Sulfur dioxide
- Formula: O2S
- Molecular weight: 64.064
- IUPAC Standard InChIKey: RAHZWNYVWXNFOC-UHFFFAOYSA-N
- CAS Registry Number: 7446-09-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Sulfurous acid anhydride; Fermenicide powder; Fermenticide liquid; Sulfur oxide (SO2); Sulfurous anhydride; Sulfurous oxide; SO2; Sulphur dioxide; Fermenicide liquid; Schwefeldioxyd; Siarki dwutlenek; Sulfur oxide; UN 1079; Sulfur dioxide (SO2); Sulfur superoxide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 51 to 100, reactions 101 to 102
- Ion clustering data
- Fluid Properties
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -296.81 ± 0.20 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | -296.84 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1961 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 248.223 ± 0.050 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 248.21 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1961 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1200. | 1200. to 6000. |
---|---|---|
A | 21.43049 | 57.48188 |
B | 74.35094 | 1.009328 |
C | -57.75217 | -0.076290 |
D | 16.35534 | 0.005174 |
E | 0.086731 | -4.045401 |
F | -305.7688 | -324.4140 |
G | 254.8872 | 302.7798 |
H | -296.8422 | -296.8422 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in June, 1961 | Data last reviewed in June, 1961 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 200.75 | K | N/A | Hoffman and Vanderwerf, 1946 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 197.64 | K | N/A | Giauque and Stephenson, 1938 | Uncertainty assigned by TRC = 0.05 K; Temp. Scale based on T0 = 273.10 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.0167 | bar | N/A | Giauque and Stephenson, 1938 | Uncertainty assigned by TRC = 0.000067 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 430.34 | K | N/A | Travers and Usher, 1906 | Uncertainty assigned by TRC = 0.4 K; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
24.9 | 263. | N/A | Giauque and Stephenson, 1938, 2 | Based on data from 200. to 263. K.; AC |
24.9 | 263. | C | Giauque and Stephenson, 1938, 2 | AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
177.7 to 263. | 3.48586 | 668.225 | -72.252 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
263. to 414.9 | 4.37798 | 966.575 | -42.071 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: Cl- + O2S = (Cl- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 92.9 ± 8.4 | kJ/mol | TDAs | Caldwell and Kebarle, 1985 | gas phase; B,M |
ΔrH° | 87.4 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B |
ΔrH° | 92.9 ± 9.2 | kJ/mol | TDEq | Bohringer, Fahey, et al., 1984 | gas phase; Relative to HOH..Cl- in Keesee, Lee, et al., 1980; B,M |
ΔrH° | 91.21 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
ΔrH° | 87.4 | kJ/mol | ICR | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.4 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
ΔrS° | 101. | J/mol*K | N/A | Bohringer, Fahey, et al., 1984 | gas phase; switching reaction(Cl-)H2O), Entropy change calculated or estimated; Keesee and Castleman, 1980; M |
ΔrS° | 87.0 | J/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
ΔrS° | 97.1 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 65.7 ± 8.4 | kJ/mol | TDAs | Caldwell and Kebarle, 1985 | gas phase; B |
ΔrG° | 61.5 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B |
ΔrG° | 62.8 ± 6.7 | kJ/mol | TDEq | Bohringer, Fahey, et al., 1984 | gas phase; Relative to HOH..Cl- in Keesee, Lee, et al., 1980; B,M |
ΔrG° | 61.9 ± 1.3 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
ΔrG° | 61.5 | kJ/mol | ICR | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
59.4 | 296. | FA | Fehsenfeld and Ferguson, 1974 | gas phase; switching reaction(Cl-)H2O; M |
By formula: F- + O2S = (F- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 225. ± 9.2 | kJ/mol | CIDT | Lobring, Check, et al., 2003 | gas phase; B |
ΔrH° | 222. ± 10. | kJ/mol | CIDT | Squires, 1992 | gas phase; B |
ΔrH° | 183. | kJ/mol | ICR | Larson and McMahon, 1985 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrH° | 183. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
ΔrH° | 250. | kJ/mol | SAMS | Robbiani and Franklin, 1979 | gas phase; Cl- + CO2ClF --> SO2F- + Cl2, ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrS° | 96.2 | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 153. | kJ/mol | ICR | Larson and McMahon, 1985 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrG° | 154. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
By formula: NO3- + O2S = (NO3- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.0 ± 8.4 | kJ/mol | TDEq | Bohringer, Fahey, et al., 1984 | gas phase; Relative to HOH..NO3-, Keesee, Lee, et al., 1980; B,M |
ΔrH° | 76.1 ± 5.0 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | N/A | Bohringer, Fahey, et al., 1984 | gas phase; switching reaction(NO3-)H2O, Entropy change calculated or estimated; Lee, Keesee, et al., 1980; M |
ΔrS° | 132. | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 40. ± 8.4 | kJ/mol | TDEq | Bohringer, Fahey, et al., 1984 | gas phase; Relative to HOH..NO3-, Keesee, Lee, et al., 1980; B,M |
ΔrG° | 41.84 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B |
ΔrG° | 36.8 ± 3.8 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1983 | gas phase; B |
ΔrG° | 44.4 | kJ/mol | FA | Fehsenfeld and Ferguson, 1974 | gas phase; switching reaction(NO3-)SO2, Entropy change calculated or estimated; Lee, Keesee, et al., 1980; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
41.8 | 299. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: I- + O2S = (I- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.8 ± 8.4 | kJ/mol | TDAs | Caldwell and Kebarle, 1985 | gas phase; B,M |
ΔrH° | 53.97 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 73.6 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
ΔrS° | 84.5 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 38. ± 11. | kJ/mol | TDAs | Caldwell and Kebarle, 1985 | gas phase; B |
ΔrG° | 7.11 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B |
ΔrG° | 28.5 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
38. | 301. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: O2S- + O2S = (O2S- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100.4 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
ΔrH° | 89.1 ± 5.4 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
ΔrH° | 77.40 | kJ/mol | N/A | Dresch, Kramer, et al., 1991 | gas phase; Both dissociation and electron detachment?; B |
ΔrH° | 76.57 | kJ/mol | N/A | Snodgrass, Coe, et al., 1988 | gas phase; Appears to be dissociation + electron detachment; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 141. | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 58.2 ± 1.7 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
ΔrG° | 43.5 ± 9.2 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
By formula: NO2- + O2S = (NO2- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 108.4 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
ΔrH° | 102. ± 4.2 | kJ/mol | TDEq | Bohringer, Fahey, et al., 1984 | gas phase; Relative to HOH..NO2-, Keesee, Lee, et al., 1980; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 154. | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
ΔrS° | 132. | J/mol*K | N/A | Bohringer, Fahey, et al., 1984 | gas phase; switching reaction(NO2-)H2O, Entropy change calculated or estimated; Lee, Keesee, et al., 1980; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 62.3 ± 1.3 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: CO3- + O2S = (CO3- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59. | kJ/mol | HPMS | Keesee, Lee, et al., 1980 | gas phase; switching reaction(O-)CO2, Entropy change calculated or estimated; Fehsenfeld and Ferguson, 1974; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Keesee, Lee, et al., 1980 | gas phase; switching reaction(O-)CO2, Entropy change calculated or estimated; Fehsenfeld and Ferguson, 1974; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
33. | 296. | HPMS | Keesee, Lee, et al., 1980 | gas phase; switching reaction(O-)CO2, Entropy change calculated or estimated; Fehsenfeld and Ferguson, 1974; M |
By formula: (Cl- • O2S) + H2O = (Cl- • H2O • O2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.51 | kJ/mol | TDAs | Upschulte, Schelling, et al., 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.2 | J/mol*K | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 19.2 | kJ/mol | TDAs | Upschulte, Schelling, et al., 1984 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
23. | 296. | FA | Fehsenfeld and Ferguson, 1974 | gas phase; From thermochemical cycle,switching reaction(H2O/SO2); M |
By formula: (Cl- • O2S) + O2S = (Cl- • 2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.5 ± 4.2 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
ΔrH° | 51.5 | kJ/mol | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.5 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
ΔrS° | 95.0 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 23. ± 9.2 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (NO2- • O2S) + O2S = (NO2- • 2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37.7 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
ΔrH° | 41. | kJ/mol | HPMS | Wlodek, Luczynski, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.0 | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1983 | gas phase; M |
ΔrS° | 70.3 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.7 ± 1.7 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (Na+ • 3O2S) + O2S = (Na+ • 4O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.5 | kJ/mol | HPMS | Castleman, Peterson, et al., 1983 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Castleman, Peterson, et al., 1983 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
13. | 328. | HPMS | Castleman, Peterson, et al., 1983 | gas phase; Entropy change calculated or estimated; M |
By formula: (Br- • O2S) + HBr = (Br- • HBr • O2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 | kJ/mol | PHPMS | Caldwell and Kebarle, 1985 | gas phase; From thermochemical cycle,switching reaction(Br- HBr)SO2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 80.3 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; From thermochemical cycle,switching reaction(Br- HBr)SO2; M |
By formula: (Cl- • O2S • H2O) + O2S = (Cl- • 2O2S • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.4 | kJ/mol | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; From thermochemical cycle; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; From thermochemical cycle; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17. | 296. | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; From thermochemical cycle; M |
By formula: Na+ + O2S = (Na+ • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.1 | kJ/mol | FA | Perry, Rowe, et al., 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.9 | J/mol*K | N/A | Perry, Rowe, et al., 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 53.6 | kJ/mol | FA | Perry, Rowe, et al., 1980 | gas phase; Entropy change calculated or estimated; M |
By formula: (Br- • O2S) + HCl = (Br- • HCl • O2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 93.7 | kJ/mol | PHPMS | Caldwell and Kebarle, 1985 | gas phase; From thermochemical cycle,switching reaction(Br-)SO2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.8 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; From thermochemical cycle,switching reaction(Br-)SO2; M |
By formula: (Cl- • 2H2O) + O2S = (Cl- • O2S • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.0 | kJ/mol | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; From thermochemical cycle; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.2 | J/mol*K | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; From thermochemical cycle; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
35. | 296. | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; From thermochemical cycle; M |
By formula: (O2S- • O2S) + O2S = (O2S- • 2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.9 ± 1.3 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
ΔrH° | 35. | kJ/mol | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 66.9 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.3 ± 0.84 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: (Cl- • H2O • O2S) + H2O = (Cl- • 2H2O • O2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38.9 | kJ/mol | TDAs | Upschulte, Schelling, et al., 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.4 | J/mol*K | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 14.2 | kJ/mol | TDAs | Upschulte, Schelling, et al., 1984 | gas phase; B |
By formula: (Cl- • 2O2S) + H2O = (Cl- • H2O • 2O2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.4 | kJ/mol | TDAs | Upschulte, Schelling, et al., 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.0 | J/mol*K | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.0 | kJ/mol | TDAs | Upschulte, Schelling, et al., 1984 | gas phase; B |
By formula: (NO2- • 2O2S) + O2S = (NO2- • 3O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.6 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 56.1 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.9 ± 3.3 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (Cl- • O2S) + HCl = (Cl- • HCl • O2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.2 | kJ/mol | PHPMS | Caldwell and Kebarle, 1985 | gas phase; From thermochemical cycle; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 80.3 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; From thermochemical cycle; M |
By formula: (Cl- • H2O) + O2S = (Cl- • O2S • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.8 | kJ/mol | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.5 | J/mol*K | HPMS | Upschulte, Schelling, et al., 1984 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
48.1 | 296. | HPMS | Fehsenfeld and Ferguson, 1974 | gas phase; switching reaction(Cl- H2O)H2O; M |
By formula: HO2S+ + O2S = (HO2S+ • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 89.1 | kJ/mol | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrH° | 97.1 | kJ/mol | PHPMS | McMahon and Kebarle, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 108. | J/mol*K | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrS° | 115. | J/mol*K | PHPMS | McMahon and Kebarle, 1986 | gas phase; M |
By formula: (Cl- • 2O2S) + O2S = (Cl- • 3O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.84 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.7 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.0 ± 1.3 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (I- • 2O2S) + O2S = (I- • 3O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38.5 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.5 ± 2.5 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (I- • O2S) + O2S = (I- • 2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.26 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.4 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.1 ± 1.3 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (Cl- • 3O2S) + O2S = (Cl- • 4O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.0 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.1 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.7 ± 4.2 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (I- • O2S) + H2O = (I- • H2O • O2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 14.6 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: HO- + O2S = (HO- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 259. ± 12. | kJ/mol | CIDT | Squires, 1992 | gas phase; Dissociative protonation between HCl, MeCHClCO2H; B |
ΔrH° | >213. ± 13. | kJ/mol | IMRB | Hierl and Paulson, 1984 | gas phase; CO2..HO- + SO2 ->. data revised per 92SQU; B |
By formula: Br- + O2S = (Br- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80.8 ± 8.4 | kJ/mol | TDAs | Caldwell and Kebarle, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.0 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 53. ± 11. | kJ/mol | TDAs | Caldwell and Kebarle, 1985 | gas phase; B |
By formula: CN- + O2S = (CN- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 90.8 ± 3.3 | kJ/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Larson, Szulejko, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 56.07 ± 0.84 | kJ/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B |
By formula: Cs+ + O2S = (Cs+ • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.2 | kJ/mol | DT | McKnight and Sawina, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.1 | J/mol*K | DT | McKnight and Sawina, 1972 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (NO2- • O2S) + C2H5NO3 = (NO2- • C2H5NO3 • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31. | kJ/mol | HPMS | Wlodek, Luczynski, et al., 1983 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 43.5 | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1983 | gas phase; Entropy change is questionable; M |
By formula: (H4N+ • 2H2O • O2S) + H2O = (H4N+ • 3H2O • O2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 22. | kJ/mol | HPMS | Banic and Iribarne, 1985 | gas phase; From thermochemical cycle,switching reaction, electric fields; M |
By formula: (NO3- • O2S) + O2S = (NO3- • 2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37. | kJ/mol | HPMS | Wlodek, Luczynski, et al., 1983 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.0 | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1983 | gas phase; Entropy change is questionable; M |
By formula: (H4N+ • H2O • O2S) + H2O = (H4N+ • 2H2O • O2S)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 31. | kJ/mol | HPMS | Banic and Iribarne, 1985 | gas phase; From thermochemical cycle,switching reaction, electric fields; M |
(O2S- • 2 • 3) + = (O2S- • 3 • 3)
By formula: (O2S- • 2H2O • 3O2S) + H2O = (O2S- • 3H2O • 3O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.6 ± 1.3 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12.6 ± 0.84 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
(O2S- • 2 • 4) + = (O2S- • 3 • 4)
By formula: (O2S- • 2H2O • 4O2S) + H2O = (O2S- • 3H2O • 4O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.7 ± 2.9 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.9 ± 0.84 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
(O2S- • 5 • 2) + = (O2S- • 6 • 2)
By formula: (O2S- • 5O2S • 2H2O) + O2S = (O2S- • 6O2S • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.9 ± 3.8 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.60 ± 0.84 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
(O2S- • 6 • 2) + = (O2S- • 7 • 2)
By formula: (O2S- • 6O2S • 2H2O) + O2S = (O2S- • 7O2S • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.5 ± 2.9 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.5 ± 0.84 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
(O2S- • • 3) + = (O2S- • 2 • 3)
By formula: (O2S- • H2O • 3O2S) + H2O = (O2S- • 2H2O • 3O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.7 ± 1.7 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.9 ± 0.84 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
(O2S- • • 4) + = (O2S- • 2 • 4)
By formula: (O2S- • H2O • 4O2S) + H2O = (O2S- • 2H2O • 4O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.7 ± 2.9 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12.6 ± 0.84 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
By formula: (H3O+ • 4H2O) + O2S = (H3O+ • O2S • 4H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
11. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
11. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
(O2S- • 6 • ) + = (O2S- • 7 • )
By formula: (O2S- • 6O2S • H2O) + O2S = (O2S- • 7O2S • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.4 ± 2.5 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.9 ± 0.84 | kJ/mol | TDAs | Vacher, Leduc, et al., 1994 | gas phase; B |
By formula: (NO3- • O2S) + H2O = (NO3- • H2O • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 18.0 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18. | 299. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (I- • H2O) + O2S = (I- • O2S • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 37.7 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
30. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
(O2S- • 2 • ) + = (O2S- • 3 • )
By formula: (O2S- • 2O2S • O2) + O2S = (O2S- • 3O2S • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.1 ± 1.7 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6. ± 13. | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: (O2S- • O2S • O2) + O2S = (O2S- • 2O2S • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.2 ± 1.7 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10. ± 8.4 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: (O3S- • O2S • O2) + O2S = (O3S- • 2O2S • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.8 ± 2.5 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15. ± 8.8 | kJ/mol | TDAs | Vacher, Jorda, et al., 1992 | gas phase; B |
By formula: CH3+ + O2S = (CH3+ • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 254. | kJ/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
1.4 | 2900. | L | N/A | |
1.5 | 3200. | Q | N/A | Only the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical. |
1.2 | 3100. | C | N/A | |
1.2 | 3200. | C | N/A | |
1.2 | 3100. | T | N/A | |
1.2 | 3100. | Q | N/A | missing citation refer to several references in their list of Henry's law constants but they don't assign them to specific species. |
1.3 | 3100. | N/A | N/A | |
1.2 | 3200. | X | N/A | The value is taken from the compilation of solubilities by W. Asman (unpublished). |
1.2 | X | N/A | Value given here as quoted by missing citation. | |
1.2 | C | N/A | ||
1.3 | 2800. | X | N/A | |
1.2 | 3000. | L | N/A | |
1.4 | 2800. | L | N/A | |
1.2 | 3100. | X | N/A | The value is taken from the compilation of solubilities by W. Asman (unpublished). |
1.1 | c | N/A | ||
1.2 | 3100. | c | N/A | |
1.2 | 3200. | X | N/A | The value is taken from the compilation of solubilities by W. Asman (unpublished). |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to O2S+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 12.349 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 672.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 643.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
1.1070 ± 0.0080 | LPES | Nimlos and Ellison, 1986 | B |
1.097 ± 0.036 | LPES | Celotta, Bennett, et al., 1974 | B |
1.10 ± 0.10 | TDEq | Chowdhury, Heinis, et al., 1986 | ΔGea(423 K) = -26.1 kcal/mol; ΔSea (estimated) = +2.0 eu. Original: Caldwell and Kebarle, 19842. Not direct measurement, but anchor for extensiveEA equilibrium scale. See text.; B |
1.10 ± 0.20 | IMRB | Grabowski, VanDoren, et al., 1984 | B |
1.04998 | Endo | Refaey and Franklin, 1976 | B |
1.00 ± 0.10 | Endo | Hughes, Lifschitz, et al., 1973 | B |
1.00 ± 0.050 | PD | Feldman, 1970 | B |
1.06 ± 0.10 | IMRB | Kraus, Muller-Duysing, et al., 1961 | Between NH2-, C-; B |
1.14 ± 0.15 | NBIE | Rothe, Tang, et al., 1975 | B |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
<622. | Milligan, Fairley, et al., 1998 | Irreversible PT from SO2H+ to C2N2 shows GB(SO2) < GB(C2N2), and using GB(C2N2) for reference from this paper; MM |
<607. | Milligan, Fairley, et al., 1998 | Irreversible PT from SO2H+ to C2H2 shows GB(SO2) < (GB(C2H2) + 4.5 kcal/mol); MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
12.5 ± 0.1 | EI | Snow and Thomas, 1990 | LL |
12.3494 ± 0.0002 | PE | Wang, Lee, et al., 1987 | LBLHLM |
12.5 ± 0.3 | EI | Orient and Srivastava, 1984 | LBLHLM |
12.4 ± 0.2 | EI | Smith and Stevenson, 1981 | LLK |
12.3 | PE | Lloyd and Roberts, 1973 | LLK |
12.31 | PE | Bock, Solouki, et al., 1973 | LLK |
12.30 ± 0.01 | PE | Eland and Danby, 1968 | RDSH |
12.32 ± 0.01 | PI | Dibeler and Liston, 1968 | RDSH |
12.34 | S | Golomb, Watanabe, et al., 1962 | RDSH |
12.34 ± 0.02 | PI | Watanabe, 1957 | RDSH |
12.50 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
12.54 | PE | Kroner, Strack, et al., 1973 | Vertical value; LLK |
12.50 | PE | Chadwick, Frost, et al., 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
O+ | 23.5 ± 0.5 | SO | EI | Orient and Srivastava, 1984 | LBLHLM |
O+ | 20.6 | SO | EI | Reese, Dibeter, et al., 1958 | RDSH |
OS+ | 16.5 ± 0.5 | O | EI | Orient and Srivastava, 1984 | LBLHLM |
OS+ | 16.2 ± 0.2 | O | EI | Smith and Stevenson, 1981 | LLK |
OS+ | 15.930 ± 0.005 | O | PE | Weiss, Hsieh, et al., 1979 | LLK |
SO+ | 15.81 ± 0.02 | O | PI | Dibeler and Liston, 1968 | RDSH |
O2+ | 17.5 ± 0.3 | S | EI | Reese, Dibeter, et al., 1958 | RDSH |
S+ | 16.5 ± 0.5 | O2/2O | EI | Orient and Srivastava, 1984 | LBLHLM |
S+ | 22. | 2O | EI | Smith and Stevenson, 1981 | LLK |
S+ | 16.334 | O2/2O | PE | Weiss, Hsieh, et al., 1979 | LLK |
S+ | 17.5 ± 0.3 | O2 | EI | Reese, Dibeter, et al., 1958 | RDSH |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (100 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2); PERKIN-ELMER 180; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- GAS (100 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); PERKIN-ELMER 180; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 1 CM-1 AT 4000 cm-1 resolution
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 191 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CP-Wax 52CB | 856. | Mahadevan and Farmer, 2006 | 60. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 882. | Chyau and Mau, 1999 | 60. m/0.25 mm/0.25 μm, N2, 3. K/min; Tstart: 40. C; Tend: 210. C |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Hoffman and Vanderwerf, 1946
Hoffman, K.R.; Vanderwerf, C.A.,
Addition Compounds of Sulfur Dioxide with Pyridine and the Picolines,
J. Am. Chem. Soc., 1946, 68, 997. [all data]
Giauque and Stephenson, 1938
Giauque, W.F.; Stephenson, C.C.,
Sulfur Dioxide. The Heat Capacity of Solid and Liquid. Vapor Pressure. Heat of Vap. The Entropy Values from Termal and Molecular Data,
J. Am. Chem. Soc., 1938, 60, 1389. [all data]
Travers and Usher, 1906
Travers, M.W.; Usher, F.L.,
The behavior of certain substance at the critical point,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1906, 57, 365-81. [all data]
Giauque and Stephenson, 1938, 2
Giauque, W.F.; Stephenson, C.C.,
Sulfur Dioxide. The Heat Capacity of Solid and Liquid. Vapor Pressure. Heat of Vaporization. The Entropy Values from Thermal and Molecular Data,
J. Am. Chem. Soc., 1938, 60, 6, 1389-1394, https://doi.org/10.1021/ja01273a034
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Caldwell and Kebarle, 1985
Caldwell, G.; Kebarle, P.,
The hydrogen bond energies of the bihalide ions XHX- and YHX-,
Can. J. Chem., 1985, 63, 1399. [all data]
Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B.,
Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria,
J. Am. Chem. Soc., 1985, 107, 766. [all data]
Bohringer, Fahey, et al., 1984
Bohringer, H.; Fahey, D.W.; Fehsenfeld, F.C.; Ferguson, E.E.,
Bond energies of the molecules H2O, SO2, H2O2, and HCl to various atmospheric negative ions,
J. Chem. Phys., 1984, 81, 2805. [all data]
Keesee, Lee, et al., 1980
Keesee, R.G.; Lee, N.; Castleman, A.W., Jr.,
Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions,
J. Chem. Phys., 1980, 73, 2195. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Keesee and Castleman, 1980
Keesee, R.G.; Castleman, A.W., Jr.,
Gas phase studies of hydration complexes of Cl- and I- and comparison to electrostatic calculations in the gas phase,
Chem. Phys. Lett., 1980, 74, 139. [all data]
Fehsenfeld and Ferguson, 1974
Fehsenfeld, F.C.; Ferguson, E.E.,
Laboratory studies of negative ion reactions with atmospheric trace constituents,
J. Chem. Phys., 1974, 61, 3181. [all data]
Lobring, Check, et al., 2003
Lobring, K.C.; Check, C.E.; Sunderlin, L.S.,
The fluoride affinity of SO2,
Int. J. Mass Spectrom., 2003, 222, 1-3, 221-227, https://doi.org/10.1016/S1387-3806(02)00950-8
. [all data]
Squires, 1992
Squires, R.R.,
Gas Phase Thermochemical Properties of the Bicarbonate and Bisulfate Ions,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 565, https://doi.org/10.1016/0168-1176(92)80114-G
. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Robbiani and Franklin, 1979
Robbiani, R.; Franklin, J.L.,
Negative ion-molecule reaction in sulfuryl halides,
J. Am. Chem. Soc., 1979, 101, 3709. [all data]
Wlodek, Luczynski, et al., 1983
Wlodek, S.; Luczynski, Z.; Wincel, H.,
Gas phase complexes of NO2- and NO3- with SO2,
Int. J. Mass Spectrom. Ion Processes, 1983, 49, 301. [all data]
Lee, Keesee, et al., 1980
Lee, N.; Keesee, R.G.; Castleman, A.W., Jr.,
The properties of clusters in the gas phase. IV. Complexes of H2O and HNOx clustering on NOx-,
J. Chem. Phys., 1980, 72, 1089. [all data]
Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V.,
Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions,
J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543
. [all data]
Vacher, Leduc, et al., 1994
Vacher, J.R.; Leduc, E.; Fitaire, M.,
Stabilities of Anionic Mixed Clusters of Sulfur Dioxide and Water,
Int. J. Mass Spectrom. Ion Proc., 1994, 135, 2-3, 139, https://doi.org/10.1016/0168-1176(94)03985-2
. [all data]
Dresch, Kramer, et al., 1991
Dresch, T.; Kramer, H.; Thurner, Y.; Weber, R.,
Photoelectrons from Negative Dimers and Clusters of Sulfur Dioxide,
Chem. Phys. Lett., 1991, 177, 4-5, 383, https://doi.org/10.1016/0009-2614(91)85070-D
. [all data]
Snodgrass, Coe, et al., 1988
Snodgrass, J.T.; Coe, J.V.; Friedhoff, C.B.; McHugh, K.M.; Bowen, K.H.,
On the Photodissociation of (SO2)2-,
J. Chem. Phys., 1988, 88, 12, 8014, https://doi.org/10.1063/1.454261
. [all data]
Upschulte, Schelling, et al., 1984
Upschulte, B.L.; Schelling, F.J.; Keesee, R.G.; Castleman, A.W.,
Thermochemical Properties of Gas Phase Mixed Clusters: Water and Sulfur Dioxide with Na+ and Cl-,
Chem. Phys. Lett., 1984, 111, 4-5, 389, https://doi.org/10.1016/0009-2614(84)85526-8
. [all data]
Castleman, Peterson, et al., 1983
Castleman, A.W.; Peterson, K.I.; Upschulte, B.L.; Schelling, F.J.,
Energetics and Structure of Na+ Cluster Ions,
Int. J. Mass Spectrom. Ion Phys., 1983, 47, 203, https://doi.org/10.1016/0020-7381(83)87171-X
. [all data]
Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C.,
Laboratory Measurements of Stratospheric Sodium Ion Measurements,
Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693
. [all data]
Vacher, Jorda, et al., 1992
Vacher, J.R.; Jorda, M.; Leduc, E.; Fitaire, M.,
A Determination of the Stabilities of Negative Ion Clusters in SO2 and SO2-O2 Mixtures,
Int. J. Mass Spectrom. Ion Proc., 1992, 114, 3, 149, https://doi.org/10.1016/0168-1176(92)80033-W
. [all data]
Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B.,
personal communication, 1992. [all data]
McMahon and Kebarle, 1986
McMahon, T.B.; Kebarle, P.,
Strong hydrogen bonding in gas-phase ions: A high pressure mass spectrometric study of formation and energetics of methyl fluoride proton bound dimer,
J. Am. Chem. Soc., 1986, 108, 6502. [all data]
Hierl and Paulson, 1984
Hierl, P.M.; Paulson, J.F.,
Translational energy dependence of cross sections for reactions of OH- (H2O)n with CO2 and SO2,
J. Chem. Phys., 1984, 80, 4890. [all data]
Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B.,
Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements.,
J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004
. [all data]
McKnight and Sawina, 1972
McKnight, L.G.; Sawina, J.M.,
Drift Velocities and Interactions of Cs+ Ions with Atmospheric Gases,
J. Chem. Phys., 1972, 57, 12, 5156, https://doi.org/10.1063/1.1678205
. [all data]
McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P.,
Methyl Cation Affinities,
J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002
. [all data]
Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L.,
Photoionization mass spectrometry of trans-azomethane,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Nimlos and Ellison, 1986
Nimlos, M.R.; Ellison, G.B.,
Photoelectron spectroscopy of SO2-, S3-, and S2O-,
J. Phys. Chem., 1986, 90, 2574. [all data]
Celotta, Bennett, et al., 1974
Celotta, R.S.; Bennett, R.A.; Hall, J.L.,
Laser Photodetachment Determination of the Electron Affinities of OH, NH2, NH, SO2, and S2,
J. Chem. Phys., 1974, 60, 5, 1740, https://doi.org/10.1063/1.1681268
. [all data]
Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P.,
Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-,
J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037
. [all data]
Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P.,
Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements,
J. Am. Chem. Soc., 1984, 106, 967. [all data]
Grabowski, VanDoren, et al., 1984
Grabowski, J.J.; VanDoren, J.M.; DePuy, C.H.; Bierbaum, V.M.,
Flowing Afterglow Studies of the Electron Affinity of SO2,
J. Chem. Phys., 1984, 80, 1, 575, https://doi.org/10.1063/1.446412
. [all data]
Refaey and Franklin, 1976
Refaey, K.M.A.; Franklin, J.L.,
Endoergic ion-molecule-collision processes of negative ions. I. Collision of I- on SO2,
J. Chem. Phys., 1976, 65, 1994. [all data]
Hughes, Lifschitz, et al., 1973
Hughes, B.M.; Lifschitz, C.; Tiernan, T.O.,
Electron affinities from endothermic negative-ion charge-transfer reactions. III. NO, NO2, S2, CS2, Cl2, Br2, I2, and C2H,
J. Chem. Phys., 1973, 59, 3162. [all data]
Feldman, 1970
Feldman, D.,
Photoablosung von Elektronen bei einigen Stabilen Negativen Ionen,
Z. Naturfor., 1970, 25A, 621. [all data]
Kraus, Muller-Duysing, et al., 1961
Kraus, K.; Muller-Duysing, W.; Neuert, H.,
Uber Stosse Langsamer Negativer Ionen mit Ladungsubertragung,
Z. Naturfor., 1961, 16A, 1385. [all data]
Rothe, Tang, et al., 1975
Rothe, E.W.; Tang, S.Y.; Reck, G.P.,
Measurement of electron affinities of O3, SO2, and SO3 by collisional ionization,
J. Chem. Phys., 1975, 62, 3829. [all data]
Milligan, Fairley, et al., 1998
Milligan, D.B.; Fairley, D.A.; Meot-Ner (Mautner), M.; McEwan, M.J.,
Proton affinity of cyanogen and association reactions of C2N2H+ and C2N2CH3+,
Int. J. Mass Spectrom., 1998, 180, 285. [all data]
Snow and Thomas, 1990
Snow, K.B.; Thomas, T.F.,
Mass spectrum, ionization potential, and appearance potentials for fragment ions of sulfuric acid vapor,
Int. J. Mass Spectrom. Ion Processes, 1990, 96, 49. [all data]
Wang, Lee, et al., 1987
Wang, L.; Lee, Y.T.; Shirley, D.A.,
Molecular beam photoelectron spectroscopy of SO2: Geometry, spectroscopy, and dynamics of SO2,
J. Chem. Phys., 1987, 87, 2489. [all data]
Orient and Srivastava, 1984
Orient, O.J.; Srivastava, S.K.,
Mass spectrometric determination of partial and total electron impact ionization cross sections of SO2 from threshold up to 200 eV,
J. Chem. Phys., 1984, 80, 140. [all data]
Smith and Stevenson, 1981
Smith, O.I.; Stevenson, J.S.,
Determination of cross sections for formation of parent and fragment ions by electron impact from SO2 and SO3,
J. Chem. Phys., 1981, 74, 6777. [all data]
Lloyd and Roberts, 1973
Lloyd, D.R.; Roberts, P.J.,
The assignment of the photoelectron spectrum of sulphur dioxide,
Mol. Phys., 1973, 26, 225. [all data]
Bock, Solouki, et al., 1973
Bock, H.; Solouki, B.; Rosmus, P.; Steudel, R.,
Photoelectron spectra and molecular properties: SSO and OSO,
Angew. Chem. Int. Ed. Engl., 1973, 12, 933. [all data]
Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J.,
Photoelectron spectra and ionic structure of carbon dioxide, carbon disulphide and sulphur dioxide,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 111. [all data]
Dibeler and Liston, 1968
Dibeler, V.H.; Liston, S.K.,
Mass-spectrometric study of photoionization. XI.Hydrogen sulfide and sulfur dioxide,
J. Chem. Phys., 1968, 49, 482. [all data]
Golomb, Watanabe, et al., 1962
Golomb, D.; Watanabe, K.; Marmo, F.F.,
Absorption coefficients of sulfur dioxide in the vacuum ultraviolet,
J. Chem. Phys., 1962, 36, 958. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Kroner, Strack, et al., 1973
Kroner, J.; Strack, W.; Holsboer, F.; Kosbahn, W.,
Zur elektronenstruktur der thiokumulene,
Z. Naturforsch. B:, 1973, 28, 188. [all data]
Chadwick, Frost, et al., 1973
Chadwick, D.; Frost, D.C.; Herring, F.G.; Katrib, A.; McDowell, C.A.; McLean, R.A.N.,
Photoelectron spectra of sulfuryl and thionyl halides,
Can. J. Chem., 1973, 51, 1893. [all data]
Reese, Dibeter, et al., 1958
Reese, R.M.; Dibeter, V.H.; Franklin, J.L.,
Electron impact studies of sulfur dioxide and sulfuryl fluoride,
J. Chem. Phys., 1958, 29, 880. [all data]
Weiss, Hsieh, et al., 1979
Weiss, M.J.; Hsieh, T.-C.; Meisels, G.G.,
Fragmentation of SO2+ prepared in state selected vibrational levels,
J. Chem. Phys., 1979, 71, 567. [all data]
Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L.,
Key Odor Impact Compounds in Three Yeast Extract Pastes,
J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x
. [all data]
Chyau and Mau, 1999
Chyau, C.-C.; Mau, J.-L.,
Release of volatile compounds from microwave heating of garlic juice with 2,4-decadienals,
Food Chem., 1999, 64, 4, 531-535, https://doi.org/10.1016/S0308-8146(98)00162-9
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy Ptriple Triple point pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.