Ethylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Δr1704. ± 9.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1677.8 ± 2.1kJ/molIMREErvin, Gronert, et al., 1990gas phase; B
Δr1670. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr1668. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

C7H4CrO5 (g) = C5CrO5 (g) + Ethylene (g)

By formula: C7H4CrO5 (g) = C5CrO5 (g) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr105. ± 4.kJ/molKinGMcNamara, Becher, et al., 1994The reaction enthalpy was identified with the activation energy.; MS
Δr103. ± 10.kJ/molKinGWells, House, et al., 1994The reaction enthalpy relies on the measured activation energy and on the assumption of a negligible barrier for product recombination Wells, House, et al., 1994.; MS

Silver ion (1+) + Ethylene = (Silver ion (1+) • Ethylene)

By formula: Ag+ + C2H4 = (Ag+ • C2H4)

Quantity Value Units Method Reference Comment
Δr141.kJ/molHPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.5J/mol*KN/AGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
71.5750.HPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

NH4+ + Ethylene = (NH4+ • Ethylene)

By formula: H4N+ + C2H4 = (H4N+ • C2H4)

Quantity Value Units Method Reference Comment
Δr42.kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.294.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Ethylene = (Cobalt ion (1+) • Ethylene)

By formula: Co+ + C2H4 = (Co+ • C2H4)

Quantity Value Units Method Reference Comment
Δr186. ± 9.2kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
179. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
27. (+13.,-0.) CIDHaynes and Armentrout, 1994gas phase; ΔrH>=, guided ion beam CID; M

Ethyl Chloride = Ethylene + Hydrogen chloride

By formula: C2H5Cl = C2H4 + HCl

Quantity Value Units Method Reference Comment
Δr92.0kJ/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS
Δr71.5kJ/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS
Δr72.6 ± 2.1kJ/molEqkHowlett, 1955gas phase; ALS
Δr71.5kJ/molEqkLane, Linnett, et al., 1953gas phase; ALS

Chromium ion (1+) + Ethylene = (Chromium ion (1+) • Ethylene)

By formula: Cr+ + C2H4 = (Cr+ • C2H4)

Quantity Value Units Method Reference Comment
Δr96. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
125. (+19.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Nickel ion (1+) + Ethylene = (Nickel ion (1+) • Ethylene)

By formula: Ni+ + C2H4 = (Ni+ • C2H4)

Quantity Value Units Method Reference Comment
Δr182. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
138. (+19.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Copper ion (1+) + Ethylene = (Copper ion (1+) • Ethylene)

By formula: Cu+ + C2H4 = (Cu+ • C2H4)

Quantity Value Units Method Reference Comment
Δr176. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
95. (+11.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Scandium ion (1+) + Ethylene = (Scandium ion (1+) • Ethylene)

By formula: Sc+ + C2H4 = (Sc+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
131. CIDArmentrout and Kickel, 1994gas phase; ΔrH >=, guided ion beam CID; M

Lanthanum ion (1+) + Ethylene = (Lanthanum ion (1+) • Ethylene)

By formula: La+ + C2H4 = (La+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
90.0 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Yttrium ion (1+) + Ethylene = (Yttrium ion (1+) • Ethylene)

By formula: Y+ + C2H4 = (Y+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
109. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Titanium ion (1+) + Ethylene = (Titanium ion (1+) • Ethylene)

By formula: Ti+ + C2H4 = (Ti+ • C2H4)

Quantity Value Units Method Reference Comment
Δr146. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
119. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Vanadium ion (1+) + Ethylene = (Vanadium ion (1+) • Ethylene)

By formula: V+ + C2H4 = (V+ • C2H4)

Quantity Value Units Method Reference Comment
Δr125. ± 7.9kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
117. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Iron ion (1+) + Ethylene = (Iron ion (1+) • Ethylene)

By formula: Fe+ + C2H4 = (Fe+ • C2H4)

Quantity Value Units Method Reference Comment
Δr145. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
145. (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Ethylene + Bromine = Ethane, 1,2-dibromo-

By formula: C2H4 + Br2 = C2H4Br2

Quantity Value Units Method Reference Comment
Δr-120.9 ± 1.3kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -121.6 ± 1.3 kJ/mol; At 355 °K; ALS

Ethylene + Iodine = Ethane, 1,2-diiodo-

By formula: C2H4 + I2 = C2H4I2

Quantity Value Units Method Reference Comment
Δr-48.1 ± 0.8kJ/molEqkAbrams and Davis, 1954gas phase; ALS
Δr-56. ± 2.kJ/molEqkCutherbertson and Kistiakowsky, 1935gas phase; Heat of dissociation; ALS

(Silver ion (1+) • Ethylene) + Ethylene = (Silver ion (1+) • 2Ethylene)

By formula: (Ag+ • C2H4) + C2H4 = (Ag+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr136.kJ/molHPMSGuo and Castleman, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KHPMSGuo and Castleman, 1991gas phase; M

Hydrogen + Ethylene = Ethane

By formula: H2 + C2H4 = C2H6

Quantity Value Units Method Reference Comment
Δr-136. ± 2.kJ/molChydKistiakowsky and Nickle, 1951gas phase; ALS
Δr-136.3 ± 0.3kJ/molChydKistiakowsky, Romeyn, et al., 1935gas phase; ALS

Ethyl bromide = Hydrogen bromide + Ethylene

By formula: C2H5Br = HBr + C2H4

Quantity Value Units Method Reference Comment
Δr80.3 ± 2.1kJ/molEqkLane, Linnett, et al., 1953gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 79.9 kJ/mol; ALS

C3H9Si+ + Ethylene = (C3H9Si+ • Ethylene)

By formula: C3H9Si+ + C2H4 = (C3H9Si+ • C2H4)

Quantity Value Units Method Reference Comment
Δr98.7kJ/molPHPMSLi and Stone, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr161.J/mol*KPHPMSLi and Stone, 1989gas phase; M

C2H4+ + Ethylene = (C2H4+ • Ethylene)

By formula: C2H4+ + C2H4 = (C2H4+ • C2H4)

Quantity Value Units Method Reference Comment
Δr66.1kJ/molPIOno, Linn, et al., 1984gas phase; M
Δr76.1kJ/molPICeyer, Tiedemann, et al., 1979gas phase; M

C6H4FeO4 (l) = 4Carbon monoxide (g) + iron (cr) + Ethylene (g)

By formula: C6H4FeO4 (l) = 4CO (g) + Fe (cr) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr192.5 ± 8.4kJ/molHAL-HFCBrown, Connor, et al., 1976MS
Δr185.4kJ/molTD-HFCBrown, Connor, et al., 1976MS

Bicyclo[2.2.2]oct-2-ene = 1,3-Cyclohexadiene + Ethylene

By formula: C8H12 = C6H8 + C2H4

Quantity Value Units Method Reference Comment
Δr136.kJ/molKinHuybrechts, Rigaux, et al., 1980gas phase; Diels-Alder addition at 560°K, see Van Mele, Boon, et al., 1986; ALS

Fluorine anion + Ethylene = (Fluorine anion • Ethylene)

By formula: F- + C2H4 = (F- • C2H4)

Quantity Value Units Method Reference Comment
Δr25. ± 13.kJ/molIMRBSullivan and Beauchamp, 1976gas phase; Structure: Roy and McMahon, 1985; B

Rh+ + Ethylene = (Rh+ • Ethylene)

By formula: Rh+ + C2H4 = (Rh+ • C2H4)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
161. (+3.,-0.) CIDChen and Armetrout, 1995gas phase; guided ion beam CID; M

C7H9Cl2NPd (solution) + 1,3-Diazine (l) = (PdCl2(C5H5N)2) (solution) + Ethylene (solution)

By formula: C7H9Cl2NPd (solution) + C4H4N2 (l) = (PdCl2(C5H5N)2) (solution) + C2H4 (solution)

Quantity Value Units Method Reference Comment
Δr-57.7 ± 1.7kJ/molRSCPartenheimer and Durham, 1974solvent: Dichloromethane; MS

Rhodium, bis(η2-ethene)(2,4-pentanedionato-O,O')- (solution) + 1,5-Cyclooctadiene, (Z,Z)- (solution) = C13H19O2Rh (solution) + 2Ethylene (solution)

By formula: C9H15O2Rh (solution) + C8H12 (solution) = C13H19O2Rh (solution) + 2C2H4 (solution)

Quantity Value Units Method Reference Comment
Δr-9.0 ± 0.4kJ/molRSCJesse, Cordfunke, et al., 1979solvent: n-Heptane; MS

Hydrogen bromide (g) + C2H3BrMg (solution) = Ethylene (solution) + Br2Mg (solution)

By formula: HBr (g) + C2H3BrMg (solution) = C2H4 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-294.1 ± 2.2kJ/molRSCHolm, 1981solvent: Tetrahydrofuran; MS

C6HCrO6+ + Ethylene = (C6HCrO6+ • Ethylene)

By formula: C6HCrO6+ + C2H4 = (C6HCrO6+ • C2H4)

Quantity Value Units Method Reference Comment
Δr59.8 ± 5.0kJ/molICRCDHop and McMahon, 1991gas phase; Ar collision gas; M

Aluminum ion (1+) + Ethylene = (Aluminum ion (1+) • Ethylene)

By formula: Al+ + C2H4 = (Al+ • C2H4)

Quantity Value Units Method Reference Comment
Δr54.4 ± 8.4kJ/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

(CAS Reg. No. 25013-41-6 • 4294967295Ethylene) + Ethylene = CAS Reg. No. 25013-41-6

By formula: (CAS Reg. No. 25013-41-6 • 4294967295C2H4) + C2H4 = CAS Reg. No. 25013-41-6

Quantity Value Units Method Reference Comment
Δr54.0 ± 8.8kJ/molN/ADePuy, Gronert, et al., 1989gas phase; B

Hydrogen + Ethene, chloro- = Ethylene + Hydrogen chloride

By formula: H2 + C2H3Cl = C2H4 + HCl

Quantity Value Units Method Reference Comment
Δr-76.94kJ/molChydLacher, Kianpour, et al., 1956gas phase; At 298 K; ALS

Ethylene + Chlorine = Ethane, 1,2-dichloro-

By formula: C2H4 + Cl2 = C2H4Cl2

Quantity Value Units Method Reference Comment
Δr-182.6 ± 0.63kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; At 355 °K; ALS

Ethane, 1-chloro-2-iodo- = Iodine atom + Chlorine atom + Ethylene

By formula: C2H4ClI = I + Cl + C2H4

Quantity Value Units Method Reference Comment
Δr320. ± 4.2kJ/molKinMinton, Felder, et al., 1984gas phase; ALS

(C2H4+ • Ethylene) + Ethylene = (C2H4+ • 2Ethylene)

By formula: (C2H4+ • C2H4) + C2H4 = (C2H4+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr18.kJ/molPICeyer, Tiedemann, et al., 1979gas phase; M

C12H14Mo (cr) + Iodine (cr) = C10H10I2Mo (cr) + Ethylene (g)

By formula: C12H14Mo (cr) + I2 (cr) = C10H10I2Mo (cr) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-163.0 ± 2.1kJ/molRSCCalhorda, Carrondo, et al., 1991MS

Rhodium, bis(η2-ethene)(2,4-pentanedionato-O,O')- (cr) + 2Carbon monoxide (g) = Rhodium, dicarbonyl(2,4-pentanedionato-O,O')-, (SP-4-2)- (cr) + 2Ethylene (g)

By formula: C9H15O2Rh (cr) + 2CO (g) = C7H7O4Rh (cr) + 2C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-53.6 ± 1.7kJ/molDSCJesse, Baks, et al., 1978MS

C9H15IrO2 (cr) + 2Carbon monoxide (g) = C7H7IrO4 (cr) + 2Ethylene (g)

By formula: C9H15IrO2 (cr) + 2CO (g) = C7H7IrO4 (cr) + 2C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-74.1 ± 4.6kJ/molDSCJesse, Baks, et al., 1978MS

(Iron ion (1+) • Ethylene) + Ethylene = (Iron ion (1+) • 2Ethylene)

By formula: (Fe+ • C2H4) + C2H4 = (Fe+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr151. ± 15.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Chromium ion (1+) • Ethylene) + Ethylene = (Chromium ion (1+) • 2Ethylene)

By formula: (Cr+ • C2H4) + C2H4 = (Cr+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr108. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Manganese ion (1+) • Ethylene) + Ethylene = (Manganese ion (1+) • 2Ethylene)

By formula: (Mn+ • C2H4) + C2H4 = (Mn+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr88. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Vanadium ion (1+) • Ethylene) + Ethylene = (Vanadium ion (1+) • 2Ethylene)

By formula: (V+ • C2H4) + C2H4 = (V+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr127. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Nickel ion (1+) • Ethylene) + Ethylene = (Nickel ion (1+) • 2Ethylene)

By formula: (Ni+ • C2H4) + C2H4 = (Ni+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr173. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Cobalt ion (1+) • Ethylene) + Ethylene = (Cobalt ion (1+) • 2Ethylene)

By formula: (Co+ • C2H4) + C2H4 = (Co+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr152. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Copper ion (1+) • Ethylene) + Ethylene = (Copper ion (1+) • 2Ethylene)

By formula: (Cu+ • C2H4) + C2H4 = (Cu+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr174. ± 13.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

2-Norbornene = 1,3-Cyclopentadiene + Ethylene

By formula: C7H10 = C5H6 + C2H4

Quantity Value Units Method Reference Comment
Δr97.2 ± 2.5kJ/molEqkWalsh and Wells, 1976gas phase; ALS

2Ethylene = Cyclobutane

By formula: 2C2H4 = C4H8

Quantity Value Units Method Reference Comment
Δr-86.6 ± 4.2kJ/molEqkQuick, Knecht, et al., 1972gas phase; At 750 K; ALS

Ethane, 1,2-diiodo- = Ethylene + Iodine

By formula: C2H4I2 = C2H4 + I2

Quantity Value Units Method Reference Comment
Δr48.1 ± 0.8kJ/molEqkBenson and Amano, 1962gas phase; ALS

2-Butene, (E)- + Ethylene = cyclobutane, 1,2-dimethyl-, trans-

By formula: C4H8 + C2H4 = C6H12

Quantity Value Units Method Reference Comment
Δr-69.9kJ/molEqkScacchi and Back, 1977liquid phase; ALS

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C2H4+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.5138 ± 0.0006eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)680.5kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity651.5kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Δf(+) ion1067. ± 0.8kJ/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K1080.kJ/molN/AN/A 

Ionization energy determinations

IE (eV) Method Reference Comment
10.51CIOhno, Okamura, et al., 1995LL
10.5138 ± 0.0006LSWilliams and Cool, 1991LL
10.51 ± 0.015EIPlessis and Marmet, 1986LBLHLM
10.509 ± 0.005EVALPlessis and Marmet, 1986LBLHLM
10.51PEKimura, Katsumata, et al., 1981LLK
10.50 ± 0.02PIWood and Taylor, 1979LLK
10.514 ± 0.007PECarlier and Botter, 1979LLK
10.51PESell, Mintz, et al., 1978LLK
10.51 ± 0.02PEBieri, Burger, et al., 1977LLK
~10.5EIVan Veen, 1976LLK
10.517 ± 0.002TEStockbauer and Inghram, 1975LLK
10.517 ± 0.003TEStockbauer and Inghram, 1975, 2LLK
10.51PIRabalais, Debies, et al., 1974LLK
10.5EIMaeda, Suzuki, et al., 1974LLK
10.507 ± 0.004PIKnowles and Nicholson, 1974LLK
10.51 ± 0.01EIGordon, Krige, et al., 1974LLK
10.515 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
10.51PEBeez, Bieri, et al., 1973LLK
10.51PEMason, Kuppermann, et al., 1972LLK
10.51PEBrundle, Robin, et al., 1972LLK
10.56PEFrost and Sandhu, 1971LLK
10.51 ± 0.02PEBranton, Frost, et al., 1970RDSH
10.51 ± 0.05PEEland, 1969RDSH
10.50 ± 0.05EIWilliams and Hamill, 1968RDSH
10.51PEBaker, Baker, et al., 1968RDSH
10.511 ± 0.005PIBrehm, 1966RDSH
10.50 ± 0.01PIBotter, Dibeler, et al., 1966RDSH
10.507 ± 0.004PINicholson, 1965RDSH
10.50 ± 0.02PIMomigny, 1963RDSH
10.52 ± 0.01PIWatanabe, 1954RDSH
10.51 ± 0.03SPrice and Tutte, 1940RDSH
10.80 ± 0.05EIKusch, Hustrulid, et al., 1937RDSH
10.68PEBieri and Asbrink, 1980Vertical value; LLK
10.50 ± 0.01PEKrause, Taylor, et al., 1978Vertical value; LLK
10.5PEKobayashi, 1978Vertical value; LLK
10.5PEWhite, Carlson, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+≤18.30 ± 0.16CH4EIPlessis and Marmet, 1986LBLHLM
C+24.4?EIMaeda, Suzuki, et al., 1974LLK
C+24.6 ± 0.5?EIKusch, Hustrulid, et al., 1937RDSH
CH+17.68 ± 0.16CH3EIPlessis and Marmet, 1986LBLHLM
CH+22.1?EIMaeda, Suzuki, et al., 1974LLK
CH+22.9 ± 0.5?EIKusch, Hustrulid, et al., 1937RDSH
CH2+17.82 ± 0.06CH2EIPlessis and Marmet, 1986LBLHLM
CH2+18.04 ± 0.04CH2TEStockbauer and Inghram, 1975, 2LLK
CH2+18.4CH2EIMaeda, Suzuki, et al., 1974LLK
CH2+18.05CH2PIChupka, Berkowitz, et al., 1969RDSH
CH2+19.2 ± 0.3?EIKusch, Hustrulid, et al., 1937RDSH
CH3+15.60 ± 0.20CH-EIPlessis and Marmet, 1986LBLHLM
CH3+16.95 ± 0.15CHEIPlessis and Marmet, 1986LBLHLM
CH3+19.3?EIMaeda, Suzuki, et al., 1974LLK
CH4+18.66C-EIPlessis and Marmet, 1986LBLHLM
C2+24.5?EIMaeda, Suzuki, et al., 1974LLK
C2+26.4 ± 1.02H+H2EIKusch, Hustrulid, et al., 1937RDSH
C2H+18.7H+H2EIMaeda, Suzuki, et al., 1974LLK
C2H+19.2 ± 1.0H+H2EIKusch, Hustrulid, et al., 1937RDSH
C2H2+13.14 ± 0.03H2EIPlessis and Marmet, 1986LBLHLM
C2H2+13.2 ± 0.1H2PIPECOBombach, Dannacher, et al., 1984T = 0K; LBLHLM
C2H2+13.55H2PIWood and Taylor, 1979LLK
C2H2+13.13 ± 0.04H2EIGordon, Harvey, et al., 1977LLK
C2H2+13.0 ± 0.1H2EIGordon, Harvey, et al., 1977LLK
C2H2+13.14 ± 0.01H2TEStockbauer and Inghram, 1975, 2LLK
C2H2+13.1H2EIMaeda, Suzuki, et al., 1974LLK
C2H2+13.11 ± 0.02H2EIGordon, Krige, et al., 1974LLK
C2H2+13.13 ± 0.02H2PIChupka, Berkowitz, et al., 1969RDSH
C2H2+12.96 ± 0.02H2PIBrehm, 1966RDSH
C2H2+13.12 ± 0.03H2PIBotter, Dibeler, et al., 1966RDSH
C2H2+13.4 ± 0.2H2EIKusch, Hustrulid, et al., 1937RDSH
C2H3+12.35 ± 0.10H-EIPlessis and Marmet, 1986LBLHLM
C2H3+13.10 ± 0.08HEIPlessis and Marmet, 1986LBLHLM
C2H3+13.3 ± 0.1HPIPECOBombach, Dannacher, et al., 1984T = 0K; LBLHLM
C2H3+13.55HPIWood and Taylor, 1979LLK
C2H3+13.22 ± 0.02HTEStockbauer and Inghram, 1975, 2LLK
C2H3+13.6HEIMaeda, Suzuki, et al., 1974LLK
C2H3+13.31 ± 0.03HEIGordon, Krige, et al., 1974LLK
C2H3+13.52 ± 0.04HEIFinney and Harrison, 1972LLK
C2H3+13.25 ± 0.05HPIChupka, Berkowitz, et al., 1969RDSH
C2H3+13.37 ± 0.03HPIBrehm, 1966RDSH
C2H3+14.1 ± 0.1HEIKusch, Hustrulid, et al., 1937RDSH
H+18.66 ± 0.05C2H3C2H3Shiromaru, Achiba, et al., 1987LBLHLM
H+26.2 ± 1.5C2H3EIKusch, Hustrulid, et al., 1937RDSH
H2+22.4 ± 1.5?EIKusch, Hustrulid, et al., 1937RDSH

De-protonation reactions

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Δr1704. ± 9.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1677.8 ± 2.1kJ/molIMREErvin, Gronert, et al., 1990gas phase; B
Δr1670. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr1668. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

McNamara, Becher, et al., 1994
McNamara, B.; Becher, D.M.; Towns, M.H.; Grant, E.R., J. Phys. Chem., 1994, 98, 4622. [all data]

Wells, House, et al., 1994
Wells, J.R.; House, P.G.; Weitz, E., J. Phys. Chem., 1994, 98, 8343. [all data]

Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W., The Bonding Strength of Ag+(C2H4) and Ag+(C2H4)2 Complexes, Chem. Phys. Lett., 1991, 181, 1, 16, https://doi.org/10.1016/0009-2614(91)90214-T . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Sievers, Jarvis, et al., 1998
Sievers, M.R.; Jarvis, L.M.; Armentrout, P.B., Transition Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M=Ti-Cu, n=1 and 2) Complexes, J. Am. Chem. Soc., 1998, 120, 8, 1891, https://doi.org/10.1021/ja973834z . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B., Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers, Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022 . [all data]

Levanova, Bushneva, et al., 1979
Levanova, s.V.; Bushneva, I.I.; Rodova, R.M.; Rozhnov, A.M.; Treger, Yu.A.; Aprelkin, A.S., Thermodynamic stability of chloroethanes in dehydrochlorination reactions, J. Appl. Chem. USSR, 1979, 52, 1439-1442. [all data]

Howlett, 1955
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part II, J. Chem. Soc., 1955, 1784-17. [all data]

Lane, Linnett, et al., 1953
Lane, M.R.; Linnett, J.W.; Oswin, H.G., A study of the C2H4+HCl=C2H5Cl and C2H4+Hbr=C2H5Br equilibria, Proc. Roy. Soc. London A, 1953, 216, 361-374. [all data]

Ranashinge and Freiser, 1992
Ranashinge, Y.A.; Freiser, B.S., Gas-Phase Photodissociation of MC2H2+ (M = Sc, Y, La). Determination of D0(M+ - C2H2), Chem. Phys. Let., 1992, 200, 1-2, 135, https://doi.org/10.1016/0009-2614(92)87058-W . [all data]

Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VII. Addition of halogens to olefins, J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Abrams and Davis, 1954
Abrams, A.; Davis, T.W., Use of radioactive iodine to determine equilibrium constants in ethylene-iodine-1,2-diiodoethane systems, J. Am. Chem. Soc., 1954, 76, 5993-59. [all data]

Cutherbertson and Kistiakowsky, 1935
Cutherbertson, G.R.; Kistiakowsky, G.B., The thermal equilibrium between ethylene iodide, ethylene and iodine, J. Chem. Phys., 1935, 3, 631-634. [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Romeyn, et al., 1935
Kistiakowsky, G.B.; Romeyn, H., Jr.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. I. The apparatus and the heat of hydrogenation of ethylene, J. Am. Chem. Soc., 1935, 57, 65-75. [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Ono, Linn, et al., 1984
Ono, Y.; Linn, S.H.; Tzeng, W.-B.; Ng, C.Y., A Study of the Unimolecular Decomposition of the (C2H4)2+ Complex, J. Chem. Phys., 1984, 80, 4, 1482, https://doi.org/10.1063/1.446897 . [all data]

Ceyer, Tiedemann, et al., 1979
Ceyer, S.T.; Tiedemann, P.W.; Ng, C.Y.; Mahan, B.H.; Lee, Y.T., Photoionization of Ethylene Clusters, J. Chem. Phys., 1979, 70, 5, 2138, https://doi.org/10.1063/1.437758 . [all data]

Brown, Connor, et al., 1976
Brown, D.L.S.; Connor, J.A.; Leung, M.L.; Paz-Andrade, M.I.; Skinner, H.A., J. Organometal. Chem., 1976, 110, 79. [all data]

Huybrechts, Rigaux, et al., 1980
Huybrechts, G.; Rigaux, D.; Vankeerberghen, J.; Van Mele, B., Kinetics of the Diels-Alder addition of ethene to cyclohexa-1,3-diene and its reverse reaction in the gas phase, Int. J. Chem. Kinet., 1980, 12, 253-259. [all data]

Van Mele, Boon, et al., 1986
Van Mele, B.; Boon, G.; Huybrechts, G., Gas-phase kinetic and thermochemical data for endo- and exo-5-monosubstituted bicyclo[2.2.2]oct-2-enes, Int. J. Chem. Kinet., 1986, 18, 537-545. [all data]

Sullivan and Beauchamp, 1976
Sullivan, S.A.; Beauchamp, J.L., Competition between proton transfer and elimination in the reactions of strong bases with fluoroethanes in the gas phase. Influence of base strength on reactivity, J. Am. Chem. Soc., 1976, 98, 1160. [all data]

Roy and McMahon, 1985
Roy, M.; McMahon, T.B., The Anomalous Gas Phase Acidity of Ethyl Fluoride. An ab initio Investigation of the Importance of Hydrogen Bonding between Fluoride and sp2 and sp C-H Bonds., Can. J. Chem., 1985, 63, 3, 708, https://doi.org/10.1139/v85-117 . [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]

Partenheimer and Durham, 1974
Partenheimer, W.; Durham, B., J. Am. Chem. Soc., 1974, 96, 3800. [all data]

Jesse, Cordfunke, et al., 1979
Jesse, A.C.; Cordfunke, E.H.P.; Ouweltjes, W., Thermochim. Acta, 1979, 30, 293. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Hop and McMahon, 1991
Hop, C.E.C.A.; McMahon, T.B., High Pressure Mass Spectrometric Observation of Metal Carbonyl Alkyl Adduct Ions of Novel Structure, Inorg. Chem., 1991, 30, 13, 2828, https://doi.org/10.1021/ic00013a025 . [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k . [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D., Reaction calorimetry. The hydrogenation of organic fluorides and chlorides, Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]

Minton, Felder, et al., 1984
Minton, T.K.; Felder, P.; Brudzynski, R.J.; Lee, Y.T., Photodissociation of 1,2-chloroiodoethane at 248 and 266 nm: The enthalpy of formation of CH2ClCH2I, J. Chem. Phys., 1984, 81, 1759-1769. [all data]

Calhorda, Carrondo, et al., 1991
Calhorda, M.J.; Carrondo, M.A.A.F.C.T.; Dias, A.R.; Galvão, A.M.; Garcia, M.H.; Martins, A.M.; Minas da Piedade, M.E.; Pinheiro, C.I.; Romão, C.C.; Martinho Simões, J.A.; Veiros, L.F., Organometallics, 1991, 10, 483. [all data]

Jesse, Baks, et al., 1978
Jesse, A.C.; Baks, A.; Stufkens, D.J.; Vrieze, K., Inorg. Chim. Acta, 1978, 29, 177. [all data]

Walsh and Wells, 1976
Walsh, R.; Wells, J.M., The enthalpy of formation and thermodynamic functions of bicyclo[2,2,1]hept-2-ene, J. Chem. Thermodyn., 1976, 8, 55-60. [all data]

Quick, Knecht, et al., 1972
Quick, L.M.; Knecht, D.A.; Back, M.H., Kinetics of the formation of cyclobutane from ethylene, Int. J. Chem. Kinet., 1972, 4, 61-68. [all data]

Benson and Amano, 1962
Benson, S.W.; Amano, A., Thermodynamics of iodine addition to ethylene, propylene, and cyclopropane, J. Chem. Phys., 1962, 36, 3464-3471. [all data]

Scacchi and Back, 1977
Scacchi, G.; Back, M.H., The cycloaddition of ethylene to butene-2. II. Energy relations, Int. J. Chem. Kinet., 1977, 9, 525-534. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Ohno, Okamura, et al., 1995
Ohno, K.; Okamura, K.; Yamakado, H.; Hoshino, S.; Takami, T.; Yamauchi, M., Penning ionization of HCHO, CH2CH2, and CH2CHCHO by collision with He*(2 3S) metastable atoms, J. Phys. Chem., 1995, 99, 14247. [all data]

Williams and Cool, 1991
Williams, B.A.; Cool, T.A., Two-photon spectroscopy of Rydberg states of jet-cooled C2H4 and C2D4, J. Am. Chem. Soc., 1991, 94, 6358. [all data]

Plessis and Marmet, 1986
Plessis, P.; Marmet, P., Electroionization study of ethylene: Ionization and appearance energies, ion-pair formations, and negative ions, Can. J. Phys., 1986, 65, 165. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Wood and Taylor, 1979
Wood, K.V.; Taylor, J.W., A photoionization mass spectrometric study of autoionization in ethylene and trans-2-butene, Int. J. Mass Spectrom. Ion Phys., 1979, 30, 307. [all data]

Carlier and Botter, 1979
Carlier, J.; Botter, R., Photoelectron spectra of ethylene of the six deuterated derivatives, J. Electron Spectrosc. Relat. Phenom., 1979, 17, 91. [all data]

Sell, Mintz, et al., 1978
Sell, J.A.; Mintz, D.M.; Kupperman, A., Photoelectron angular distributions of carbon-carbon π electrons in ethylene, benzene, and their fluorinated derivatives, Chem. Phys. Lett., 1978, 58, 601. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Van Veen, 1976
Van Veen, E.H., Low-energy electron-impact spectroscopy on ethylene, Chem. Phys. Lett., 1976, 41, 540. [all data]

Stockbauer and Inghram, 1975
Stockbauer, R.; Inghram, M.G., Vibrational structure in the ground state of ethylene ethylene-d4 molecular ions investigated by threshold photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom., 1975, 7, 492. [all data]

Stockbauer and Inghram, 1975, 2
Stockbauer, R.; Inghram, M.G., Threshold photoelectron-photoion coincidence mass spectrometric study of ethylene and ethylene-d4, J. Chem. Phys., 1975, 62, 4862. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Maeda, Suzuki, et al., 1974
Maeda, K.; Suzuki, I.H.; Koyama, Y., Ionization efficiency curves of ethylene by electron impact, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 273. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Gordon, Krige, et al., 1974
Gordon, S.M.; Krige, G.J.; Reid, N.W., Isotope effects in the unimolecular decomposition of ethylene by low-energy electron impact, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 109. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Beez, Bieri, et al., 1973
Beez, M.; Bieri, G.; Bock, H.; Heilbronner, E., The ionization potentials of butadiene, hexatriene, andtheir methyl derivatives: evidence for through space interaction between double bond π-orbitals and non-bonded pseudo-π orbitals of methyl groups?, Helv. Chim. Acta, 1973, 56, 1028. [all data]

Mason, Kuppermann, et al., 1972
Mason, D.C.; Kuppermann, A.; Mintz, D.M., Angular distribution of electrons from the photoionization of ethylene in Electron Spectroscopy, ed. D.A. Shirley (North Holland, Amsterdam), 1972, 269. [all data]

Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H., Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules, J. Am. Chem. Soc., 1972, 94, 1451. [all data]

Frost and Sandhu, 1971
Frost, D.C.; Sandhu, J.S., Ionization potentials of ethylene and some methyl-substituted ethylenes as determined by photoelectron spectroscopy, Indian J. Chem., 1971, 9, 1105. [all data]

Branton, Frost, et al., 1970
Branton, G.R.; Frost, D.C.; Makita, T.; McDowell, C.A.; Stenhouse, I.A., Photoelectron spectra of ethylene and ethylene-d4, J. Chem. Phys., 1970, 52, 802. [all data]

Eland, 1969
Eland, J.H.D., Photoelectron spectra of conjugated hydrocarbons and heteromolecules, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W., The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Botter, Dibeler, et al., 1966
Botter, R.; Dibeler, V.H.; Walker, J.A.; Rosenstock, H.M., Mass-spectrometric study of photoionization. IV.Ethylene and 1,2-dideuteroethylene, J. Chem. Phys., 1966, 45, 1298. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Momigny, 1963
Momigny, J., Ionization potentials and the structures of the photo-ionization yield curves of ethylene and its halogeno derivatives, Nature, 1963, 199, 1179. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Price and Tutte, 1940
Price, W.C.; Tutte, W.T., The absorption spectra of ethylene, deutero-ethylene and some alkyl-substituted ethylenes in the vacuum ultra-violet, Proc. Roy. Soc. (London), 1940, A174, 207. [all data]

Kusch, Hustrulid, et al., 1937
Kusch, P.; Hustrulid, A.; Tate, J.T., The dissociation of HCN, C2H2, C2N2 and C2H4 by electron impact, Phys. Rev., 1937, 52, 843. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F., An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes, J. Am. Chem. Soc., 1978, 100, 718. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

White, Carlson, et al., 1974
White, R.M.; Carlson, T.A.; Spears, D.P., Angular distribution of the photoelectron spectra for ethylene, propylene, butene and butadiene, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 59. [all data]

Chupka, Berkowitz, et al., 1969
Chupka, W.A.; Berkowitz, J.; Refaey, K.M.A., Photoionization of ethylene with mass analysis, J. Chem. Phys., 1969, 50, 1938. [all data]

Bombach, Dannacher, et al., 1984
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., The rate/energy functions for the competitive fragmentation processes of ethylene and ethane cations, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 217. [all data]

Gordon, Harvey, et al., 1977
Gordon, S.M.; Harvey, G.A.; Jackson, J.R.; Tresling, J.D.; Van Niekerk, J.M., Computer-assisted retarding potential difference system for ionization efficiency measurements, Int. J. Mass Spectrom. Ion Phys., 1977, 23, 259. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Shiromaru, Achiba, et al., 1987
Shiromaru, H.; Achiba, Y.; Kimura, K.; Lee, Y.T., Determination of the C-H bond dissociation energies of ethylene and acetylene by observation of the threshold energies of H+ formation by synchrotron radiation, J. Phys. Chem., 1987, 91, 17. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References