Fluoranthene
- Formula: C16H10
- Molecular weight: 202.2506
- IUPAC Standard InChIKey: GVEPBJHOBDJJJI-UHFFFAOYSA-N
- CAS Registry Number: 206-44-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Other names: Benzene, 1,2-(1,8-naphthalenediyl)-; Benzo[jk]fluorene; Idryl; 1,2-(1,8-Naphthylene)benzene; Benzene, 1,2-(1,8-naphthylene)-; 1,2-Benzacenaphthene; 1,2-(1,8-Naphthalenediyl)benzene; Rcra waste number U120; 1,2-(1,8-Naphthalene)benzene; Fluoranthrene; NSC 6803
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 69.65 ± 0.96 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°gas | 69.26 | kcal/mol | N/A | Westrum and Wong, 1967 | Value computed using ΔfHsolid° value of 189.8±0.4 kj/mol from Westrum and Wong, 1967 and ΔsubH° value of 100.0 kj/mol from Boyd, Christensen, et al., 1965.; DRB |
ΔfH°gas | 69.78 ± 0.52 | kcal/mol | Ccb | Boyd, Christensen, et al., 1965 | Reanalyzed by Cox and Pilcher, 1970, Original value = 70.4 ± 1.8 kcal/mol; ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.04 | 50. | Dorofeeva O.V., 1989 | These values are based on the experimental assignment of vibrational spectra. The S(300 K) and Cp(300 K) values calculated by MM3 method [ Pope C.J., 1995] are 10 and 4 J/mol*K, respectively, larger than selected ones. Recommended values are also reproduced in the reference book [ Frenkel M., 1994].; GT |
15.71 | 100. | ||
22.90 | 150. | ||
31.171 | 200. | ||
44.192 | 273.15 | ||
48.66 ± 0.48 | 298.15 | ||
48.984 | 300. | ||
65.674 | 400. | ||
79.579 | 500. | ||
90.674 | 600. | ||
99.512 | 700. | ||
106.64 | 800. | ||
112.48 | 900. | ||
117.32 | 1000. | ||
121.37 | 1100. | ||
124.79 | 1200. | ||
127.69 | 1300. | ||
130.17 | 1400. | ||
132.30 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 45.46 ± 0.67 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°solid | 45.36 ± 0.09 | kcal/mol | Ccr | Westrum and Wong, 1967 | ALS |
ΔfH°solid | 46.0 ± 1.3 | kcal/mol | Ccb | Boyd, Christensen, et al., 1965 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -1891.77 ± 0.09 | kcal/mol | Ccr | Westrum and Wong, 1967 | Corresponding ΔfHºsolid = 45.38 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -1892.4 ± 1.3 | kcal/mol | Ccb | Boyd, Christensen, et al., 1965 | Corresponding ΔfHºsolid = 46.0 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 55.110 | cal/mol*K | N/A | Wong and Westrum, 1971 | DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
55.031 | 298.15 | Wong and Westrum, 1971 | T = 5 to 427 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 381.0 | K | N/A | Casellato, Vecchi, et al., 1973 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 386.1 | K | N/A | Sangster and Irvine, 1956 | Uncertainty assigned by TRC = 3. K; TRC |
Tfus | 385.2 | K | N/A | Sangster and Irvine, 1956 | Uncertainty assigned by TRC = 3. K; TRC |
Tfus | 385.4 | K | N/A | Sangster and Irvine, 1956 | Uncertainty assigned by TRC = 3. K; TRC |
Tfus | 383.45 | K | N/A | Schuyer, Blom, et al., 1953 | Uncertainty assigned by TRC = 1. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 383.340 | K | N/A | Wong and Westrum, 1971, 2 | Uncertainty assigned by TRC = 0.005 K; TRC |
Ttriple | 383.330 | K | N/A | Wong and Westrum, 1971, 2 | Uncertainty assigned by TRC = 0.005 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 20.7 ± 0.31 | kcal/mol | GC | Ribeiro da Silva, Gomes, et al., 2005 | Based on data from 423. to 493. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 24.19 ± 0.67 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔsubH° | 23.7 ± 0.2 | kcal/mol | V | Morawetz, 1972 | ALS |
ΔsubH° | 23.7 ± 0.2 | kcal/mol | C | Morawetz, 1972, 2 | See also Pedley and Rylance, 1977.; AC |
ΔsubH° | 24.4 ± 0.5 | kcal/mol | V | Boyd, Christensen, et al., 1965 | ALS |
ΔsubH° | 23.90 | kcal/mol | N/A | Boyd, Christensen, et al., 1965 | DRB |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
19.0 | 398. | GC | Lei, Chankalal, et al., 2002 | Based on data from 323. to 473. K.; AC |
18.5 | 398. | GC | Hinckley, Bidleman, et al., 1990 | Based on data from 343. to 453. K.; AC |
14.9 | 518. | A | Stephenson and Malanowski, 1987 | Based on data from 503. to 658. K. See also Tsypikina and Ya, 1955.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
470. to 657.4 | 2.50642 | 1017.476 | -253.875 | Tsypkina, 1955 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
23.5 | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
20.2 ± 0.2 | 303. | GS | Sonnefeld, Zoller, et al., 1983 | Based on data from 283. to 323. K.; AC |
24.4 ± 0.5 | 340. | ME | Boyd, Christensen, et al., 1965 | Based on data from 328. to 353. K. See also Cox and Pilcher, 1970, 2.; AC |
24.52 | 328. | N/A | Hoyer and Peperle, 1958 | Based on data from 298. to 358. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
4.4761 | 383.36 | Wong and Westrum, 1971 | DH |
4.479 | 383.4 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
11.68 | 383.36 | Wong and Westrum, 1971 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
110. | 6900. | X | N/A |
0.46 | L | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C16H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.9 ± 0.1 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 198.0 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 191.4 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.629995 | ECD | Michl, 1969 | B |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
197.6 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kcal/mol) | Reference | Comment |
---|---|---|
191.1 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
7.9 ± 0.1 | TRPI | Ling and Lifshitz, 1995 | LL |
7.95 ± 0.04 | PE | Boschi, Clar, et al., 1974 | LLK |
7.80 ± 0.01 | PI | Dewar, Haselbach, et al., 1970 | RDSH |
7.72 | CTS | Slifkin and Allison, 1967 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C16H8+ | 11.50 ± 0.12 | 2H | DER | Ling and Lifshitz, 1995 | LL |
C16H8+ | 11.24 ± 0.25 | H2 | DER | Ling and Lifshitz, 1995 | LL |
C16H9+ | 12.38 ± 0.14 | H | DER | Ling and Lifshitz, 1995 | LL |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 126 |
NIST MS number | 228362 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Westrum and Wong, 1967
Westrum, E.F., Jr.; Wong, S.,
Strain energies and thermal properties of globular and polynuclear aromatic molecules,
AEC Rept. Coo-1149-92, Contract AT(11-1)-1149, 1967, 1-7. [all data]
Boyd, Christensen, et al., 1965
Boyd, R.H.; Christensen, R.L.; Pua, R.,
The heats of combustion of acenaphthene, acenaphthylene, and fluoranthene. Strain and delocalization in bridged naphthalenes,
J. Am. Chem. Soc., 1965, 87, 3554-3559. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Dorofeeva O.V., 1989
Dorofeeva O.V.,
Thermodynamic Properties of Gaseous Polycyclic Aromatic Hydrocarbons Containing Five-Membered Rings. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-263 (in Russian), Moscow, 1989. [all data]
Pope C.J., 1995
Pope C.J.,
Thermochemical properties of curved PAH and fullerenes: a group additivity method compared with MM3(92) and MOPAC predictions,
J. Phys. Chem., 1995, 99, 4306-4316. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Wong and Westrum, 1971
Wong, W-K.; Westrum, E.F., Jr.,
Thermodynamics of polynuclear aromatic molecules. I. Heat capacities and enthalpies of fusion of pyrene, flouranthene, and triphenylene,
J. Chem. Thermodynam., 1971, 3, 105-124. [all data]
Casellato, Vecchi, et al., 1973
Casellato, F.; Vecchi, C.; Girell, A.,
Differential calorimetric study of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1973, 6, 4, 361, https://doi.org/10.1016/0040-6031(73)87003-0
. [all data]
Sangster and Irvine, 1956
Sangster, R.C.; Irvine, J.W.,
Study of Organic Scintillators,
J. Chem. Phys., 1956, 24, 670. [all data]
Schuyer, Blom, et al., 1953
Schuyer, J.; Blom, L.; Van Krevelen, D.W.,
Molar refraction of condensed aromatic compounds.,
Trans. Faraday Soc., 1953, 49, 1391. [all data]
Wong and Westrum, 1971, 2
Wong, W.-K.; Westrum, E.F.,
Thermodynamics of Polynuclear Aromatic Molecules. 1. Heat Capacities and Enthalpies of Fusion of Pyrene, Fluoranthene, and Triphenylene,
J. Chem. Thermodyn., 1971, 3, 105-24. [all data]
Ribeiro da Silva, Gomes, et al., 2005
Ribeiro da Silva, Manuel A.V.; Gomes, José R.B.; Ferreira, Ana I.M.C.L.,
Experimental and Computational Investigation of the Energetics of the Three Isomers of Monochloroaniline,
J. Phys. Chem. B, 2005, 109, 27, 13356-13362, https://doi.org/10.1021/jp0519565
. [all data]
Morawetz, 1972
Morawetz, E.,
Enthalpies of vaporization for a number of aromatic compounds,
J. Chem. Thermodyn., 1972, 4, 455. [all data]
Morawetz, 1972, 2
Morawetz, Ernst,
Enthalpies of vaporization for a number of aromatic compounds,
The Journal of Chemical Thermodynamics, 1972, 4, 3, 455-460, https://doi.org/10.1016/0021-9614(72)90029-8
. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
, Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brighton, 1977. [all data]
Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank,
Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons,
J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148
. [all data]
Hinckley, Bidleman, et al., 1990
Hinckley, Daniel A.; Bidleman, Terry F.; Foreman, William T.; Tuschall, Jack R.,
Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatograhic retention data,
J. Chem. Eng. Data, 1990, 35, 3, 232-237, https://doi.org/10.1021/je00061a003
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Tsypikina and Ya, 1955
Tsypikina, O.; Ya, J.,
J. Appl. Chem. USSR, 1955, 28, 167. [all data]
Tsypkina, 1955
Tsypkina, O.Y.,
Study of Vacuum Pressure Influence on Efficiency of Separation of Some Polynuclear Compounds of Coal Tar Rectifications,
Zh. Prikl. Khim. (Moscow), 1955, 28, 2, 185-192. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E.,
Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons,
Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022
. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Michl, 1969
Michl, J.,
Electronic Spectrum of Fluoranthene,
J. Molec. Spectros., 1969, 30, 1-3, 66, https://doi.org/10.1016/0022-2852(69)90236-7
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Ling and Lifshitz, 1995
Ling, Y.; Lifshitz, C.,
Time-dependent mass spectra and breakdown graphs. 19. Fluoranthene,
J. Phys. Chem., 1995, 99, 11074. [all data]
Boschi, Clar, et al., 1974
Boschi, R.; Clar, E.; Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. III. The effect of nonplanarity in sterically overcrowded aromatic hydrocarbons,
J. Chem. Phys., 1974, 60, 4406. [all data]
Dewar, Haselbach, et al., 1970
Dewar, M.J.S.; Haselbach, E.; Worley, S.D.,
Calculated and observed ionization potentials of unsaturated polycyclic hydrocarbons; calculated heats of formation by several semiempirical s.c.f. m.o. methods,
Proc. Roy. Soc. (London), 1970, A315, 431. [all data]
Slifkin and Allison, 1967
Slifkin, M.A.; Allison, A.C.,
Measurement of ionization potentials from contact charge transfer spectra,
Nature, 1967, 215, 949. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,solid Constant pressure heat capacity of solid EA Electron affinity IE (evaluated) Recommended ionization energy S°solid,1 bar Entropy of solid at standard conditions (1 bar) Tfus Fusion (melting) point Ttriple Triple point temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.