1-Pentene
- Formula: C5H10
- Molecular weight: 70.1329
- IUPAC Standard InChIKey: YWAKXRMUMFPDSH-UHFFFAOYSA-N
- CAS Registry Number: 109-67-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: α-n-Amylene; Propylethylene; 1-C5H10; Pent-1-ene; 1-Pentene 95; Pentene-1
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C5H10 + H2 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -126.6 ± 2.4 | kJ/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Dioxane |
ΔrH° | -125.0 ± 1.8 | kJ/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Hexane |
ΔrH° | -122.6 ± 2.4 | kJ/mol | Chyd | Rogers and Skanupong, 1974 | liquid phase; solvent: Hexane |
ΔrH° | -119. ± 1. | kJ/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon |
By formula: C5H10 = C5H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.9 ± 0.8 | kJ/mol | Eqk | Egger and Benson, 1966 | gas phase; Heat of Isomerization |
By formula: C5H11Cl = C5H10 + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.6 | kJ/mol | Eqk | Karaseva and Andreevskii, 1969 | gas phase |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C5H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.49 ± 0.03 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.50 | PI | Traeger, 1986 | LBLHLM |
9.52 ± 0.05 | EI | Holmes and Lossing, 1983 | LBLHLM |
9.42 ± 0.02 | PE | Ashmore and Burgess, 1978 | LLK |
9.52 ± 0.02 | PE | Bieri, Burger, et al., 1977 | LLK |
9.524 ± 0.003 | PE | Masclet, Grosjean, et al., 1973 | LLK |
9.48 | EI | Lossing, 1972 | LLK |
9.82 ± 0.06 | EI | Gross and Wilkins, 1971 | LLK |
9.50 ± 0.02 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
9.50 ± 0.02 | PI | Steiner, Giese, et al., 1961 | RDSH |
9.68 ± 0.01 | PE | Krause, Taylor, et al., 1978 | Vertical value; LLK |
9.54 ± 0.02 | PE | Bunzli, Burak, et al., 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C3H6+ | 10.68 ± 0.02 | C2H4 | PI | Brand and Baer, 1984 | LBLHLM |
C3H6+ | 11.61 ± 0.08 | C2H4 | EI | Gross and Wilkins, 1971 | LLK |
C4H7+ | 10.50 | CH3 | PI | Traeger, 1986 | LBLHLM |
C4H7+ | 10.64 | CH3 | EI | Brand and Baer, 1984 | LBLHLM |
C4H7+ | 10.63 ± 0.02 | CH3 | PI | Brand and Baer, 1984 | LBLHLM |
C4H7+ | 10.64 | CH3 | EI | Lossing, 1972 | LLK |
C4H7+ | 11.35 ± 0.07 | CH3 | EI | Gross and Wilkins, 1971 | LLK |
References
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R.,
Heats of hydrogenation by a simple and rapid flow calorimetric method,
Appl. Catal., 1984, 9, 219-223. [all data]
Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S.,
Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect,
J. Phys. Chem., 1974, 78, 2569-2572. [all data]
Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J.,
A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring,
Tetrahedron, 1971, 27, 3765-3775. [all data]
Egger and Benson, 1966
Egger, K.W.; Benson, S.W.,
Nitric oxide and iodine catalyzed isomerization of olefins. VI. Thermodynamic data from equilibrium studies of the geometrical and positional isomerization of n-pentenes,
J. Am. Chem. Soc., 1966, 88, 236-240. [all data]
Karaseva and Andreevskii, 1969
Karaseva, S.Ya.; Andreevskii, D.N.,
Equilibrium in the isomerisation of secondary monochloropentanes and the dehydrochlorination of 2-chloropentane,
Russ. J. Phys. Chem. (Engl. Transl.), 1969, 43, 1236-1238. [all data]
Traeger, 1986
Traeger, J.C.,
Heat of formation for the 1-methylallyl cation by photoionization mass spectrometry,
J. Phys. Chem., 1986, 90, 4114. [all data]
Holmes and Lossing, 1983
Holmes, J.L.; Lossing, F.P.,
The need for adequate thermochemical data for the interpretation of fragmentation mechanisms and ion structure assignments,
Int. J. Mass Spectrom. Ion Phys., 1983, 47, 133. [all data]
Ashmore and Burgess, 1978
Ashmore, F.S.; Burgess, A.R.,
Photoelectron spectra of the unbranched C5-C7 alkenes, aldehydes and ketones,
J. Chem. Soc. Faraday Trans. 2, 1978, 74, 734. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G.,
Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects,
J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]
Lossing, 1972
Lossing, F.P.,
Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions,
Can. J. Chem., 1972, 50, 3973. [all data]
Gross and Wilkins, 1971
Gross, M.L.; Wilkins, C.L.,
Computer-assisted ion cyclotron resonance appearance potential measurements for C5H10 isomers,
Anal. Chem., 1971, 43, 1624. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F.,
An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes,
J. Am. Chem. Soc., 1978, 100, 718. [all data]
Bunzli, Burak, et al., 1973
Bunzli, J.C.; Burak, A.J.; Frost, D.C.,
Through-space interaction in non-conjugated acyclic dienes studied by photoelectron spectroscopy,
Tetrahedron, 1973, 29, 3735. [all data]
Brand and Baer, 1984
Brand, W.A.; Baer, T.,
Dissociation dynamics of energy-selected C5H10+ ions,
J. Am. Chem. Soc., 1984, 106, 3154. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.