acetone) + Acetone = (Copper ion (1+) • 2Acetone)

By formula: (Cu+ • C3H6O) + C3H6O = (Cu+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr210. ± 7.1kJ/molCIDTChu, 2002RCD
Δr64.9kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr33.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(Copper ion (1+) • 2Acetone) + Acetone = (Copper ion (1+) • 3Acetone)

By formula: (Cu+ • 2C3H6O) + C3H6O = (Cu+ • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr64. ± 2.kJ/molCIDTChu, 2002RCD

(Copper ion (1+) • 3Acetone) + Acetone = (Copper ion (1+) • 4Acetone)

By formula: (Cu+ • 3C3H6O) + C3H6O = (Cu+ • 4C3H6O)

Quantity Value Units Method Reference Comment
Δr61.1 ± 5.0kJ/molCIDTChu, 2002RCD

NH4+ + Acetone = (NH4+ • Acetone)

By formula: H4N+ + C3H6O = (H4N+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr118.kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • Acetone) + Acetone = (NH4+ • 2Acetone)

By formula: (H4N+ • C3H6O) + C3H6O = (H4N+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr84.9kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr104.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • 2Acetone) + Acetone = (NH4+ • 3Acetone)

By formula: (H4N+ • 2C3H6O) + C3H6O = (H4N+ • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr66.1kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • 3Acetone) + Acetone = (NH4+ • 4Acetone)

By formula: (H4N+ • 3C3H6O) + C3H6O = (H4N+ • 4C3H6O)

Quantity Value Units Method Reference Comment
Δr54.8kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • 4Acetone) + Acetone = (NH4+ • 5Acetone)

By formula: (H4N+ • 4C3H6O) + C3H6O = (H4N+ • 5C3H6O)

Quantity Value Units Method Reference Comment
Δr42.3kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AMeot-Ner (Mautner), Sieck, et al., 1996gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
19.215.PHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; Entropy change calculated or estimated; M

Iodide + Acetone = (Iodide • Acetone)

By formula: I- + C3H6O = (I- • C3H6O)

Quantity Value Units Method Reference Comment
Δr50.2 ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

Potassium ion (1+) + Acetone = (Potassium ion (1+) • Acetone)

By formula: K+ + C3H6O = (K+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr102.kJ/molCIDTKlassen, Anderson, et al., 1996RCD
Δr110.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSSunner, 1984gas phase; M

(Potassium ion (1+) • Acetone) + Acetone = (Potassium ion (1+) • 2Acetone)

By formula: (K+ • C3H6O) + C3H6O = (K+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr88.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KHPMSSunner, 1984gas phase; M

(Potassium ion (1+) • 2Acetone) + Acetone = (Potassium ion (1+) • 3Acetone)

By formula: (K+ • 2C3H6O) + C3H6O = (K+ • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr67.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSSunner, 1984gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
38.293.ES/HPMSBlades, Klassen, et al., 1995gas phase; M

(Potassium ion (1+) • 3Acetone) + Acetone = (Potassium ion (1+) • 4Acetone)

By formula: (K+ • 3C3H6O) + C3H6O = (K+ • 4C3H6O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.293.ES/HPMSBlades, Klassen, et al., 1995gas phase; M

Lithium ion (1+) + Acetone = (Lithium ion (1+) • Acetone)

By formula: Li+ + C3H6O = (Li+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr186.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Magnesium ion (1+) + Acetone = (Magnesium ion (1+) • Acetone)

By formula: Mg+ + C3H6O = (Mg+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr280. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Manganese ion (1+) + Acetone = (Manganese ion (1+) • Acetone)

By formula: Mn+ + C3H6O = (Mn+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr159. ± 14.kJ/molRAKLin, Chen, et al., 1997RCD

Nitric oxide anion + Acetone = (Nitric oxide anion • Acetone)

By formula: NO- + C3H6O = (NO- • C3H6O)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitrogen oxide anion + Acetone = (Nitrogen oxide anion • Acetone)

By formula: NO2- + C3H6O = (NO2- • C3H6O)

Quantity Value Units Method Reference Comment
Δr66.53 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr34.3 ± 0.84kJ/molTDAsSieck, 1985gas phase; B

Sodium ion (1+) + Acetone = (Sodium ion (1+) • Acetone)

By formula: Na+ + C3H6O = (Na+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr131. ± 4.2kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr129. ± 2.kJ/molHPMSHoyau, Norrman, et al., 1999See 96KLA/AND?; RCD
Δr102.kJ/molCIDTKlassen, Anderson, et al., 1996RCD
Δr140. ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr87900.J/mol*KHPMSHoyau, Norrman, et al., 1999See 96KLA/AND?; RCD
Δr109.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
101.298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Sodium ion (1+) • Acetone) + Acetone = (Sodium ion (1+) • 2Acetone)

By formula: (Na+ • C3H6O) + C3H6O = (Na+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr105. ± 0.4kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

(Sodium ion (1+) • 2Acetone) + Acetone = (Sodium ion (1+) • 3Acetone)

By formula: (Na+ • 2C3H6O) + C3H6O = (Na+ • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr86.6 ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

(Sodium ion (1+) • 3Acetone) + Acetone = (Sodium ion (1+) • 4Acetone)

By formula: (Na+ • 3C3H6O) + C3H6O = (Na+ • 4C3H6O)

Quantity Value Units Method Reference Comment
Δr61.5 ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr114.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 CH3 d-str 3019  C 3018.5 S gas 3005.5 S liq. SF13)
a1 2 CH3 s-str 2937  D 2937 S gas 2922 VS p liq. SF14)
a1 3 CO str 1731  C 1731 VS gas 1710.5 S p liq.
a1 4 CH3 d-deform 1435  C 1435 S gas 1430 S liq.
a1 5 CH3 s-deform 1364  C 1363.5 VS gas 1356 W liq. SF16)
a1 6 CH3 rock 1066  C 1066 M p liq.
a1 7 CC str 777  C 777 W gas 787 VS p liq.
a1 8 CCC deform 385  C 385 W gas 393 W dp liq.
a2 9 CH3 d-str 2963  E  ia CF
a2 10 CH3 d-deform 1426  E  ia CF
a2 11 CH3 rock 877  E  ia CF
a2 12 Torsion 105  D  ia CF, MW: ν102
b1 13 CH3 d-str 3019  C 3018.5 S gas 3005.5 S dp liq. SF1)
b1 14 CH3 s-str 2937  D 2937 S gas 2922 VS liq. SF2)
b1 15 CH3 d-deform 1410  C 1410 S gas
b1 16 CH3 s-deform 1364  C 1363.5 VS gas SF5)
b1 17 CC str 1216  C 1215.5 VS gas 1221 M dp liq.
b1 18 CH3 rock 891  C 891 M gas 902.5 W dp liq.
b1 19 CO ip-bend 530  C 530 S gas 531 M dp liq.
b2 20 CH3 d-str 2972  C 2972 S gas 2967 S liq.
b2 21 CH3 d-deform 1454  C 1454 S gas
b2 22 CH3 rock 1091  C 1090.5 M gas
b2 23 CO op-bend 484  C 484 W gas 493 W dp liq.
b2 24 Torsion 109  D 109 gas MW: ν102

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
iaInactive
pPolarized
dpDepolarized
CFCalculated frequency
SFCalculation shows that the frequency approximately equals that of the vibration indicated in the parentheses.
MWTorsional Frequency calculated from microwave spectroscopic data.
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-1110.470.23Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-120.470.9Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-130.470.7Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-140.470.1Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-150.469.67Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-160.469.5Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-170.469.28Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-190.469.41Héberger, Görgényi, et al., 200250. m/0.32 mm/1.05 μm
CapillaryHP-1110.470.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-150.470.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-170.469.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillaryHP-190.469.Héberger and Görgényi, 199950. m/0.32 mm/1.05 μm, N2
CapillarySE-30100.481.Golovnya, Syomina, et al., 199725. m/0.32 mm/1. μm, He
CapillarySE-30110.484.Golovnya, Syomina, et al., 199725. m/0.32 mm/1. μm, He
CapillarySE-3080.477.Golovnya, Syomina, et al., 199725. m/0.32 mm/1. μm, He
CapillarySE-3090.478.Golovnya, Syomina, et al., 199725. m/0.32 mm/1. μm, He
CapillarySE-54110.488.7Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillarySE-54130.488.2Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillarySE-54150.485.0Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillaryApiezon L + KF60.497.Svetlova, Samusenko, et al., 198630. m/0.25 mm/0.06 μm
PackedSE-30100.475.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedSqualane50.437.Becerra, Sánchez, et al., 1982N2, Chromosorb W-AM; Column length: 6. m
PackedSqualane50.437.Becerra, Sánchez, et al., 1982N2, Chromosorb W-AM; Column length: 6. m
PackedPorapack Q200.450.Goebel, 1982N2
PackedSqualane100.443.5Gröbler and Bálizs, 1979Column length: 1. m
PackedSE-30150.465.Haken, Nguyen, et al., 1979Celatom AW silanized; Column length: 3.7 m
PackedApiezon L120.441.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L160.444.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L70.439.Bogoslovsky, Anvaer, et al., 1978 
PackedSE-30150.459.Haken, Ho, et al., 1975Column length: 3.7 m
PackedApiezon L100.443.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m
PackedDC-200100.472.Rohrschneider, 1966Column length: 4. m
PackedApiezon L100.450.Rohrschneider, 1966Column length: 5. m
PackedSE-3080.475.Viani, Müggler-Chavan, et al., 1965He, Chromosorb P; Column length: 6. m
PackedApiezon L130.450.Wehrli and Kováts, 1959Celite; Column length: 2.25 m
PackedApiezon L70.447.Wehrli and Kováts, 1959Celite; Column length: 2.25 m
PackedApiezon L70.439.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySE-54503.Rembold, Wallner, et al., 198930. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100477.55Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
PackedSE-30510.Minyard, Tumlinson, et al., 1967He, Chromasorb W; Column length: 6.1 m; Program: 150C (10min) => 15C/min => 200C(16min) => 10C/min => 240C
PackedApiezon L470.Minyard, Tumlinson, et al., 1967N2, Gas Chrom P; Column length: 3.0 m; Program: not specified

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-Innowax110.843.5Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax50.835.0Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax70.837.5Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillaryHP-Innowax90.840.8Héberger and Görgényi, 199930. m/0.32 mm/0.5 μm
CapillarySupelcowax-1060.832.Castello, Vezzani, et al., 1991N2; Column length: 60. m; Column diameter: 0.75 mm
PackedCarbowax 20M75.847.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedCarbowax 20M100.785.Kevei and Kozma, 1976Chromosorb
PackedCarbowax 4000105.842.Minyard, Tumlinson, et al., 1967N2, GAS Chrom P; Column length: 10. m
PackedCarbowax 20M100.824.Rohrschneider, 1966Column length: 2. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20821.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax813.Umano, Hagi, et al., 1994He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax814.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryDB-Wax814.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryDB-Wax814.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryCarbowax 20M820.Nishimura, Yamaguchi, et al., 19892. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryDB-Wax818.Umano, Shoji, et al., 1986N2, 60. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPEG-20M794.Slizhov and Gavrilenko, 2001He; Column length: 10. m; Column diameter: 0.2 mm; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5503.Insausti, Goñi, et al., 200550. m/0.32 mm/1.05 μm, He, 35. C @ 15. min, 8. K/min, 220. C @ 5. min
CapillaryCP-Sil 8CB-MS500.Bruna, Hierro, et al., 200360. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillaryPetrocol DH475.3Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryCP Sil 5 CB481.Pino, Almora, et al., 200360. m/0.32 mm/0.25 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillaryCP Sil 5 CB481.Pino, Marbot, et al., 200230. m/0.25 mm/0.25 μm, H2, 60. C @ 10. min, 2. K/min, 280. C @ 40. min
CapillaryCP Sil 8 CB500.Elmore, Mottram, et al., 200060. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C
CapillaryDB-1488.6Helmig, Klinger, et al., 199960. m/0.32 mm/1. μm, -50. C @ 2. min, 6. K/min; Tend: 175. C
CapillaryDB-1471.Bartelt, 199730. m/0.32 mm/5. μm, He, 35. C @ 1. min, 10. K/min; Tend: 270. C
CapillaryDB-1474.Helmig, Pollock, et al., 199630. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1468.Place, Imhof, et al., 200360. m/0.32 mm/1. μm, He; Program: 35C(5min) => 10C/min => 45C (5min) => 5C/min => 250C (10min)
PackedSE-30466.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax809.Mahattanatawee K., Perez-Cacho P.R., et al., 200730. m/0.32 mm/0.5 μm, He, 7. K/min, 240. C @ 5. min; Tstart: 40. C
CapillaryCP-Wax 52CB813.Alasalvar, Taylor, et al., 200560. m/0.25 mm/0.25 μm, 35. C @ 4. min, 3. K/min; Tend: 203. C
CapillaryDB-Wax834.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryDB-Wax842.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryDB-Wax814.Rega, Fournier, et al., 200430. m/0.32 mm/0.5 μm, He, 40. C @ 5. min, 5. K/min; Tend: 240. C
CapillaryCarbowax821.3Censullo, Jones, et al., 200360. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min
CapillaryDB-Wax814.Rega, Fournier, et al., 200330. m/0.32 mm/0.5 μm, 35. C @ 5. min, 5. K/min, 240. C @ 5. min
CapillaryFFAP802.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
CapillarySupelcowax-10813.Chung and Cadwallader, 199360. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 195. C @ 40. min
CapillaryDB-Wax818.Umano, Hagi, et al., 1992He, 40. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M811.Chen and Ho, 1988He, 1.5 K/min, 225. C @ 80. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C
CapillaryCarbowax 20M816.Chen, Kuo, et al., 1982He, 50. C @ 10. min, 1. K/min; Tend: 160. C
PackedCarbowax 20M822.van den Dool and Kratz, 1963Celite 545, 4.6 K/min; Tstart: 75. C; Tend: 228. C

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10813.Bianchi, Cantoni, et al., 200730. m/0.25 mm/0.25 μm; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 220C(1min)
CapillarySupelcowax-10814.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10819.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10813.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10812.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryCP-Wax 52CB830.Verzera, Ziino, et al., 200460. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C
CapillaryDB-Wax808.Radovic, Careri, et al., 200130. m/0.25 mm/0.25 μm; Program: 30C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryFFAP808.Yasuhara, 198750. m/0.25 mm/0.25 μm, He; Program: 20C (5min) => 2C/min => 70C => 4C/min => 210C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryMethyl Silicone100.471.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.480.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.472.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.473.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryDB-160.472.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
CapillaryOV-160.470.Amboni, Junkes, et al., 2002 
PackedSynachrom150.466.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.468.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedDC-400150.466.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB479.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryHP-5 MS500.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min
CapillaryVF-5 MS496.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryVF-5 MS496.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryOV-101472.Zenkevich, Eliseenkov, et al., 201125. m/0.20 mm/0.25 μm, Nitrogen, 6. K/min; Tstart: 40. C; Tend: 240. C
Capillary5 % Phenyl methyl siloxane502.Ramirez R. and Cava R., 200730. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
Capillary5 % Phenyl methyl siloxane502.Ramirez R. and Cava R., 200730. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
CapillaryHP-5487.Isidorov, Purzynska, et al., 200630. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryHP-5476.6Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
Capillary5 % Phenyl methyl siloxane503.Ramírez, Estévez, et al., 20040. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
CapillaryDB-5500.Joffraud, Leroi, et al., 200160. m/0.32 mm/1. μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryBP-1487.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillarySE-30+Igepal474.Shibamoto and Jennings, 19771. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C
CapillarySE-30+Igepal474.Shibamoto and Jennings, 19771. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS500.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-5509.Miyazaki, Plotto, et al., 201160. m/0.25 mm/1.00 μm, Helium; Program: 40 0C 4 0C/min -> 230 0C 100 0C/min -> 260 0C (11.7 min)
CapillaryHP-5512.Pugliese, Sirtori, et al., 200950. m/0.32 mm/1.05 μm, Helium; Program: not specified
CapillarySqualane459.Chen, 2008Program: not specified
CapillarySLB-5MS471.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium; Program: not specified
CapillaryMethyl Silicone450.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone476.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryBPX-5501.Duflos, Moine, et al., 200560. m/0.25 mm/0.25 μm, He; Program: 40C(5min) => 5C/min => 100C => 20C/min => 280C (5min)
CapillaryHP-1470.Junkes, Amboni, et al., 2004Program: not specified
CapillaryPolydimethyl siloxane470.Junkes, Castanho, et al., 2003Program: not specified
CapillaryMethyl Silicone450.N/AProgram: not specified
CapillaryPolydimethyl siloxane497.Spanier, Shahidi, et al., 2001Program: not specified
CapillaryPolydimethyl siloxanes472.Zenkevich, 2001Program: not specified
CapillaryDB-5500.Dittmann and Nitz, 2000Program: not specified
CapillarySPB-1460.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes473.Zenkevich and Chupalov, 1996Program: not specified
CapillaryPolydimethyl siloxanes473.Zenkevich and Chupalov, 1996Program: not specified
CapillaryMethyl Silicone473.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-1465.Schuberth, 199430. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C
CapillarySPB-1460.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1469.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB491.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
Capillarymethyl silicone oil with 5% Igepal474.Schultz, Flath, et al., 1988Column length: 150. m; Column diameter: 0.75 mm; Program: not specified
Capillarymethyl silicone oil with 5% Igepal484.Schultz, Flath, et al., 1988Column length: 150. m; Column diameter: 0.75 mm; Program: not specified
CapillaryDB-1468.Takeoka, Flath, et al., 198830. m/0.25 mm/0.25 μm, H2; Program: 30C (2min) => 2C/min => 150C => 4C/min => 250C
CapillaryOV-1469.Ramsey and Flanagan, 1982Program: not specified
CapillarySE-30478.Heydanek and McGorrin, 1981He; Column length: 50. m; Column diameter: 0.5 mm; Program: -10C (8min) => 12C/min => 26C => 3C/min => 170C (30min)

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-Wax60.834.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-FFAP832.Wanakhachornkrai and Lertsiri, 999925. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryHP-Innowax841.Feng, Zhuang, et al., 201160. m/0.25 mm/0.25 μm, Helium, 60. C @ 1. min, 3. K/min, 220. C @ 5. min
CapillaryDB-Wax821.Ganeko, Shoda, et al., 20084. K/min; Column length: 60. m; Column diameter: 0.35 mm; Tstart: 40. C; Tend: 200. C
CapillaryCP-Wax 52CB812.Povolo, Contarini, et al., 200760. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min
CapillaryCP-Wax 52CB811.Povolo, Contarini, et al., 200760. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min
CapillaryCP-Wax 52CB823.Povolo, Contarini, et al., 200760. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min
CapillaryCP-Wax 52CB820.Povolo, Contarini, et al., 200760. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min
CapillaryDB-Wax810.Rizzolo, Cambiaghi, et al., 200560. m/0.53 mm/1. μm, 50. C @ 10. min, 3. K/min; Tend: 180. C
CapillarySupelcowax-10827.Rochat and Chaintreau, 200560. m/0.53 mm/1. μm, He, 40. C @ 2. min, 4. K/min, 240. C @ 20. min
CapillarySupelcowax-10827.Rochat and Chaintreau, 200560. m/0.53 mm/1. μm, He, 40. C @ 2. min, 4. K/min, 240. C @ 20. min
CapillarySupelcowax-10828.Rochat and Chaintreau, 200560. m/0.53 mm/1. μm, He, 40. C @ 2. min, 4. K/min, 240. C @ 20. min
CapillaryDB-Wax825.Chida, Sone, et al., 200460. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax811.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillaryDB-Wax816.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillarySupelcowax-10820.Vichi, Castellote, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillarySupelcowax-10816.Vichi, Pizzale, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillaryHP-FFAP832.Wanakhachornkrai and Lertsiri, 200325. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryFFAP814.Lecanu, Ducruet, et al., 200230. m/0.32 mm/1. μm, He, 35. C @ 3. min, 5. K/min; Tend: 240. C
CapillaryDB-Wax845.Umano, Hagi, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C
CapillaryDB-Wax798.Duque, Bonilla, et al., 200130. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C
CapillaryDB-Wax825.Wei, Mura, et al., 200160. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 200. C
CapillarySupelcowax-10814.Girard and Durance, 200060. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax823.Lee and Shibamoto, 200030. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C
CapillaryDB-Wax821.Tamura, Boonbumrung, et al., 2000Nitrogen, 40. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax846.Umano, Hagi, et al., 200060. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C
CapillaryDB-Wax805.Iwatsuki, Mizota, et al., 19994. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C
CapillaryDB-Wax820.Umano, Nakahara, et al., 199960. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C
CapillaryCarbowax 20M810.Anker, Jurs, et al., 19902. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C
CapillaryCarbowax 20M810.Mihara, Tateba, et al., 1988N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M822.Mihara, Tateba, et al., 1988N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M810.Mihara, Tateba, et al., 1987N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M822.Mihara, Tateba, et al., 1987N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M854.Labropoulos, Palmer, et al., 1982Helium, 10. K/min; Column length: 31. m; Column diameter: 0.50 mm; Tstart: 40. C; Tend: 200. C
PackedCarbowax 20M816.Tsao, 1969Helium, Chromosorb P HMDS, 5. K/min; Column length: 2. m; Tstart: 40. C; Tend: 200. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax800.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax818.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-Innowax845.Feng, Zhuang, et al., 201160. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillarySOLGel-Wax814.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax814.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax775.Miyazaki, Plotto, et al., 201160. m/0.25 mm/0.50 μm, Helium; Program: 40 0C 4 0C/min -> 230 0C 100 0C/min -> 260 0C (11.7 min)
CapillaryCP-Wax 52 CB821.Povolo, Cabassi, et al., 2011Program: not specified
CapillaryHP-Innowax841.Cajka, Riddellova, et al., 201030. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (1 min) 5 oC/min -> 170 0C 10 0C/min -> 260 0C (1 min)
CapillaryDB-Wax836.Kadar, Juan-Borras, et al., 201060. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 4 0C/min -> 190 0C (11 min) 8 0C/min -> 220 0C (8 min)
CapillarySupelko CO Wax816.Vekiari, Orepoulou, et al., 201060. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 75 0C 5 0C/min -> 250 0C (10 min)
CapillarySupelko CO Wax813.Vekiari, Orepoulou, et al., 201060. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillarySupelcowax 10815.Soria, Martinez-Castro, et al., 200850. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillarySupelcowax-10814.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10819.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillaryHP-Innowax788.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 60 0C (5 min) 8 0C/min -> 250 0C (3 min)
CapillaryHP-Innowax823.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillarySupelcowax-10847.Kourkoutas, Kandylis, et al., 200660. m/0.32 mm/0.25 μm, He; Program: 35C(3min) => 5C/min => 110C => 10C/min => 240C (10min)
CapillaryInnowax835.Junkes, Amboni, et al., 2004Program: not specified
CapillaryCarbowax 20M810.Vinogradov, 2004Program: not specified
CapillaryCP-Wax 52CB824.Muresan, Eillebrecht, et al., 200050. m/0.32 mm/1.2 μm; Program: 40C(10min) => 3C/min => 190C => 10C/min => 250C(5min)
CapillarySupelcowax 10815.Castioni and Kapetanidis, 199660. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (10 min) 2 0C/min -> 80 0C 3 0C/min -> 100 0C 4 0C/min -> 220 0C (30 min)
CapillarySupelcowax 10820.Castioni and Kapetanidis, 199660. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillarySupelcowax 10821.Castioni and Kapetanidis, 199660. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryPolyethylene Glycol820.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-Wax816.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax 20M810.Shibamoto, 1987Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.847.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M819.Ramsey and Flanagan, 1982Program: not specified
CapillaryPolyethylene Glycol810.MacLeod and Pieris, 1981Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Chao and Zwolinski, 1976
Chao, J.; Zwolinski, B.J., Ideal gas thermodynamic properties of propanone and 2-butanone, J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Pennington and Kobe, 1957
Pennington, R.E.; Kobe, K.A., The thermodynamic properties of acetone, J. Am. Chem. Soc., 1957, 79, 300-305. [all data]

Miles and Hunt, 1941
Miles, C.B.; Hunt, H., Heats of combustion. I. The heat of combustion of acetone, J. Phys. Chem., 1941, 45, 1346-1359. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Pennington R.E., 1957
Pennington R.E., The thermodynamic properties of acetone, J. Am. Chem. Soc., 1957, 79, 300-305. [all data]

Chao J., 1976
Chao J., Ideal gas thermodynamic properties of propanone and 2-butanone, J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]

Vilcu R., 1975
Vilcu R., Determination of heat capacities of some alcohols and ketones in vapor phase, Rev. Roum. Chim., 1975, 20, 603-609. [all data]

Kabo G.J., 1995
Kabo G.J., Thermodynamic properties, conformation, and phase transitions of cyclopentanol, J. Chem. Thermodyn., 1995, 27, 953-967. [all data]

Bennewitz K., 1938
Bennewitz K., Molar heats of vapor organic compounds, Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]

Collins B.T., 1949
Collins B.T., The heat capacity of organic vapors. VI. Acetone, J. Am. Chem. Soc., 1949, 71, 2929-2930. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Kelley, 1929
Kelley, K.K., The heat capacities of isopropyl alcohol and acetone from 16 to 298 K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 1145-51. [all data]

Parks and Kelley, 1928
Parks, G.S.; Kelley, K.K., The application of the third law of thermodynamics to some organic reactions, J. Phys. Chem., 1928, 32, 734-50. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds, J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]

Campbell and Chatterjee, 1969
Campbell, A.N.; Chatterjee, R.M., The critical constants and orthobaric densities of acetone, chloroform benzene, and carbon tetrachloride, Can. J. Chem., 1969, 47, 3893-8. [all data]

Campbell and Chatterjee, 1968
Campbell, A.N.; Chatterjee, R.M., Orthobaric Data of Certain Pure Liquids in the Neighborhood of the Critical Point, Can. J. Chem., 1968, 46, 575-81. [all data]

Kobe, Crawford, et al., 1955
Kobe, K.A.; Crawford, H.R.; Stephenson, R.W., Critical Properties and Vapor Pressures of Some Ketones, Ind. Eng. Chem., 1955, 47, 1767-72. [all data]

Rosenbaum, 1951
Rosenbaum, M., , M.S. Thesis, Univ. Tex., Austin, TX, 1951. [all data]

Herz and Neukirch, 1923
Herz, W.; Neukirch, E., On Knowldge of the Critical State, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose, Ellender, et al., 1975
Ambrose, D.; Ellender, J.H.; Lees, E.B.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXXVIII. Vapour pressures of some aliphatic ketones, The Journal of Chemical Thermodynamics, 1975, 7, 5, 453-472, https://doi.org/10.1016/0021-9614(75)90275-X . [all data]

Mathews, 1926
Mathews, J.H., The accurate measurement of heats of vaporization of liquids, J. Am. Chem. Soc., 1926, 48, 562-576. [all data]

Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M., Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]

Soni, Ramjugernath, et al., 2008
Soni, Minal; Ramjugernath, Deresh; Raal, J. David, Vapor--Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone, J. Chem. Eng. Data, 2008, 53, 3, 745-749, https://doi.org/10.1021/je7005924 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Sprake, et al., 1974
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXXIII. The vapour pressure of acetone, The Journal of Chemical Thermodynamics, 1974, 6, 7, 693-700, https://doi.org/10.1016/0021-9614(74)90119-0 . [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Baliah and Gnanasekaran, 1986
Baliah, V.; Gnanasekaran, K., Search for hydrogen bonding in thiophenols through heats of vaporization measurements, Indian J. Chem., Sect A, 1986, 25, 7, 673. [all data]

Dmitriev, Kachurina, et al., 1986
Dmitriev, Yu.G.; Kachurina, N.S.; Wang, C.H.; Kochubei, V.V., Thermochemical properties of complex glycidol esters, Vestn. L'vov. Politekh. Inst., 1986, 201, 29. [all data]

Castellari, Francesconi, et al., 1984
Castellari, Carlo; Francesconi, Romolo; Comelli, Fabio; Ottani, Stefano, Vapor-liquid equilibria in binary systems containing 1,3-dioxolane at isobaric conditions. 6. Binary mixtures of 1,3-dioxolane with acetone, J. Chem. Eng. Data, 1984, 29, 3, 283-284, https://doi.org/10.1021/je00037a016 . [all data]

Sokolov, Zhilina, et al., 1963
Sokolov, V.V.; Zhilina, L.P.; Mischenko, K.P., Zh. Prikl. Khim. (Leningrad), 1963, 36, 750. [all data]

Brown and Smith, 1957
Brown, I.; Smith, F., Liquid-vapour equilibria viii. The systems acetoke +benzene and acetone +carbon tetrachloride at 45«65533»C, Aust. J. Chem., 1957, 10, 4, 423-621, https://doi.org/10.1071/CH9570423 . [all data]

Felsing and Durban, 1926
Felsing, W.A.; Durban, S.A., THE VAPOR PRESSURES, DENSITIES, AND SOME DERIVED QUANTITIES FOR ACETONE, J. Am. Chem. Soc., 1926, 48, 11, 2885-2893, https://doi.org/10.1021/ja01690a020 . [all data]

Kelley, 1929, 2
Kelley, K.K., The heats capacities of isopropyl alcohol and acetone from 16 to 298 °K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 1145-1150. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Parks and Kelley, 1928, 2
Parks, G.S.; Kelley, K.K., The application of the third law of thermodynamics to some organic reactions, J. Phys. Chem., 1928, 32, 734-750. [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Parks and Kelley, 1925, 2
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Desfrancois, Abdoul-Carime, et al., 1994
Desfrancois, C.; Abdoul-Carime, H.; Khelifa, N.; Schermann, J.P., Fork 1/r to 1/r2 Potentials: Electron Exchange between Rydberg Atoms and Polar Molecules, Phys. Rev. Lett., 1994, 73, 18, 2436, https://doi.org/10.1103/PhysRevLett.73.2436 . [all data]

Bouchoux, Buisson, et al., 2003
Bouchoux, G.; Buisson, D.A.; Bourcier, S.; Sablier, M., Application of the kinetic method to bifunctional bases. ESI tandem quadrupole experiments, Int. J. Mass Spectrom., 2003, 228, 1035. [all data]

Bouchoux and Salpin, 1999
Bouchoux, J.; Salpin, J.Y., Re-evaluated gas-phase basicity and proton affinity data from the thermokinetic method, Rapid Com. Mass Spectrom., 1999, 13, 932. [all data]

Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C., Heat of formation for acetyl cation in the gas phase, J. Am. Chem. Soc., 1982, 104, 5318. [all data]

Trott, Blais, et al., 1978
Trott, W.M.; Blais, N.C.; Walters, E.A., Molecular beam photoionization study of acetone and acetone-d6, J. Chem. Phys., 1978, 69, 3150. [all data]

Staley, Wieting, et al., 1977
Staley, R.H.; Wieting, R.D.; Beauchamp, J.L., Carbenium ion stabilities in the gas phase and solution. An ion cyclotron resonance study of bromide transfer reactions involving alkali ions, alkyl carbenium ions, acyl cations and cyclic halonium ions, J. Am. Chem. Soc., 1977, 99, 5964. [all data]

Hernandez, Masclet, et al., 1977
Hernandez, R.; Masclet, P.; Mouvier, G., Spectroscopie de photoelectrons d'aldehydes et de cetones aliphatiques, J. Electron Spectrosc. Relat. Phenom., 1977, 10, 333. [all data]

Mouvier and Hernandez, 1975
Mouvier, G.; Hernandez, R., Ionisation and appearance potentials of alkylketones, Org. Mass Spectrom., 1975, 10, 958. [all data]

Tam, Yee, et al., 1974
Tam, W.-C.; Yee, D.; Brion, C.E., Photoelectron spectra of some aldehydes and ketones, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 77. [all data]

Ogata, Kitayama, et al., 1974
Ogata, H.; Kitayama, J.; Koto, M.; Kojima, S.; Nihei, Y.; Kamada, H., Vacuum ultraviolet absorption and photoelectron spectra of aliphatic ketones, Bull. Chem. Soc. Jpn., 1974, 47, 958. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Huebner, Celotta, et al., 1973
Huebner, R.H.; Celotta, R.J.; Mielczarek, S.R.; Kuyatt, C.E., Electron energy loss spectroscopy of acetone vapor, J. Chem. Phys., 1973, 59, 5434. [all data]

Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V., Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols, Khim. Vys. Energ., 1972, 6, 387. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H., Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules, J. Am. Chem. Soc., 1972, 94, 1451. [all data]

Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., On-line computer methods used in conjunction with the measurement of ionization appearance potentials, Adv. Mass Spectrom., 1971, 5, 334. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Johnstone, Mellon, et al., 1970
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., Online acquisition of ionization efficiency data, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 241. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Potapov, Filyugina, et al., 1968
Potapov, V.K.; Filyugina, A.D.; Shigorin, D.N.; Ozerova, G.A., Photoionization of some compounds containing the carbonyl and amino groups, Dokl. Akad. Nauk SSSR, 1968, 180, 398, In original 352. [all data]

Dorman, 1965
Dorman, F.H., Fragment ions from CH3CHO and (CH3)2CO by electron impact, J. Chem. Phys., 1965, 42, 65. [all data]

Murad and Inghram, 1964
Murad, E.; Inghram, M.G., Photoionization of aliphatic ketones, J. Chem. Phys., 1964, 40, 3263. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Vilesov, 1960
Vilesov, F.I., The photoionization of vapors of compounds whose molecules contain carbonyl groups, Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]

Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N., The photoionization of the vapors of certain organic compounds, Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Kobayashi, 1978
Kobayashi, T., A new rule for photoelectron angular distributions of molecules, Phys. Lett. A, 1978, 69, 31. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Young and Cheng, 1976
Young, V.Y.; Cheng, K.L., The photoelectron spectra of halogen substituted acetones, J. Chem. Phys., 1976, 65, 3187. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T., Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects, J. Am. Chem. Soc., 1975, 97, 4137. [all data]

Kelder, Cerfontain, et al., 1974
Kelder, J.; Cerfontain, H.; Higginson, B.R.; Lloyd, D.R., Photoelectron and ultraviolet absorption spectra of cyclopropyl conjugated 1,2-diketones, Tetrahedron Lett., 1974, 739. [all data]

Hentrich, Gunkel, et al., 1974
Hentrich, G.; Gunkel, E.; Klessinger, M., Photoelektronenspektren organischer verbindungen. 4. Photoelektronenspektren ungesattigter carbonylverbindungen, J. Mol. Struct., 1974, 21, 231. [all data]

Powis and Danby, 1979
Powis, I.; Danby, C.J., The unimolecular fragmentation of energy-selected acetone ions, Int. J. Mass Spectrom. Ion Phys., 1979, 32, 27. [all data]

Majer, Olavesen, et al., 1971
Majer, J.R.; Olavesen, C.; Robb, J.C., Wavelength effect in the photolysis of halogenated ketones, J. Chem. Soc. B, 1971, 48. [all data]

Potzinger and Bunau, 1969
Potzinger, P.; Bunau, G.v., Empirische Beruksichtigung von Uberschussenergien bei der Auftrittspotentialbestimmung, Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 466. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Shigorin, Filyugina, et al., 1966
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K., Ionization and dissociation of molecules of acetaldehyde, acetone, and acetic acid on electron impact, Teor. i Eksperim. Khim., 1966, 2, 554, In original 417. [all data]

Kanomata, 1961
Kanomata, I., Mass-spectrometric study on ionization and dissociation of formaldehyde, acetaldehyde, acetone and ethyl methyl ketone by electron impact, Bull. Chem. Soc. Japan, 1961, 34, 1864. [all data]

Murad and Inghram, 1964, 2
Murad, E.; Inghram, M.G., Thermodynamic properties of the acetyl radical and bond dissociation energies in aliphatic carbonyl compounds, J. Chem. Phys., 1964, 41, 404. [all data]

Potapov and Shigorin, 1966
Potapov, V.K.; Shigorin, D.N., Relation between nature of electronic states of the acetone molecule and mechanism of its breakdown on electron bombardment, Zh. Fiz. Khim., 1966, 40, 200, In original 101. [all data]

Brinkman, Berger, et al., 1993
Brinkman, E.A.; Berger, S.; Marks, J.; Brauman, J.I., Molecular Rotation and the Observation of Dipole-Bound States of Anions, J. Chem. Phys., 1993, 99, 10, 7586, https://doi.org/10.1063/1.465688 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Ho, Yang, et al., 1997
Ho, Y.-P.; Yang, Y.-C.; Klippenstein, S.J.; Dunbar, R.C., Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics, J. Phys. Chem. A, 1997, 101, 18, 3338, https://doi.org/10.1021/jp9637284 . [all data]

Bauschlicher, Bouchard, et al., 1991
Bauschlicher, C.W.; Bouchard, F.; Hepburn, J.W.; McMahon, T.B.; Surjasasmita, I.; Roth, L.M.; Gord, J.R., On the Structure of Al(Acetone)2+, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 15, https://doi.org/10.1016/0168-1176(91)85094-3 . [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Lau, Saluja, et al., 1980
Lau, Y.K.; Saluja, P.P.S.; Kebarle, P., The Proton in Dimethyl Sulfoxide and Acetone. Results from Gas - Phase Ion Equilibria Involving (Me2SO)nH+ and (Me2CO)nH+, J. Am. Chem. Soc., 1980, 102, 25, 7429, https://doi.org/10.1021/ja00545a004 . [all data]

Mackay, Rakshit, et al., 1982
Mackay, G.I.; Rakshit, A.B.; Bohme, D.K., An Experimental Study of the Reactivity and Relative Basicity of the Methoxide Anion in the Gas Phase at Room Temperature, and their Perturbation by Methanol Solvent, Can. J. Chem., 1982, 60, 20, 2594, https://doi.org/10.1139/v82-373 . [all data]

Sheldon and Bowie, 1983
Sheldon, J.C.; Bowie, J.H., The Reactions of {F-..HOMe} and {MeCO2-..HF} Negative Ions with Acetaldehyde and Acetone., Aust. J. Chem., 1983, 36, 2, 289, https://doi.org/10.1071/CH9830289 . [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Hiraoka and Takimoto, 1986
Hiraoka, K.; Takimoto, H., Gas-Phase Stabilities of Symmetric Proton-Held Dimer Cations, J. Phys. Chem., 1986, 90, 22, 5910, https://doi.org/10.1021/j100280a090 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Hiraoka, Morise, et al., 1986
Hiraoka, K.; Morise, K.; Nishijima, T.; Nakamura, S.; Nakazato, M.; Ohkuma, K., Gas Phase Ion Equilibria Studies of Protons and Chloride Ions in Propanol and Acetone, Int. J. Mass Spectrom. Ion Proc., 1986, 68, 1-2, 99, https://doi.org/10.1016/0168-1176(86)87071-9 . [all data]

Hiraoka, Takimoto, et al., 1986
Hiraoka, K.; Takimoto, H.; Morise, K.; Shoda, T.; Nakamura, S., Ion-Molecule Reactions in Gaseous Acetone, Bull. Chem. Soc. Japan, 1986, 59, 7, 2247, https://doi.org/10.1246/bcsj.59.2247 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-ner, 1988, 2
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Bofdanov and McMahon, 2002
Bofdanov, B.; McMahon, T.B., Structures, Thermochemistry, and Infrared Spectra of Chloride Ion-Fluorinated Acetone Complexes and Neutral Fluorinated Acetones in the Gas Phase: Experiment and Theory, Int. J. Mass Spectrom., 2002, 219, 3, 593-613, https://doi.org/10.1016/S1387-3806(02)00745-5 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Lin, Chen, et al., 1997
Lin, C.-Y.; Chen, Q.; Chen, H.; Freiser, B.S., Bond Dissociation Energy Determinations for MOC(CH3)2+ and MOC(CD3)2+ (M=Cr, Mn) Using Continuous Ejection and Radiative Association Methods, Int. J. Mass Spectrom. Ion Proc., 1997, 167/168, 713, https://doi.org/10.1016/S0168-1176(97)00131-6 . [all data]

Chu, 2002
Chu, Y., Solvation of Copper Ions by Acetone. Structures and Sequential Binding Energies of Cu+(acetone)x, x=1-4 From Collision-Induced Dissociation and Theoretical Studies, J. Am. Soc. Mass Spectrom., 2002, 13, 5, 453, https://doi.org/10.1016/S1044-0305(02)00355-0 . [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Meot-Ner (Mautner), Sieck, et al., 1996
Meot-Ner (Mautner), M.; Sieck, L.W.; Liebman, J.F.; Scheiner, S., Complexing of the Ammonium Ion by Polyethers. Comparative Complexing Thermochemistry of Ammonium, Hydronium, and Alkali Cations, J. Phys. Chem., 1996, 100, 16, 6445, https://doi.org/10.1021/jp9514943 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Klassen, Anderson, et al., 1996
Klassen, J.S.; Anderson, S.G.; Blades, A.T.; Kebarle, P., Reaction Enthalpies for M+L = M+ + L, Where M+ = Na+ and K+ and L = Acetamide, N-Methylacetamide, N,N-Dimethylacetamide, Glycine, and Glycylglycine, from Determinations of the Collision-Induced Dissociation Thresholds, J. Phys. Chem., 1996, 100, 33, 14218, https://doi.org/10.1021/jp9608382 . [all data]

Sunner, 1984
Sunner, J. Kebarle, Ion - Solvent Molecule Interactions in the Gas Phase. The Potassium Ion and Me2SO, DMA, DMF, and Acetone, J. Am. Chem. Soc., 1984, 106, 21, 6135, https://doi.org/10.1021/ja00333a002 . [all data]

Blades, Klassen, et al., 1995
Blades, A.T.; Klassen, J.S.; Kebarle, P., Free Energies of Hydration in the Gas Phase on the Anions of Some Oxo Acids of C, N, S, P, Cl and I, J. Am. Chem. Soc., 1995, 117, 42, 10563, https://doi.org/10.1021/ja00147a019 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G., A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase, J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198 . [all data]

Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W., Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase, J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Héberger, Görgényi, et al., 2002
Héberger, K.; Görgényi, M.; Kowalska, T., Temperature dependence of Kováts indices in gas chromatography revisited, J. Chromatogr. A, 2002, 973, 1-2, 135-142, https://doi.org/10.1016/S0021-9673(02)01198-6 . [all data]

Héberger and Görgényi, 1999
Héberger, K.; Görgényi, M., Principal component analysis of Kováts indices for carbonyl compounds in capillary gas chromatography, J. Chromatogr., 1999, 845, 1-2, 21-31, https://doi.org/10.1016/S0021-9673(99)00323-4 . [all data]

Golovnya, Syomina, et al., 1997
Golovnya, R.V.; Syomina, L.A.; Samusenko, A.L., Temperature changes of sorption parameters of di-n-alkylketones and methylcyclohexanones in capillary gas chromatography, Russ. Chem. Bull. (Engl. Transl.), 1997, 46, 2, 314-318, https://doi.org/10.1007/BF02494370 . [all data]

Grigor'eva, Vasil'ev, et al., 1989
Grigor'eva, D.N.; Vasil'ev, A.V.; Golovnya, R.V., Variation in retention indices and equivalent chain lengths of homologous series of n-alkyl acetates, n-alkyl methyl ketones, and methyl esters of aliphatic carboxylic acids as a function of homolog number and analysis temperature, Zh. Anal. Khim., 1989, 44, 1, 68-73. [all data]

Svetlova, Samusenko, et al., 1986
Svetlova, N.I.; Samusenko, A.L.; Golovnya, R.V., Advantage of the universal equation over the linear equation for the calculation of retention parameters of homologous series in capillary chromatography, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 12, 737-740, https://doi.org/10.1002/jhrc.1240091205 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Becerra, Sánchez, et al., 1982
Becerra, M.R.; Sánchez, E.F.; Domínguez, J.A.G.; Muñoz, J.G.; Molera, M.J., The use of gaseous and liquid n-paraffins in GC identification of oxidation products of acetondimethyl acetal, J. Chromatogr. Sci., 1982, 20, 8, 363-366, https://doi.org/10.1093/chromsci/20.8.363 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Gröbler and Bálizs, 1979
Gröbler, A.; Bálizs, G., Investigations on mixed gas chromatographic stationary phases. Part I. Dependence of the retention index on the composition of the stationary phase, J. Chromatogr. Sci., 1979, 17, 11, 631-635, https://doi.org/10.1093/chromsci/17.11.631 . [all data]

Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S., Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols, J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Haken, Ho, et al., 1975
Haken, J.K.; Ho, D.K.M.; Vaughan, C.E., Gas chromatography of homologous esters. VII. The retention behaviour of pyruvate esters and related carbonyl and carboxyl compounds, J. Chromatogr., 1975, 106, 2, 317-325, https://doi.org/10.1016/S0021-9673(00)93839-1 . [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Rohrschneider, 1966
Rohrschneider, L., Eine methode zur charakterisierung von gaschromatographischen trennflüssigkeiten, J. Chromatogr., 1966, 22, 6-22, https://doi.org/10.1016/S0021-9673(01)97064-5 . [all data]

Viani, Müggler-Chavan, et al., 1965
Viani, R.; Müggler-Chavan, F.; Reymond, D.; Egli, R.H., 196. Sur la composition de l'arôme de café, Helv. Chim. Acta, 1965, 48, 195-196, 1809-1815, https://doi.org/10.1002/hlca.19650480743 . [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

von Kováts, 1958
von Kováts, E., 206. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone, Helv. Chim. Acta, 1958, 41, 7, 1915-1932, https://doi.org/10.1002/hlca.19580410703 . [all data]

Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F., Volatile components of chickpea (Cicer arietinum L.) seed, J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Minyard, Tumlinson, et al., 1967
Minyard, J.P.; Tumlinson, J.H.; Thompson, A.C.; Hedin, P.A., Constituents of the cotton bud. The carbonyl compounds, J. Agric. Food Chem., 1967, 15, 3, 517-524, https://doi.org/10.1021/jf60151a021 . [all data]

Castello, Vezzani, et al., 1991
Castello, G.; Vezzani, S.; Gerbino, T., Gas chromatographic separation and automatic identification of complex mixtures of organic solvents in indrustrial wates, J. Chromatogr., 1991, 585, 2, 273-280, https://doi.org/10.1016/0021-9673(91)85088-W . [all data]

Kevei and Kozma, 1976
Kevei, E.; Kozma, E., Gaschromatographische Untersuchungsmethoden zur Aromaprüfung in gekochtem Schweinefleisch (M. semimembranosus), Nahrung, 1976, 20, 3, 243-252, https://doi.org/10.1002/food.19760200303 . [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Umano, Hagi, et al., 1994
Umano, K.; Hagi, Y.; Tamura, T.; Shoji, A.; Shibamoto, T., Identification of volatile compounds isolated from round kumquat (Fortunella japonica Swingle), J. Agric. Food Chem., 1994, 42, 9, 1888-1890, https://doi.org/10.1021/jf00045a011 . [all data]

Tatsuka, Suekane, et al., 1990
Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H., Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling, J. Agric. Food Chem., 1990, 38, 12, 2176-2180, https://doi.org/10.1021/jf00102a015 . [all data]

Nishimura, Yamaguchi, et al., 1989
Nishimura, O.; Yamaguchi, K.; Mihara, S.; Shibamoto, T., Volatile Constituents of Guava Fruits (Psidium guajava L.) and Canned Puree, J. Agric. Food Chem., 1989, 37, 1, 139-142, https://doi.org/10.1021/jf00085a033 . [all data]

Umano, Shoji, et al., 1986
Umano, K.; Shoji, A.; Hagi, Y.; Shibamoto, T., Volatile constituents of peel of quince fruit, Cydonia oblonga Miller, J. Agric. Food Chem., 1986, 34, 4, 593-596, https://doi.org/10.1021/jf00070a003 . [all data]

Slizhov and Gavrilenko, 2001
Slizhov, Yu.G.; Gavrilenko, M.A., Effect of thermal treatment of poly(ethylene glycol) modified with europium acetylacetonate on its chromatographic properties, Russ. J. Phys. Chem. (Engl. Transl.), 2001, 75, 6, 1012-1013. [all data]

Insausti, Goñi, et al., 2005
Insausti, K.; Goñi, V.; Petri, E.; Gorraiz, C.; Beriain, M.J., Effect of weight at slaughter on the volatile compounds of cooked beef from Spanish cattle breeds, Meat Sci., 2005, 70, 1, 83-90, https://doi.org/10.1016/j.meatsci.2004.12.003 . [all data]

Bruna, Hierro, et al., 2003
Bruna, J.M.; Hierro, E.M.; de la Hoz, L.; Mottram, D.S.; Fernández, M.; Ordóñez, J.A., Changes in selected biochemical and sensory parameters as affected by the superficial inoculation of Penicillium camemberti on dry fermented sausages, Int. J. Food Microbiol., 2003, 85, 1-2, 111-125, https://doi.org/10.1016/S0168-1605(02)00505-6 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Pino, Almora, et al., 2003
Pino, J.; Almora, K.; Marbot, R., Volatile components of papaya (Carica papaya L., maradol variety) fruit, Flavour Fragr. J., 2003, 18, 6, 492-496, https://doi.org/10.1002/ffj.1248 . [all data]

Pino, Marbot, et al., 2002
Pino, J.A.; Marbot, R.; Bello, A., Volatile compounds of Psidium salutare (H.B.K.) Berg. fruit, J. Agric. Food Chem., 2002, 50, 18, 5146-5148, https://doi.org/10.1021/jf0116303 . [all data]

Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Hierro, E., Two-fibre solid-phase microextraction combined with gas chromatography-mass spectrometry for the analysis of volatile aroma compounds in cooked pork, J. Chromatogr. A, 2000, 905, 1-2, 233-240, https://doi.org/10.1016/S0021-9673(00)00990-0 . [all data]

Helmig, Klinger, et al., 1999
Helmig, D.; Klinger, L.F.; Guenther, A.; Vierling, L.; Geron, C.; Zimmerman, P., Biogenic volatile organic compound emissions (BVOCs). I. Identifications from three continental sites in the U.S., Chemosphere, 1999, 38, 9, 2163-2187, https://doi.org/10.1016/S0045-6535(98)00425-1 . [all data]

Bartelt, 1997
Bartelt, R.J., Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles, Anal. Chem., 1997, 69, 3, 364-372, https://doi.org/10.1021/ac960820n . [all data]

Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P., Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii, J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212 . [all data]

Place, Imhof, et al., 2003
Place, R.B.; Imhof, M.; Teuber, M.; Olivier Bosset, J., Distribution of the volatile (flavour) compounds in Raclette cheese produced with different staphylococci in the smear, Mitt. Lebensmittelunters. Hyg., 2003, 94, 192-211. [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Mahattanatawee K., Perez-Cacho P.R., et al., 2007
Mahattanatawee K.; Perez-Cacho P.R.; Davenport T.; Rouseff R., Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection, J. Agric. Food Chem., 2007, 55, 5, 1939-1944, https://doi.org/10.1021/jf062925p . [all data]

Alasalvar, Taylor, et al., 2005
Alasalvar, C.; Taylor, K.D.A.; Shahidi, F., Comparison of volatiles of cultured and wild sea bream (Sparus aurata) during storage in ice by dynamic headspace analysis/gas chromatography-mass spectrometry, J. Agric. Food Chem., 2005, 53, 7, 2616-2622, https://doi.org/10.1021/jf0483826 . [all data]

Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O., Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses, Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007 . [all data]

Rega, Fournier, et al., 2004
Rega, B.; Fournier, N.; Nicklaus, S.; Guichard, E., Role of pulp in flavor release and sensory perception in orange juice, J. Agric. Food Chem., 2004, 52, 13, 4204-4212, https://doi.org/10.1021/jf035361n . [all data]

Rega, Fournier, et al., 2003
Rega, B.; Fournier, N.; Guichard, E., Solid phase microextraction (SPME) of orange juice flavor: odor representativeness by direct gas chromatography olfactometry (D-GC-O), J. Agric. Food Chem., 2003, 51, 24, 7092-7099, https://doi.org/10.1021/jf034384z . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Chung and Cadwallader, 1993
Chung, H.Y.; Cadwallader, K.R., Volatile components in blue crab (Callinectes sapidus) meat and processing by-product, J. Food Sci., 1993, 58, 6, 1203-1207, https://doi.org/10.1111/j.1365-2621.1993.tb06148.x . [all data]

Umano, Hagi, et al., 1992
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T., Volatile constituents of green and ripened pineapple (Aanas comosus [L.] Merr.), J. Agric. Food Chem., 1992, 40, 4, 599-603, https://doi.org/10.1021/jf00016a014 . [all data]

Chen and Ho, 1988
Chen, C.-C.; Ho, C.-T., Gas chromatographic analysis of volatile components of ginger oil (Zingiber officinale Roscoe) extracted with liquid carbon dioxide, J. Agric. Food Chem., 1988, 36, 2, 322-328, https://doi.org/10.1021/jf00080a020 . [all data]

Chen, Kuo, et al., 1982
Chen, C.-C.; Kuo, M.-C.; Hwang, L.S.; Wu, J.S.-B.; Wu, C.-M., Headspace components of passion fruit juice, J. Agric. Food Chem., 1982, 30, 6, 1211-1215, https://doi.org/10.1021/jf00114a052 . [all data]

van den Dool and Kratz, 1963
van den Dool, H.; Kratz, P. Dec., A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography, J. Chromatogr., 1963, 11, 463-471, https://doi.org/10.1016/S0021-9673(01)80947-X . [all data]

Bianchi, Cantoni, et al., 2007
Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A., Characterization of the aromatic profile for the authentication and differentiation of typical Italian dry-sausages, Talanta, 2007, 72, 4, 1552-1563, https://doi.org/10.1016/j.talanta.2007.02.019 . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Verzera, Ziino, et al., 2004
Verzera, A.; Ziino, M.; Condurso, C.; Romeo, V.; Zappala, M., Solid-phase microextraction and gas chromatography-mass spectrometry for rapid characterisation of semi-hard cheeses, Anal. Bioanal. Chem., 2004, 380, 7-8, 930-936, https://doi.org/10.1007/s00216-004-2879-4 . [all data]

Radovic, Careri, et al., 2001
Radovic, B.S.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E., Analytical, nutritional, and clinical methods section. Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey, Food Chem., 2001, 72, 4, 511-520, https://doi.org/10.1016/S0308-8146(00)00263-6 . [all data]

Yasuhara, 1987
Yasuhara, A., Identification of Volatile Compounds in Poultry Manure by Gas Chromatography-Mass Spectrometry, J. Chromatogr., 1987, 387, 371-378, https://doi.org/10.1016/S0021-9673(01)94539-X . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Amboni, Junkes, et al., 2002
Amboni, R.D.DeM.C.; Junkes, B. daS.; Yunes, R.A.; Heinzen, V.E.F., Quantitative structure-property relationships study of chromatographic retention indices and normal boiling points for oxo compounds using the semi-empirical topological method, J. Mol. Struct. (Theochem), 2002, 586, 1-3, 71-80, https://doi.org/10.1016/S0166-1280(02)00062-3 . [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D., Volatile constituents of the giant pufball mushroom (Calvatia gigantea), Leffingwell Rep., 2011, 4, 1-17. [all data]

Zenkevich, Eliseenkov, et al., 2011
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N.; Zhakovskaya, Z.A.; Khoroshko, L.O., Gas chromatographic identification of chlorination products of aliphatic ketones, J. Chromatogr., 2011, 1218, 21, 3291-3299, https://doi.org/10.1016/j.chroma.2010.12.056 . [all data]

Ramirez R. and Cava R., 2007
Ramirez R.; Cava R., Volatile profiles of dry-cured meat products from three different Iberian x Duroc genotypes, J. Agric. Food Chem., 2007, 55, 5, 1923-1931, https://doi.org/10.1021/jf062810l . [all data]

Isidorov, Purzynska, et al., 2006
Isidorov, V.; Purzynska, A.; Modzelewska, A.; Serowiecka, M., Distribution coefficients of aliphatic alcohols, carbonyl compounds and esters between air and Carboxen/polydimethylsiloxane fiber coating, Anal. Chim. Acta., 2006, 560, 1-2, 103-109, https://doi.org/10.1016/j.aca.2005.12.043 . [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

Ramírez, Estévez, et al., 2004
Ramírez, M.R.; Estévez, M.; Morcuende, D.; Cava, R., Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS, J. Agric. Food Chem., 2004, 52, 25, 7637-7643, https://doi.org/10.1021/jf049207s . [all data]

Joffraud, Leroi, et al., 2001
Joffraud, J.J.; Leroi, F.; Roy, C.; Berdagué, J.L., Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon, Int. J. Food Microbiol., 2001, 66, 3, 175-184, https://doi.org/10.1016/S0168-1605(00)00532-8 . [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Shibamoto and Jennings, 1977
Shibamoto, T.; Jennings, W.G., The volatile composition of the leaf oil of California Juniper (J. californica Carr.) in Proceedings of VII International Congress of Essential Oils, October 7-11, 1977, Kyoto, Japan, 1977, 413-418. [all data]

Miyazaki, Plotto, et al., 2011
Miyazaki, T.; Plotto, A.; Goodner, K.; Gmitter F.G., Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance, J. Sci. Food Agric., 2011, 91, 3, 449-460, https://doi.org/10.1002/jsfa.4205 . [all data]

Pugliese, Sirtori, et al., 2009
Pugliese, C.; Sirtori, F.; Ruiz, J.; Martin, D.; Parenti, S.; Franci, O., Effect of pasture on chestnut or acorn on fatty acid composition and aromatic profile of fat of China Senece dry-cured ham, Gracas y Aceites, 2009, 60, 3, 271-276, https://doi.org/10.3989/gya.130208 . [all data]

Chen, 2008
Chen, H.-F., Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression, Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003 . [all data]

Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J., Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee, Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009 . [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Duflos, Moine, et al., 2005
Duflos, G.; Moine, F.; Coin, V.M.; Malle, P., Determination of volatile compounds in whiting (Merlangius merlangus) using headspace-solid-phase microextraction-gas chromatography-mass spectrometry, J. Chromatogr. Sci., 2005, 43, 6, 304-312, https://doi.org/10.1093/chromsci/43.6.304 . [all data]

Junkes, Amboni, et al., 2004
Junkes, B.S.; Amboni, R.D.M.C.; Yunes, R.A.; Heinzen, V.E.F., Application of the semi-empirical topological index in quantitative structure-chromatographic retention relationship (QSRR) studies of aliphatic ketones and aldehydes on stationary phases of different polarity, J. Braz. Chem. Soc., 2004, 15, 2, 183-189, https://doi.org/10.1590/S0103-50532004000200005 . [all data]

Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F., Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies, Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]

Spanier, Shahidi, et al., 2001
Spanier, A.M.; Shahidi, F.; Par; iment, T.H.; Mussinan, C., Food Flavors and Chemistry. Advances of the New Millenium, Royal Soc. Chem., 2001, 666. [all data]

Zenkevich, 2001
Zenkevich, I.G., Encyclopedia of Chromatography. Derivatization of Amines, Amino Acids, Amides and Imides for GC Analysis, Marcel Dekker, Inc, New York - Basel, 2001, 224. [all data]

Dittmann and Nitz, 2000
Dittmann, B.; Nitz, S., Strategies for the development of reliable QArQC methods when working with mass spectrometry-based chemosensory systems, Sens. Actuators B, 2000, 69, 3, 253-257, https://doi.org/10.1016/S0925-4005(00)00504-9 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Schuberth, 1994
Schuberth, J., Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection, J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Schultz, Flath, et al., 1988
Schultz, T.H.; Flath, R.A.; Stern, D.J.; Mon, T.R.; Teranishi, R.; McKenna Kruse, S.; Butlder, B.; Howard, W.E., Coyote estrous urine volatiles, J. Chem. Ecol., 1988, 14, 2, 701-712, https://doi.org/10.1007/BF01013917 . [all data]

Takeoka, Flath, et al., 1988
Takeoka, G.R.; Flath, R.A.; Güntert, M.; Jennings, W., Nectarine volatiles: vacuum steam distillation versus headspace sampling, J. Agric. Food Chem., 1988, 36, 3, 553-560, https://doi.org/10.1021/jf00081a037 . [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Heydanek and McGorrin, 1981
Heydanek, M.G.; McGorrin, R.J., Gas chromatography-mass spectroscopy investigations on the flavor chemistry of oat groats, J. Agric. Food Chem., 1981, 29, 5, 950-954, https://doi.org/10.1021/jf00107a016 . [all data]

Wanakhachornkrai and Lertsiri, 9999
Wanakhachornkrai, P.; Lertsiri, S., Comparison of determination method for volatile compounds in Thai soy sauce, Analytical, Nutritional and Clinical Methods, 9999, 1-11. [all data]

Feng, Zhuang, et al., 2011
Feng, T.; Zhuang, H.; Ye, R.; Jin, Z.; Xu, X.; Xie, Z., Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC-MS and electronic nose, Sensors and Actuators B: Chemical, 2011, 160, 1, 964-973, https://doi.org/10.1016/j.snb.2011.09.013 . [all data]

Ganeko, Shoda, et al., 2008
Ganeko, N.; Shoda, M.; Hirohara, I.; Bhadra, A.; Ishida, T.; Matsuda, H.; Takamura, H.; Matoba, T., Analysis of volatile flavor compounds of sardine (Sardinops melanostica) by solid phase microextraction, J. Food Sci., 2008, 73, 1, s83-s88, https://doi.org/10.1111/j.1750-3841.2007.00608.x . [all data]

Povolo, Contarini, et al., 2007
Povolo, M.; Contarini, G.; Mele, M.; Secchiari, P., Study on the influence of pasture on volatile fraction of Ewes' dairy products by solid-phase microextraction and gas chromatography-mass spectrometry, J. Dairy Sci., 2007, 90, 2, 556-569, https://doi.org/10.3168/jds.S0022-0302(07)71539-4 . [all data]

Rizzolo, Cambiaghi, et al., 2005
Rizzolo, A.; Cambiaghi, P.; Grassi, M.; Zerbini, P.E., Influence of 1-Methylcyclopropene and Storage Atmosphere on Changes in Volatile Compounds and Fruit Quality of Conference Pears, J. Agric. Food Chem., 2005, 53, 25, 9781-9789, https://doi.org/10.1021/jf051339d . [all data]

Rochat and Chaintreau, 2005
Rochat, S.; Chaintreau, A., Carbonyl Odorants Contributing to the In-Oven Roast Beef Top Note, J. Agric. Food Chem., 2005, 53, 24, 9578-9585, https://doi.org/10.1021/jf058089l . [all data]

Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H., Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system, J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p . [all data]

Tanaka, Yamauchi, et al., 2003
Tanaka, T.; Yamauchi, T.; Katsumata, R.; Kiuchi, K., Comparison of volatile components in commercial Itohiki-Natto by solid phase microextraction and gas chromatography, Nippon Shokuhin Kagaku Kogaku Kaishi, 2003, 50, 6, 278-285, https://doi.org/10.3136/nskkk.50.278 . [all data]

Vichi, Castellote, et al., 2003
Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E., Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection, J. Chromatogr. A, 2003, 983, 1-2, 19-33, https://doi.org/10.1016/S0021-9673(02)01691-6 . [all data]

Vichi, Pizzale, et al., 2003
Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E., Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin olive oils from two distinct geographical areas of Northern Italy, J. Agric. Food Chem., 2003, 51, 22, 6572-6577, https://doi.org/10.1021/jf030269c . [all data]

Wanakhachornkrai and Lertsiri, 2003
Wanakhachornkrai, P.; Lertsiri, S., Analytical, nutritional, and clinical methods. Comparison of determination method for volatile compounds in Thai soy sauce, Food Chem., 2003, 83, 4, 619-629, https://doi.org/10.1016/S0308-8146(03)00256-5 . [all data]

Lecanu, Ducruet, et al., 2002
Lecanu, L.; Ducruet, V.; Jouquand, C.; Gratadoux, J.J.; Feigenbaum, A., Optimization of headspace solid-phase microextraction (SPME) for the odor analysis of surface-ripened cheese, J. Agric. Food Chem., 2002, 50, 13, 3810-3817, https://doi.org/10.1021/jf0117107 . [all data]

Umano, Hagi, et al., 2002
Umano, K.; Hagi, Y.; Shibamoto, T., Volatile chemicals identified in extracts from newly hybrid citrus, dekopon (Shiranuhi mandarin Suppl. J.), J. Agric. Food Chem., 2002, 50, 19, 5355-5359, https://doi.org/10.1021/jf0203951 . [all data]

Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S., Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix, Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8 . [all data]

Wei, Mura, et al., 2001
Wei, A.; Mura, K.; Shibamoto, T., Antioxidative activity of volatile chemicals extracted from beer, J. Agric. Food Chem., 2001, 49, 8, 4097-4101, https://doi.org/10.1021/jf010325e . [all data]

Girard and Durance, 2000
Girard, B.; Durance, T., Headspace volatiles of sockeye and pink salmon as affected by retort process, Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]

Lee and Shibamoto, 2000
Lee, K.-G.; Shibamoto, T., Antioxidant properties of aroma compounds isolated from soybeans and mung beans, J. Agric. Food Chem., 2000, 48, 9, 4290-4293, https://doi.org/10.1021/jf000442u . [all data]

Tamura, Boonbumrung, et al., 2000
Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W., Volatile components of the essential oil in the pulp of four yellow mangoes (Mangifera indica L.) in Thailand, Food Sci. Technol. Res., 2000, 6, 1, 68-73, https://doi.org/10.3136/fstr.6.68 . [all data]

Umano, Hagi, et al., 2000
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T., Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps Pamp.), J. Agric. Food Chem., 2000, 48, 8, 3463-3469, https://doi.org/10.1021/jf0001738 . [all data]

Iwatsuki, Mizota, et al., 1999
Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M., Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis, Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46, 9, 587-597, https://doi.org/10.3136/nskkk.46.587 . [all data]

Umano, Nakahara, et al., 1999
Umano, K.; Nakahara, K.; Shoji, A.; Shibamoto, T., Aroma chemicals isolated and identified from leaves of aloe arborescens Mill. Var. natalensis Berger, J. Agric. Food Chem., 1999, 47, 9, 3702-3705, https://doi.org/10.1021/jf990116i . [all data]

Anker, Jurs, et al., 1990
Anker, L.S.; Jurs, P.C.; Edwards, P.A., Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups, Anal. Chem., 1990, 62, 24, 2676-2684, https://doi.org/10.1021/ac00223a006 . [all data]

Mihara, Tateba, et al., 1988
Mihara, S.; Tateba, H.; Nishimura, O.; Machii, Y.; Kishino, K., The volatile components of Chinese quince (Pseudocydonia sinensis Schneid) in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 537-550. [all data]

Mihara, Tateba, et al., 1987
Mihara, S.; Tateba, H.; Nishimura, O.; Machii, Y.; Kishino, K., Volatile components of Chinese quince (Pseudocydonia sinensis Schneid), J. Agric. Food Chem., 1987, 35, 4, 532-537, https://doi.org/10.1021/jf00076a023 . [all data]

Labropoulos, Palmer, et al., 1982
Labropoulos, A.E.; Palmer, J.K.; Tao, P., Flavor evaluation and characterization of yogurt as affected by ultra-high temperature and vat processes, J. Dairy Sci., 1982, 65, 2, 191-196, https://doi.org/10.3168/jds.S0022-0302(82)82176-0 . [all data]

Tsao, 1969
Tsao, J.C.Y., Prelimivary reports on structural study via mercury-sensitized photolysis and gas chromatography, J. Chin. Chem. Soc., 1969, 16, 4, 152-163. [all data]

Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A., Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection, J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002 . [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Povolo, Cabassi, et al., 2011
Povolo, M.; Cabassi, G.; Profaizer, M.; Lanteri, S., Study on the use of evolved gas analysis FT-IR (EGA FT-IR) for the evaluation of cheese volatile fraction, The Open Food Sci. J., 2011, 5, 1, 10-16, https://doi.org/10.2174/1874256401105010010 . [all data]

Cajka, Riddellova, et al., 2010
Cajka, T.; Riddellova, K.; Klimankova, E.; Carna, M.; Pudil, F.; Hajslova, J., Traceability of olive oil based on volatiles pattern and multivariante analysis, Food Chem., 2010, 121, 1, 282-289, https://doi.org/10.1016/j.foodchem.2009.12.011 . [all data]

Kadar, Juan-Borras, et al., 2010
Kadar, M.; Juan-Borras, M.; Hellebrandova, M.; Domenech, E.; Escriche, I., Volatile fraction composition of Acacia (Robinia pseudoacacia) honey from Romania, Spain, and Check Republic, Bull. USAMV Agriculture, 2010, 67, 2, 259-265. [all data]

Vekiari, Orepoulou, et al., 2010
Vekiari, S.A.; Orepoulou, V.; Kourkoutas, Y.; Kamoun, N.; Msallem, M.; Psimouli, V.; Arapoglou, D., Characterization and seasonal variations of the quality of virgin olive oil of the Thoumbolia and Koroneiki varieties from Southern Greece, Grasas y Aceites, 2010, 61, 3, 221-231, https://doi.org/10.3989/gya.108709 . [all data]

Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Some aspects of dynamic headspace analysis of volatile components in honey, Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010 . [all data]

Berard, Bianchi, et al., 2007
Berard, J.; Bianchi, F.; Careri, M.; Chatel, A.; Mangia, A.; Musci, M., Characterization of the volatile fraction and of free fatty acids of Fontina Valle d'Aosta, a protected designation of origin Italian cheese, Food Chem., 2007, 105, 1, 293-300, https://doi.org/10.1016/j.foodchem.2006.11.041 . [all data]

Viegas and Bassoli, 2007
Viegas, M.C.; Bassoli, D.G., Utilizacao do indice de retencao linear para caracterizacao de compostos volateis em cafe soluvel utilizando GC-MS e coluna HP-Innowax, Quim. Nova, 2007, 30, 8, 2031-2034, https://doi.org/10.1590/S0100-40422007000800040 . [all data]

Kourkoutas, Kandylis, et al., 2006
Kourkoutas, Y.; Kandylis, P.; Panas, P.; Dooley, J.S.G.; Nigam, P.; Koutinas, A.A., Evaluation of freeze-dried kefir coculture as starter in feta-type cheese production, Appl. Environ. Microbiol., 2006, 72, 9, 6124-6135, https://doi.org/10.1128/AEM.03078-05 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Muresan, Eillebrecht, et al., 2000
Muresan, S.; Eillebrecht, M.A.J.L.; de Rijk, T.C.; de Jonge, H.G.; Leguijt, T.; Nijhuis, H.H., Aroma profile development of intermediate chocolate products. I. Volatile constituents of block-milk, Food Chem., 2000, 68, 2, 167-174, https://doi.org/10.1016/S0308-8146(99)00171-5 . [all data]

Castioni and Kapetanidis, 1996
Castioni, P.; Kapetanidis, I., Volatile constituents from Brunfelsia grandiflora ssp. grandiflora: qualitative analysis by GC-MS, Scientia Pharmaceutica, 1996, 64, 83-91. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Shibamoto, 1987
Shibamoto, T., Retention Indices in Essential Oil Analysis in Capillary Gas Chromatography in Essential Oil Analysis, Sandra, P.; Bicchi, C., ed(s)., Hutchig Verlag, Heidelberg, New York, 1987, 259-274. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

MacLeod and Pieris, 1981
MacLeod, A.J.; Pieris, N.M., Volatile flavor components of beli fruit (Aegle marmelos) and a processed product, J. Agric. Food Chem., 1981, 29, 6, 1262-1264, https://doi.org/10.1021/jf00108a040 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References