Dimethyl ether

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-184.1 ± 0.50kJ/molCcbPilcher, Pell, et al., 1964ALS
Quantity Value Units Method Reference Comment
Δcgas-1460.4 ± 0.46kJ/molCcbPilcher, Pell, et al., 1964Corresponding Δfgas = -184.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
42.27100.Chao J., 1986p=1 bar. Selected values are in close agreement with other statistically calculated values [ Handi M.A., 1954, Seha Z., 1955, Banerjee S.C., 1964, Stull D.R., 1969] and ab initio result [ East A.L.L., 1997] at low temperatures. Discrepancies in S(1000 K) and Cp(1000 K) amount to about 5 and 3 J/mol*K, respectively, for [ Handi M.A., 1954, Banerjee S.C., 1964, Stull D.R., 1969].; GT
48.99150.
54.47200.
62.56273.15
65.57 ± 0.08298.15
65.80300.
78.68400.
91.36500.
102.86600.
113.03700.
121.99800.
129.84900.
136.701000.
142.691100.
147.891200.
152.411300.
156.351400.
159.771500.
166.571750.
171.502000.
175.152250.
177.912500.
180.032750.
181.703000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
62.01272.20Kistiakowsky G.B., 1940GT
65.90300.76
70.33333.25
75.14370.42

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid146.57J/mol*KN/AKennedy, Sagenkahn, et al., 1941 

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
102.30240.Kennedy, Sagenkahn, et al., 1941T = 14 to 240 K.

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil248.2KN/AWeast and Grasselli, 1989BS
Tboil248.3KN/AMajer and Svoboda, 1985 
Tboil248.25KN/AGrosse, 1937Uncertainty assigned by TRC = 1. K; TRC
Tboil249.2KN/AMaass and Boomer, 1922Uncertainty assigned by TRC = 0.4 K; TRC
Tboil249.5KN/AThiele and Schulte, 1920Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Tfus135.2KN/AMaass and Boomer, 1922Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Ttriple131.64KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple131.66KN/AKennedy, Sagenkahn, et al., 1941, 2Uncertainty assigned by TRC = 0.06 K; TRC
Quantity Value Units Method Reference Comment
Tc401. ± 2.KAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Pc54. ± 3.barAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.164l/molN/AZawisza and Glowka, 1970Uncertainty assigned by TRC = 0.003 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc5.351mol/lN/AEdwards and Maass, 1935Uncertainty assigned by TRC = 0.43 mol/l; TRC
ρc4.895mol/lN/ATapp, Steacie, et al., 1933Uncertainty assigned by TRC = 0.65 mol/l; TRC
ρc5.891mol/lN/ACardoso and Coppola, 1923Uncertainty assigned by TRC = 0.07 mol/l; extraplation of rectilinear diameter, from obs L and G densities, to Tc = 126.9 deg C, from previous literature; TRC
Quantity Value Units Method Reference Comment
Δvap19.3kJ/molN/AMajer and Svoboda, 1985 
Δvap18.5kJ/molN/AAmbrose, Ellender, et al., 1976Based on data from 171. to 248. K.; AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
21.510248.34N/AKennedy, Sagenkahn, et al., 1941P = 101.325 kPa; DH
21.51248.3N/AMajer and Svoboda, 1985 
22.6250.AStephenson and Malanowski, 1987Based on data from 183. to 265. K.; AC
22.8234.AStephenson and Malanowski, 1987Based on data from 180. to 249. K.; AC
21.2308.AStephenson and Malanowski, 1987Based on data from 293. to 360. K.; AC
21.1364.AStephenson and Malanowski, 1987Based on data from 349. to 400. K.; AC
22.2256.AStephenson and Malanowski, 1987Based on data from 241. to 303. K.; AC
21.4248.N/AAmbrose, Ellender, et al., 1976Based on data from 171. to 248. K.; AC
22.7233.N/AKennedy, Sagenkahn, et al., 1941Based on data from 195. to 248. K.; AC
21.5 ± 0.1248.CKennedy, Sagenkahn, et al., 1941AC

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
86.61248.34Kennedy, Sagenkahn, et al., 1941P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
194.93 to 248.244.11475894.669-30.604Kennedy, Sagenkahn, et al., 1941Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
4.9363131.66Kennedy, Sagenkahn, et al., 1941DH
4.94131.7Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
37.49131.66Kennedy, Sagenkahn, et al., 1941DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
1.0 VN/A
0.99 RN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C2H6O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.025 ± 0.025eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)792.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity764.5kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.025 ± 0.025PIPECOButler, Holland, et al., 1984LBLHLM
9.95 ± 0.07EIBowen and Maccoll, 1984LBLHLM
10.04PEKimura, Katsumata, et al., 1981LLK
9.8 ± 0.1PEAue, Webb, et al., 1980LLK
9.8PEAue and Bowers, 1979LLK
10.01 ± 0.01PIBotter, Pechine, et al., 1977LLK
9.94 ± 0.01PECocksey, Eland, et al., 1971LLK
10.1 ± 0.2EIIvko, 1970RDSH
9.94PEDewar and Worley, 1969RDSH
9.96 ± 0.05SHernandez, 1963RDSH
10.00 ± 0.02PIWatanabe, 1957RDSH
10.0PEBajic, Humski, et al., 1985Vertical value; LBLHLM
10.1PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
11.94PEUtsunomiya, Kobayashi, et al., 1980Vertical value; LLK
10.0 ± 0.2PECarnovale, Livett, et al., 1980Vertical value; LLK
10.1PEAue and Bowers, 1979Vertical value; LLK
10.03PEKobayashi, 1978Vertical value; LLK
9.98PEBenoit and Harrison, 1977Vertical value; LLK
10.052PEAue, Webb, et al., 1975Vertical value; LLK
10.04PEBock, Mollere, et al., 1973Vertical value; LLK
10.04PECradock and Whiteford, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CHO+≤12.85 ± 0.10H2+CH3PIPECOButler, Holland, et al., 1984T = 298K; LBLHLM
CHO+14.0 ± 0.2?EIIvko, 1970RDSH
CH3+≤14.4 ± 0.1CH2O+HPIPECOButler, Holland, et al., 1984T = 298K; LBLHLM
CH3+14.93 ± 0.13?EIHaney and Franklin, 1969RDSH
CH3O+≤11.85 ± 0.10CH3PIPECOButler, Holland, et al., 1984T = 298K; LBLHLM
CH3O+≤11.8CH3EILossing, 1977LLK
CH3O+12.4 ± 0.1CH3EIIvko, 1970RDSH
CH3O+11.95 ± 0.05CH3EIHaney and Franklin, 1969RDSH
C2H5O+11.115 ± 0.010HPIPECOButler, Holland, et al., 1984T = 0K; LBLHLM
C2H5O+10.99 ± 0.08HEIBowen and Maccoll, 1984LBLHLM
C2H5O+10.99HEILossing, 1977LLK
C2H5O+11.23 ± 0.04HEISolka and Russell, 1974LLK
C2H5O+10.70 ± 0.13HEIFinney and Harrison, 1972LLK
C2H5O+11.55 ± 0.15HEIIvko, 1970RDSH
C2H5O+11.42 ± 0.01HEIMartin, Lampe, et al., 1966RDSH

De-protonation reactions

C2H5O- + Hydrogen cation = Dimethyl ether

By formula: C2H5O- + H+ = C2H6O

Quantity Value Units Method Reference Comment
Δr1703. ± 8.4kJ/molBranDePuy, Bierbaum, et al., 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr1666. ± 9.2kJ/molH-TSDePuy, Bierbaum, et al., 1984gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

(CH5O+ • Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • Methyl Alcohol)

By formula: (CH5O+ • CH4O) + C2H6O = (CH5O+ • C2H6O • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr91.6kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ • 2Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • 2Methyl Alcohol)

By formula: (CH5O+ • 2CH4O) + C2H6O = (CH5O+ • C2H6O • 2CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr72.0kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ • 3Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • 3Methyl Alcohol)

By formula: (CH5O+ • 3CH4O) + C2H6O = (CH5O+ • C2H6O • 3CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr57.3kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

CH5O+ + Dimethyl ether = (CH5O+ • Dimethyl ether)

By formula: CH5O+ + C2H6O = (CH5O+ • C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr146.kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be ((CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be ((CH3)2OH+; M

CH6N+ + Dimethyl ether = (CH6N+ • Dimethyl ether)

By formula: CH6N+ + C2H6O = (CH6N+ • C2H6O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr90.0kJ/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KPHPMSMeot-Ner, 1984gas phase; M

(C2H7O+ • Methyl Alcohol) + Dimethyl ether = (C2H7O+ • Dimethyl ether • Methyl Alcohol)

By formula: (C2H7O+ • CH4O) + C2H6O = (C2H7O+ • C2H6O • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr84.5kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M
Quantity Value Units Method Reference Comment
Δr125.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M

(C2H7O+ • 2Methyl Alcohol) + Dimethyl ether = (C2H7O+ • Dimethyl ether • 2Methyl Alcohol)

By formula: (C2H7O+ • 2CH4O) + C2H6O = (C2H7O+ • C2H6O • 2CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr69.5kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M
Quantity Value Units Method Reference Comment
Δr133.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M

(C2H7O+ • 3Methyl Alcohol) + Dimethyl ether = (C2H7O+ • Dimethyl ether • 3Methyl Alcohol)

By formula: (C2H7O+ • 3CH4O) + C2H6O = (C2H7O+ • C2H6O • 3CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M

C2H7O+ + Dimethyl ether = (C2H7O+ • Dimethyl ether)

By formula: C2H7O+ + C2H6O = (C2H7O+ • C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr134.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; M
Δr128.kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr133.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; M
Δr124.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(C2H7O+ • Dimethyl ether) + Dimethyl ether = (C2H7O+ • 2Dimethyl ether)

By formula: (C2H7O+ • C2H6O) + C2H6O = (C2H7O+ • 2C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr42.3kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(C2H7O+ • Dimethyl ether • Water) + Dimethyl ether = (C2H7O+ • 2Dimethyl ether • Water)

By formula: (C2H7O+ • C2H6O • H2O) + C2H6O = (C2H7O+ • 2C2H6O • H2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr70.3kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M
Quantity Value Units Method Reference Comment
Δr111.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M

(C2H7O+ • Dimethyl ether • 2Water) + Dimethyl ether = (C2H7O+ • 2Dimethyl ether • 2Water)

By formula: (C2H7O+ • C2H6O • 2H2O) + C2H6O = (C2H7O+ • 2C2H6O • 2H2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr66.1kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr153.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, Entropy change is questionable; M

(C2H7O+ • 2Dimethyl ether • Water) + Dimethyl ether = (C2H7O+ • 3Dimethyl ether • Water)

By formula: (C2H7O+ • 2C2H6O • H2O) + C2H6O = (C2H7O+ • 3C2H6O • H2O)

Bond type: Hydrogen bonds between protonated and neutral organics

Quantity Value Units Method Reference Comment
Δr90.8kJ/molPHPMSTholman, Tonner, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr174.J/mol*KPHPMSTholman, Tonner, et al., 1994gas phase; M

(C2H7O+ • Water) + Dimethyl ether = (C2H7O+ • Dimethyl ether • Water)

By formula: (C2H7O+ • H2O) + C2H6O = (C2H7O+ • C2H6O • H2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr77.4kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M

(C2H7O+ • 2Water) + Dimethyl ether = (C2H7O+ • Dimethyl ether • 2Water)

By formula: (C2H7O+ • 2H2O) + C2H6O = (C2H7O+ • C2H6O • 2H2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr68.6kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M

(C2H7O+ • 3Water) + Dimethyl ether = (C2H7O+ • Dimethyl ether • 3Water)

By formula: (C2H7O+ • 3H2O) + C2H6O = (C2H7O+ • C2H6O • 3H2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr70.7kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M
Quantity Value Units Method Reference Comment
Δr138.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n; M

C3H7O2+ + Dimethyl ether = (C3H7O2+ • Dimethyl ether)

By formula: C3H7O2+ + C2H6O = (C3H7O2+ • C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr126.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr90.4kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H9O2+ + Dimethyl ether = (C4H9O2+ • Dimethyl ether)

By formula: C4H9O2+ + C2H6O = (C4H9O2+ • C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr125.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr88.7kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C10H10Fe+ + Dimethyl ether = (C10H10Fe+ • Dimethyl ether)

By formula: C10H10Fe+ + C2H6O = (C10H10Fe+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr40.kJ/molPHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.250.PHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

Chlorine anion + Dimethyl ether = C2H6ClO-

By formula: Cl- + C2H6O = C2H6ClO-

Quantity Value Units Method Reference Comment
Δr31.4 ± 1.7kJ/molTDAsBogdanov, Lee, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr12. ± 4.2kJ/molTDAsBogdanov, Lee, et al., 2001gas phase; B

Cesium ion (1+) + Dimethyl ether = (Cesium ion (1+) • Dimethyl ether)

By formula: Cs+ + C2H6O = (Cs+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr56.9 ± 5.0kJ/molCIDTRodgers and Armentrout, 2000RCD

(Cesium ion (1+) • Dimethyl ether) + Dimethyl ether = (Cesium ion (1+) • 2Dimethyl ether)

By formula: (Cs+ • C2H6O) + C2H6O = (Cs+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr46.9 ± 5.9kJ/molCIDTRodgers and Armentrout, 2000RCD

(Cesium ion (1+) • 2Dimethyl ether) + Dimethyl ether = (Cesium ion (1+) • 3Dimethyl ether)

By formula: (Cs+ • 2C2H6O) + C2H6O = (Cs+ • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr40. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000RCD

Copper ion (1+) + Dimethyl ether = (Copper ion (1+) • Dimethyl ether)

By formula: Cu+ + C2H6O = (Cu+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr185. ± 12.kJ/molCIDTKoizumi, 2001RCD

(Copper ion (1+) • Dimethyl ether) + Dimethyl ether = (Copper ion (1+) • 2Dimethyl ether)

By formula: (Cu+ • C2H6O) + C2H6O = (Cu+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr193. ± 7.9kJ/molCIDTKoizumi, 2001RCD

(Copper ion (1+) • 2Dimethyl ether) + Dimethyl ether = (Copper ion (1+) • 3Dimethyl ether)

By formula: (Cu+ • 2C2H6O) + C2H6O = (Cu+ • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr54.8 ± 4.2kJ/molCIDTKoizumi, 2001RCD

(Copper ion (1+) • 3Dimethyl ether) + Dimethyl ether = (Copper ion (1+) • 4Dimethyl ether)

By formula: (Cu+ • 3C2H6O) + C2H6O = (Cu+ • 4C2H6O)

Quantity Value Units Method Reference Comment
Δr45. ± 10.kJ/molCIDTKoizumi, 2001RCD

Potassium ion (1+) + Dimethyl ether = (Potassium ion (1+) • Dimethyl ether)

By formula: K+ + C2H6O = (K+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr72.8 ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr92.9kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Δr87.0kJ/molHPMSDavidson and Kebarle, 1976, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr112.J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M
Δr104.J/mol*KHPMSDavidson and Kebarle, 1976, 2gas phase; M

(Potassium ion (1+) • Dimethyl ether) + Dimethyl ether = (Potassium ion (1+) • 2Dimethyl ether)

By formula: (K+ • C2H6O) + C2H6O = (K+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr69.0 ± 5.0kJ/molCIDTRodgers and Armentrout, 2000RCD

(Potassium ion (1+) • 2Dimethyl ether) + Dimethyl ether = (Potassium ion (1+) • 3Dimethyl ether)

By formula: (K+ • 2C2H6O) + C2H6O = (K+ • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr56.9 ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD

(Potassium ion (1+) • 3Dimethyl ether) + Dimethyl ether = (Potassium ion (1+) • 4Dimethyl ether)

By formula: (K+ • 3C2H6O) + C2H6O = (K+ • 4C2H6O)

Quantity Value Units Method Reference Comment
Δr50.2 ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Dimethyl ether = (Lithium ion (1+) • Dimethyl ether)

By formula: Li+ + C2H6O = (Li+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr165. ± 11.kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr165.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr160.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr131.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
165. (+10.,-0.) CIDMore, Gledening, et al., 1996gas phase; guided ion beam CID; M

(Lithium ion (1+) • Dimethyl ether) + Dimethyl ether = (Lithium ion (1+) • 2Dimethyl ether)

By formula: (Li+ • C2H6O) + C2H6O = (Li+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr121. ± 5.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
130. (+4.,-0.) CIDMore, Gledening, et al., 1996gas phase; guided ion beam CID; M

(Lithium ion (1+) • 2Dimethyl ether) + Dimethyl ether = (Lithium ion (1+) • 3Dimethyl ether)

By formula: (Li+ • 2C2H6O) + C2H6O = (Li+ • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr89.1 ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
110. (+5.9,-0.) CIDMore, Gledening, et al., 1996gas phase; guided ion beam CID; M

(Lithium ion (1+) • 3Dimethyl ether) + Dimethyl ether = (Lithium ion (1+) • 4Dimethyl ether)

By formula: (Li+ • 3C2H6O) + C2H6O = (Li+ • 4C2H6O)

Quantity Value Units Method Reference Comment
Δr68. ± 10.kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
95.4 (+6.7,-0.) CIDMore, Gledening, et al., 1996gas phase; guided ion beam CID; M

Sodium ion (1+) + Dimethyl ether = (Sodium ion (1+) • Dimethyl ether)

By formula: Na+ + C2H6O = (Na+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr100. ± 5.4kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr91.6 ± 4.6kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr92.0 ± 5.0kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr92.9 ± 5.0kJ/molCIDTMore, Ray, et al., 1997RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
73.6298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD
73.6298.CIDCMcMahon and Ohanessian, 2000RCD

(Sodium ion (1+) • Dimethyl ether) + Dimethyl ether = (Sodium ion (1+) • 2Dimethyl ether)

By formula: (Na+ • C2H6O) + C2H6O = (Na+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr85. ± 7.kJ/molAVGN/AAverage of 7 values; Individual data points

(Sodium ion (1+) • 2Dimethyl ether) + Dimethyl ether = (Sodium ion (1+) • 3Dimethyl ether)

By formula: (Na+ • 2C2H6O) + C2H6O = (Na+ • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr69.9 ± 5.0kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr66.9 ± 5.0kJ/molCIDTMore, Ray, et al., 1997RCD

(Sodium ion (1+) • 3Dimethyl ether) + Dimethyl ether = (Sodium ion (1+) • 4Dimethyl ether)

By formula: (Na+ • 3C2H6O) + C2H6O = (Na+ • 4C2H6O)

Quantity Value Units Method Reference Comment
Δr61.1 ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr58.2 ± 4.2kJ/molCIDTMore, Ray, et al., 1997RCD

Rubidium ion (1+) + Dimethyl ether = (Rubidium ion (1+) • Dimethyl ether)

By formula: Rb+ + C2H6O = (Rb+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr61.9 ± 9.2kJ/molCIDTRodgers and Armentrout, 2000RCD

(Rubidium ion (1+) • Dimethyl ether) + Dimethyl ether = (Rubidium ion (1+) • 2Dimethyl ether)

By formula: (Rb+ • C2H6O) + C2H6O = (Rb+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr54.8 ± 5.0kJ/molCIDTRodgers and Armentrout, 2000RCD

(Rubidium ion (1+) • 2Dimethyl ether) + Dimethyl ether = (Rubidium ion (1+) • 3Dimethyl ether)

By formula: (Rb+ • 2C2H6O) + C2H6O = (Rb+ • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr37. ± 11.kJ/molCIDTRodgers and Armentrout, 2000RCD

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 78

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pilcher, Pell, et al., 1964
Pilcher, G.; Pell, A.S.; Coleman, D.J., Measurements of heats of combustion by flame calorimetry. Part 2-Dimethyl ether, methyl ethyl ether, methyl n-propyl ether, methyl isopropyl ether, Trans. Faraday Soc., 1964, 60, 499-505. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Handi M.A., 1954
Handi M.A., Molecular spectroscopy. Determination and interpretation of fundamental frequencies of dimethyl ether from infrared absorption spectrum; application for thermodynamic functions calculation, Compt. Rend. Acad. Sci., 1954, 239, 349-351. [all data]

Seha Z., 1955
Seha Z., Thermodynamic functions of dimethyl ether, Chem. Listy, 1955, 49, 1569-1570. [all data]

Banerjee S.C., 1964
Banerjee S.C., Thermodynamic properties of organic compounds. Part 1. Normal symmetrical aliphatic ethers, Brit. Chem. Eng., 1964, 9, 311-313. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Kistiakowsky G.B., 1940
Kistiakowsky G.B., Gaseous heat capacities. III, J. Chem. Phys., 1940, 8, 618-622. [all data]

Kennedy, Sagenkahn, et al., 1941
Kennedy, R.M.; Sagenkahn, M.; Aston, J.G., The heat capacity and entropy, heats of fusion and vaporization, and the vapor pressure of dimethyl ether. The density of gaseous dimethyl ether, J. Am. Chem. Soc., 1941, 63, 2267-2272. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Grosse, 1937
Grosse, A.V., Refractive Indices at Low Temperatures, J. Am. Chem. Soc., 1937, 59, 2739-41. [all data]

Maass and Boomer, 1922
Maass, O.; Boomer, E.H., Vapor Densities at Low Pressures and Over and Extended Temperature Range. I. The Properties of Ethylene Oxide Compared to Oxygen Compounds of Similar Molecular Weight, J. Am. Chem. Soc., 1922, 44, 8, 1709-1728, https://doi.org/10.1021/ja01429a013 . [all data]

Thiele and Schulte, 1920
Thiele, A.; Schulte, E., Binary equilibrium systems with solid carbon dioxide, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1920, 96, 312-42. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Kennedy, Sagenkahn, et al., 1941, 2
Kennedy, R.M.; Sagenkahn, M.; Aston, J.G., The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Dimethyl Ether. The Density of Gaseous Dimethyl Ether, J. Am. Chem. Soc., 1941, 63, 2267-72. [all data]

Zawisza and Glowka, 1970
Zawisza, A.C.; Glowka, S., Liquid-vapour equilibria and thermodynamic functions of dimethyl ether - sulphur dioxide system up to 300c and 77.81 atmospheres, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1970, 18, 549-54. [all data]

Edwards and Maass, 1935
Edwards, J.; Maass, O., Density and Adsorption Studies in the Region of the Critical Temperature: System Dimethyl-ether-alumina., Can. J. Res., Sect. A, 1935, 12, 357-71. [all data]

Tapp, Steacie, et al., 1933
Tapp, J.S.; Steacie, E.W.R.; Maass, O., Density of a Vapor in Equilibrium with a Liquid Near the Critical Temperature., Can. J. Res., 1933, 9, 217-39. [all data]

Cardoso and Coppola, 1923
Cardoso, E.; Coppola, A.A., Experimental researches on some thermal properties of gas I the densities of coexisting phases of methyl ether, J. Chim. Phys. Phys.-Chim. Biol., 1923, 20, 337-46. [all data]

Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers, The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Butler, Holland, et al., 1984
Butler, J.J.; Holland, D.M.P.; Parr, A.C.; Stockbauer, R., A threshold photoelectron-photoion coincidence spectrometric study of dimethyl ether (CH3OCH3), Int. J. Mass Spectrom. Ion Processes, 1984, 58, 1. [all data]

Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A., Low energy, low temperature mass spectra, Org. Mass Spectrom., 1984, 19, 379. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Aue, Webb, et al., 1980
Aue, D.H.; Webb, H.M.; Davidson, W.R.; Vidal, M.; Bowers, M.T.; Goldwhite, H.; Vertal, L.E.; Douglas, J.E.; Kollman, P.A.; Kenyon, G.L., Proton affinities photoelectron spectra of three-membered-ring J. Heterocycl. Chem., J. Am. Chem. Soc., 1980, 102, 5151. [all data]

Aue and Bowers, 1979
Aue, D.H.; Bowers, M.T., Chapter 9. Stabilities of positive ions from equilibrium gas phase basicity measurements in Ions Chemistry,, ed. M.T. Bowers, 1979. [all data]

Botter, Pechine, et al., 1977
Botter, R.; Pechine, J.M.; Rosenstock, H.M., Photoionization of dimethyl ether and diethyl ether, Int. J. Mass Spectrom. Ion Phys., 1977, 25, 7. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Ivko, 1970
Ivko, A.A., Use of mass spectroscopy and isotope labelling for determining the structure of ions and molecules, Org. Katal., 1970, 20. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Hernandez, 1963
Hernandez, G.J., Vacuum ultraviolet absorption spectrum of dimethyl ether, J. Chem. Phys., 1963, 38, 1644. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Bajic, Humski, et al., 1985
Bajic, M.; Humski, K.; Klasinc, L.; Ruscic, B., Substitution effects on electronic structure of thiophene, Z. Naturforsch. B:, 1985, 40, 1214. [all data]

Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Utsunomiya, Kobayashi, et al., 1980
Utsunomiya, C.; Kobayashi, T.; Nagakura, S., Photoelectron angular distribution measurements for some aliphatic alcohols, amines, halides, Bull. Chem. Soc. Jpn., 1980, 53, 1216. [all data]

Carnovale, Livett, et al., 1980
Carnovale, F.; Livett, M.K.; Peel, J.B., The photoelectron spectrum of the dimethyl ether-hydrogen chloride complex, J. Am. Chem. Soc., 1980, 102, 569. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T., Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects, J. Am. Chem. Soc., 1975, 97, 4137. [all data]

Bock, Mollere, et al., 1973
Bock, H.; Mollere, P.; Becker, G.; Fritz, G., Photoelectron spectra molecular properties. XX. Dimethyl ether, methoxysilane, and disiloxane, J. Organomet. Chem., 1973, 61, 113. [all data]

Cradock and Whiteford, 1972
Cradock, S.; Whiteford, R.A., Photoelectron spectra of the methyl, silyl and germyl derivatives of the group VI elements, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 281. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]

Solka and Russell, 1974
Solka, B.H.; Russell, M.E., Energetics of formation of some structural isomers of gaseous C2H5O+ C2H6N+ ions, J. Phys. Chem., 1974, 78, 1268. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Martin, Lampe, et al., 1966
Martin, R.H.; Lampe, F.W.; Taft, R.W., An electron-impact study of ionization and dissociation in methoxy- and halogen- substituted methanes, J. Am. Chem. Soc., 1966, 88, 1353. [all data]

DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R., Relative Gas-Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1984, 106, 4051. [all data]

Hiraoka, Grimsrud, et al., 1974
Hiraoka, K.; Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Hydrogen Ion in Water - Dimethyl Ether and Methanol - Dimethyl Ether Mixtures, J. Am. Chem. Soc., 1974, 96, 11, 3359, https://doi.org/10.1021/ja00818a004 . [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Tholman, Tonner, et al., 1994
Tholman, D.; Tonner, D.S.; McMahon, T.B., Spontaneous Unimolecular Dissociation of Small Cluster Ions, (H3O)+(L)n and Cl-(H2O)n (n = 2-4), under Fourier Transform Ion Cyclotron Resonance Conditions, J. Phys. Chem., 1994, 98, 8, 2002, https://doi.org/10.1021/j100059a002 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Meot-Ner (Mautner), 1989
Meot-Ner (Mautner), M., Ion DChemistry of Ferrocene. Thermochemistry of Ionization and Protonation and Solvent Clustering. Slow and Entropy - Driven Proton - Transfer Kinetics, J. Am. Chem. Soc., 1989, 111, 8, 2830, https://doi.org/10.1021/ja00190a014 . [all data]

Bogdanov, Lee, et al., 2001
Bogdanov, B.; Lee, H.J.S.; McMahon, T.B., Influence of fluorine substitution on the structures and thermochemistry of chloride ion-ether complexes in the gas phase, Int. J. Mass Spectrom., 2001, 210, 387-402, https://doi.org/10.1016/S1387-3806(01)00404-3 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Koizumi, 2001
Koizumi, H., Collision-Induced Dissociation and Theoretical Studies of Cu+-Dimethyl Ether Complexes, J.Phys. Chem. A, 2001, 105, 11, 2444, https://doi.org/10.1021/jp003509p . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes with Ethylene Diamine and Dimethoxyethane (Glyme) from Measurements of the Complexing Equilibria in the Gas Phase, Can. J. Chem., 1976, 54, 16, 2594, https://doi.org/10.1139/v76-368 . [all data]

Davidson and Kebarle, 1976, 2
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

More, Gledening, et al., 1996
More, M.B.; Gledening, E.D.; Ray, D.; Feller, D.; Armentrout, P.B., Cation-Ether Complexes in the Gas Phase: Bond Dissociation Energies and Equilibrium Structures of Li+[O(CH3)2]x, x=1-4, J. Phys. Chem., 1996, 100, 5, 1605, https://doi.org/10.1021/jp9523175 . [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

More, Ray, et al., 1997
More, M.B.; Ray, D.; Armentrout, P.B., Cation-ether complexes in the gas phase: Bond dissociation energies of Na+(dimethyl ether)(x), x=1-4; Na+(1,2-dimethoxyethane)(x), x=1 and 2; and Na+(12-crown-4), J. Phys. Chem. AJOURNAL OF PHYSICAL CHEMISTRY A 101 (5): 831-839 JAN 30 1997, 1997, 101, 831. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References