Nitrogen

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar191.609 ± 0.004J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar191.61J/mol*KReviewChase, 1998Data last reviewed in March, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 100. to 500.500. to 2000.2000. to 6000.
A 28.9864119.5058335.51872
B 1.85397819.887051.128728
C -9.647459-8.598535-0.196103
D 16.635371.3697840.014662
E 0.0001170.527601-4.553760
F -8.671914-4.935202-18.97091
G 226.4168212.3900224.9810
H 0.00.00.0
ReferenceChase, 1998Chase, 1998Chase, 1998
Comment Data last reviewed in March, 1977; New parameter fit January 2009 Data last reviewed in March, 1977; New parameter fit January 2009 Data last reviewed in March, 1977; New parameter fit January 2009

Phase change data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil77.34KN/AJacobsen, Stewart, et al., 1986TRC
Tboil77.4KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tfus63.3KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ttriple63.14KN/AJacobsen, Stewart, et al., 1986TRC
Ttriple63.14KN/AAngus, de Reuck, et al., 1979Uncertainty assigned by TRC = 0.005 K; TRC
Ttriple63.14KN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.06 K; temperature measured with He gas thermometer; TRC
Ttriple63.13KN/AGiauque and Clayton, 1933Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Quantity Value Units Method Reference Comment
Ptriple0.1252barN/AJacobsen, Stewart, et al., 1986Uncertainty assigned by TRC = 0.0005 bar; TRC
Ptriple0.1253barN/AAngus, de Reuck, et al., 1979Uncertainty assigned by TRC = 0.0002 bar; TRC
Ptriple0.126barN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.0007 bar; TRC
Ptriple0.1253barN/AGiauque and Clayton, 1933Crystal phase 1 phase; Uncertainty assigned by TRC = 0.0001 bar; Average Pressure; TRC
Quantity Value Units Method Reference Comment
Tc126.19KN/AJacobsen, Stewart, et al., 1986Uncertainty assigned by TRC = 0.01 K; TRC
Tc126.2KN/AAngus, de Reuck, et al., 1979Uncertainty assigned by TRC = 0.05 K; TRC
Tc126.2KN/AWeber, 1970Uncertainty assigned by TRC = 0.2 K; IPTS-68, critical point not observed and Tc taken from literature but equation would allow pc to be calculated. Tc unct. several tenths K. "Ultra-high" purity nitrogen.; TRC
Tc128.45KN/ACardoso, 1915Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Pc33.978barN/AJacobsen, Stewart, et al., 1986Uncertainty assigned by TRC = 0.007 bar; TRC
Pc34.00barN/AAngus, de Reuck, et al., 1979Uncertainty assigned by TRC = 0.05 bar; TRC
Pc3.0698barN/ACardoso, 1915Uncertainty assigned by TRC = 0.003 bar; TRC
Pc3.0682barN/ACardoso, 1915Uncertainty assigned by TRC = 0.003 bar; TRC
Quantity Value Units Method Reference Comment
ρc11.18mol/lN/AJacobsen, Stewart, et al., 1986Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc11.2mol/lN/AAngus, de Reuck, et al., 1979Uncertainty assigned by TRC = 0.02 mol/l; TRC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Reference Comment
6.178.Edejer and Thodos, 1967Based on data from 63. to 126. K.; AC
5.677.Giauque and Clayton, 1933, 2AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
63.14 to 126.3.7362264.651-6.788Edejer and Thodos, 1967Coefficents calculated by NIST from author's data.
63.14 to 78.003.63792257.877-6.344Moussa, Muijlwijk, et al., 1966Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
0.000601300.XN/A
0.000651300.LN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to N2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)15.581 ± 0.008eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)493.8kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity464.5kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
15.581 ± 0.008STrickl, Cromwell, et al., 1989LL
15.7 ± 0.1EIStephen, Mark, et al., 1984LBLHLM
15.6 ± 0.1EIGrade, Wienecke, et al., 1983LBLHLM
15.60PEKimura, Katsumata, et al., 1981LLK
10.1 ± 0.6EIArmentrout, Tarr, et al., 1981LLK
15.58EIArmentrout, Tarr, et al., 1981LLK
15.5808EVALHuber and Herzberg, 1979LLK
15.58 ± 0.02EISahini, Constantin, et al., 1978LLK
15.5PIRabalais, Debies, et al., 1974LLK
15.58PELee and Rabalais, 1974LLK
15.61PENatalis, 1973LLK
15.58 ± 0.01PEHotop and Niehaus, 1970RDSH
15.56CICermak, 1968RDSH
15.58PICook and Metzger, 1964RDSH
15.5803SOgawa and Tanaka, 1962RDSH
15.5802SWorley, 1943RDSH
15.5812 ± 0.0002SWorley and Jenkins, 1938RDSH
15.58PEPotts and Williams, 1974Vertical value; LLK
15.60PEKatrib, Debies, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
N+24.34N(4So)EILocht, Schopman, et al., 1975LLK
N+24.3NEISmyth, Schiavone, et al., 1973LLK
N+24.4 ± 0.25NEICrowe and McConkey, 1973LLK
N+24.32 ± 0.03NEIHierl and Franklin, 1967RDSH
N+48. ± 2.N+EIHierl and Franklin, 1967RDSH
N+24.32 ± 0.02NEIFrost and McDowell, 1956RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Ar+ + Nitrogen = (Ar+ • Nitrogen)

By formula: Ar+ + N2 = (Ar+ • N2)

Quantity Value Units Method Reference Comment
Δr164.kJ/molFAShul, Passarella, et al., 1987gas phase; switching reaction(Ar+)Ar, ΔrH>; Dehmer and Pratt, 1982; M

Trifluoromethyl cation + Nitrogen = (Trifluoromethyl cation • Nitrogen)

By formula: CF3+ + N2 = (CF3+ • N2)

Quantity Value Units Method Reference Comment
Δr29.kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • Nitrogen) + Nitrogen = (Trifluoromethyl cation • 2Nitrogen)

By formula: (CF3+ • N2) + N2 = (CF3+ • 2N2)

Quantity Value Units Method Reference Comment
Δr21.kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 2Nitrogen) + Nitrogen = (Trifluoromethyl cation • 3Nitrogen)

By formula: (CF3+ • 2N2) + N2 = (CF3+ • 3N2)

Quantity Value Units Method Reference Comment
Δr8.4kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr54.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 3Nitrogen) + Nitrogen = (Trifluoromethyl cation • 4Nitrogen)

By formula: (CF3+ • 3N2) + N2 = (CF3+ • 4N2)

Quantity Value Units Method Reference Comment
Δr7.5kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr59.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 4Nitrogen) + Nitrogen = (Trifluoromethyl cation • 5Nitrogen)

By formula: (CF3+ • 4N2) + N2 = (CF3+ • 5N2)

Quantity Value Units Method Reference Comment
Δr6.3kJ/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr50.J/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

CH2N+ + Nitrogen = (CH2N+ • Nitrogen)

By formula: CH2N+ + N2 = (CH2N+ • N2)

Quantity Value Units Method Reference Comment
Δr32.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr92.9J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; M

(CH2N+ • Nitrogen) + Nitrogen = (CH2N+ • 2Nitrogen)

By formula: (CH2N+ • N2) + N2 = (CH2N+ • 2N2)

Quantity Value Units Method Reference Comment
Δr21.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr83.3J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; M

(CH2N+ • 2Nitrogen) + Nitrogen = (CH2N+ • 3Nitrogen)

By formula: (CH2N+ • 2N2) + N2 = (CH2N+ • 3N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr54.8J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

(CH2N+ • 3Nitrogen) + Nitrogen = (CH2N+ • 4Nitrogen)

By formula: (CH2N+ • 3N2) + N2 = (CH2N+ • 4N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr57.7J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

(CH2N+ • 4Nitrogen) + Nitrogen = (CH2N+ • 5Nitrogen)

By formula: (CH2N+ • 4N2) + N2 = (CH2N+ • 5N2)

Quantity Value Units Method Reference Comment
Δr13.kJ/molHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr63.6J/mol*KHPMSSpeller, Fitaire, et al., 1982gas phase; Entropy change is questionable; M

Methyl cation + Nitrogen = (Methyl cation • Nitrogen)

By formula: CH3+ + N2 = (CH3+ • N2)

Quantity Value Units Method Reference Comment
Δr203.kJ/molPDissFoster, Williamson, et al., 1974gas phase; M

CH5+ + Nitrogen = (CH5+ • Nitrogen)

By formula: CH5+ + N2 = (CH5+ • N2)

Quantity Value Units Method Reference Comment
Δr28.kJ/molHPMSSpeller, 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KHPMSSpeller, 1983gas phase; M

C2H5+ + Nitrogen = (C2H5+ • Nitrogen)

By formula: C2H5+ + N2 = (C2H5+ • N2)

Quantity Value Units Method Reference Comment
Δr29.kJ/molHPMSSpeller, 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KHPMSSpeller, 1983gas phase; M

(C2H5+ • Nitrogen) + Nitrogen = (C2H5+ • 2Nitrogen)

By formula: (C2H5+ • N2) + N2 = (C2H5+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19.kJ/molHPMSSpeller, 1983gas phase; deuterated, Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr45.6J/mol*KHPMSSpeller, 1983gas phase; deuterated, Entropy change is questionable; M

Calcium ion (1+) + Nitrogen = (Calcium ion (1+) • Nitrogen)

By formula: Ca+ + N2 = (Ca+ • N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.296.FASpears and Fehsenfeld, 1972gas phase; M

Copper ion (1+) + Nitrogen = (Copper ion (1+) • Nitrogen)

By formula: Cu+ + N2 = (Cu+ • N2)

Quantity Value Units Method Reference Comment
Δr26.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr67.J/mol*KHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr5.9kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M

(Copper ion (1+) • Nitrogen) + Nitrogen = (Copper ion (1+) • 2Nitrogen)

By formula: (Cu+ • N2) + N2 = (Cu+ • 2N2)

Quantity Value Units Method Reference Comment
Δr12.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desorption, equilibrium?; M

(Copper ion (1+) • 2Nitrogen) + Nitrogen = (Copper ion (1+) • 3Nitrogen)

By formula: (Cu+ • 2N2) + N2 = (Cu+ • 3N2)

Quantity Value Units Method Reference Comment
Δr10.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desorption; M

Iron ion (1+) + Nitrogen = (Iron ion (1+) • Nitrogen)

By formula: Fe+ + N2 = (Fe+ • N2)

Quantity Value Units Method Reference Comment
Δr54.0 ± 5.9kJ/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • Nitrogen) + Nitrogen = (Iron ion (1+) • 2Nitrogen)

By formula: (Fe+ • N2) + N2 = (Fe+ • 2N2)

Quantity Value Units Method Reference Comment
Δr82.8 ± 9.2kJ/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • 2Nitrogen) + Nitrogen = (Iron ion (1+) • 3Nitrogen)

By formula: (Fe+ • 2N2) + N2 = (Fe+ • 3N2)

Quantity Value Units Method Reference Comment
Δr45. ± 3.kJ/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • 3Nitrogen) + Nitrogen = (Iron ion (1+) • 4Nitrogen)

By formula: (Fe+ • 3N2) + N2 = (Fe+ • 4N2)

Quantity Value Units Method Reference Comment
Δr54.0 ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • 4Nitrogen) + Nitrogen = (Iron ion (1+) • 5Nitrogen)

By formula: (Fe+ • 4N2) + N2 = (Fe+ • 5N2)

Quantity Value Units Method Reference Comment
Δr61.9 ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD

HN2+ + Nitrogen = (HN2+ • Nitrogen)

By formula: HN2+ + N2 = (HN2+ • N2)

Quantity Value Units Method Reference Comment
Δr66.9kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr60.7kJ/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr85.4J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M

(HN2+ • Nitrogen) + Nitrogen = (HN2+ • 2Nitrogen)

By formula: (HN2+ • N2) + N2 = (HN2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr15. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr17.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr75.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HN2+ • 2Nitrogen) + Nitrogen = (HN2+ • 3Nitrogen)

By formula: (HN2+ • 2N2) + N2 = (HN2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr16.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr84.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HN2+ • 3Nitrogen) + Nitrogen = (HN2+ • 4Nitrogen)

By formula: (HN2+ • 3N2) + N2 = (HN2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr15.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HN2+ • 4Nitrogen) + Nitrogen = (HN2+ • 5Nitrogen)

By formula: (HN2+ • 4N2) + N2 = (HN2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr12. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr13.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KN/AHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
5.992.PHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

(HN2+ • 5Nitrogen) + Nitrogen = (HN2+ • 6Nitrogen)

By formula: (HN2+ • 5N2) + N2 = (HN2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 6Nitrogen) + Nitrogen = (HN2+ • 7Nitrogen)

By formula: (HN2+ • 6N2) + N2 = (HN2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 7Nitrogen) + Nitrogen = (HN2+ • 8Nitrogen)

By formula: (HN2+ • 7N2) + N2 = (HN2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 8Nitrogen) + Nitrogen = (HN2+ • 9Nitrogen)

By formula: (HN2+ • 8N2) + N2 = (HN2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 9Nitrogen) + Nitrogen = (HN2+ • 10Nitrogen)

By formula: (HN2+ • 9N2) + N2 = (HN2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HN2+ • 10Nitrogen) + Nitrogen = (HN2+ • 11Nitrogen)

By formula: (HN2+ • 10N2) + N2 = (HN2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr7.20kJ/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(Hydronium cation • Water) + Nitrogen = (Hydronium cation • Nitrogen • Water)

By formula: (H3O+ • H2O) + N2 = (H3O+ • N2 • H2O)

Quantity Value Units Method Reference Comment
Δr22.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr58.2J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • 2Water) + Nitrogen = (Hydronium cation • Nitrogen • 2Water)

By formula: (H3O+ • 2H2O) + N2 = (H3O+ • N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr21.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr59.8J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • Nitrogen • Water) + Nitrogen = (Hydronium cation • 2Nitrogen • Water)

By formula: (H3O+ • N2 • H2O) + N2 = (H3O+ • 2N2 • H2O)

Quantity Value Units Method Reference Comment
Δr21.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr54.8J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 2Nitrogen • 2Water)

By formula: (H3O+ • N2 • 2H2O) + N2 = (H3O+ • 2N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr22.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr69.5J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • Nitrogen • 3Water) + Nitrogen = (Hydronium cation • 2Nitrogen • 3Water)

By formula: (H3O+ • N2 • 3H2O) + N2 = (H3O+ • 2N2 • 3H2O)

Quantity Value Units Method Reference Comment
Δr18.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • 2Nitrogen • Water) + Nitrogen = (Hydronium cation • 3Nitrogen • Water)

By formula: (H3O+ • 2N2 • H2O) + N2 = (H3O+ • 3N2 • H2O)

Quantity Value Units Method Reference Comment
Δr33. ± 8.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • 2Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 3Nitrogen • 2Water)

By formula: (H3O+ • 2N2 • 2H2O) + N2 = (H3O+ • 3N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr38. ± 11.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr119.J/mol*KDTGheno and Fitaire, 1987gas phase; M

(Hydronium cation • 2Nitrogen • 3Water) + Nitrogen = (Hydronium cation • 3Nitrogen • 3Water)

By formula: (H3O+ • 2N2 • 3H2O) + N2 = (H3O+ • 3N2 • 3H2O)

Quantity Value Units Method Reference Comment
Δr5.0kJ/molDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr27.J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M

(Hydronium cation • 3Nitrogen • 2Water) + Nitrogen = (Hydronium cation • 4Nitrogen • 2Water)

By formula: (H3O+ • 3N2 • 2H2O) + N2 = (H3O+ • 4N2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr10.kJ/molDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr50.J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrH, ΔrS approximate; M

NH4+ + Nitrogen = (NH4+ • Nitrogen)

By formula: H4N+ + N2 = (H4N+ • N2)

Quantity Value Units Method Reference Comment
Δr50. ± 20.kJ/molDTGheno and Fitaire, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KDTGheno and Fitaire, 1987gas phase; M

Potassium ion (1+) + Nitrogen = (Potassium ion (1+) • Nitrogen)

By formula: K+ + N2 = (K+ • N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.2310.DTBeyer and Keller, 1971gas phase; low E/N; M

Lithium ion (1+) + Nitrogen = (Lithium ion (1+) • Nitrogen)

By formula: Li+ + N2 = (Li+ • N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.318.DTGatland, Colonna-Romano, et al., 1975gas phase; low E/N; M

(Lithium ion (1+) • Nitrogen) + Nitrogen = (Lithium ion (1+) • 2Nitrogen)

By formula: (Li+ • N2) + N2 = (Li+ • 2N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.318.DTGatland, Colonna-Romano, et al., 1975gas phase; low E/N; M

N+ + Nitrogen = (N+ • Nitrogen)

By formula: N+ + N2 = (N+ • N2)

Quantity Value Units Method Reference Comment
Δr249.kJ/molN/ANational Bureau of Standards, 1968gas phase; from ΔrH(f); M
Δr250.kJ/molEISaporoschenko, 1965gas phase; M
Δr250.kJ/molEIFranklin, Dibeler, et al., 1958gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
361. (+7.5,-0.) CIDHaynes, Freysinger, et al., 1995gas phase; guided ion beam CID; M

Nitric oxide anion + Nitrogen = (Nitric oxide anion • Nitrogen)

By formula: NO- + N2 = (NO- • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr20.kJ/molDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr18.kJ/molHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr22.kJ/molHPMSTurner and Conway, 1976gas phase; M
Δr19.kJ/molDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr57.7J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr55.6J/mol*KHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr79.1J/mol*KHPMSTurner and Conway, 1976gas phase; M
Δr65.7J/mol*KDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; M

(Nitric oxide anion • Nitrogen) + Nitrogen = (Nitric oxide anion • 2Nitrogen)

By formula: (NO- • N2) + N2 = (NO- • 2N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr16.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr52.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Nitric oxide anion • 2Nitrogen) + Nitrogen = (Nitric oxide anion • 3Nitrogen)

By formula: (NO- • 2N2) + N2 = (NO- • 3N2)

Quantity Value Units Method Reference Comment
Δr16. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr70.3J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 3Nitrogen) + Nitrogen = (Nitric oxide anion • 4Nitrogen)

By formula: (NO- • 3N2) + N2 = (NO- • 4N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 4Nitrogen) + Nitrogen = (Nitric oxide anion • 5Nitrogen)

By formula: (NO- • 4N2) + N2 = (NO- • 5N2)

Quantity Value Units Method Reference Comment
Δr13. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 5Nitrogen) + Nitrogen = (Nitric oxide anion • 6Nitrogen)

By formula: (NO- • 5N2) + N2 = (NO- • 6N2)

Quantity Value Units Method Reference Comment
Δr13. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 6Nitrogen) + Nitrogen = (Nitric oxide anion • 7Nitrogen)

By formula: (NO- • 6N2) + N2 = (NO- • 7N2)

Quantity Value Units Method Reference Comment
Δr12. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 7Nitrogen) + Nitrogen = (Nitric oxide anion • 8Nitrogen)

By formula: (NO- • 7N2) + N2 = (NO- • 8N2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr97.5J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 8Nitrogen) + Nitrogen = (Nitric oxide anion • 9Nitrogen)

By formula: (NO- • 8N2) + N2 = (NO- • 9N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 9Nitrogen) + Nitrogen = (Nitric oxide anion • 10Nitrogen)

By formula: (NO- • 9N2) + N2 = (NO- • 10N2)

Quantity Value Units Method Reference Comment
Δr7.03kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr79.J/mol*KN/AHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M

NO2+ + Nitrogen = (NO2+ • Nitrogen)

By formula: NO2+ + N2 = (NO2+ • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • Nitrogen) + Nitrogen = (NO2+ • 2Nitrogen)

By formula: (NO2+ • N2) + N2 = (NO2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 2Nitrogen) + Nitrogen = (NO2+ • 3Nitrogen)

By formula: (NO2+ • 2N2) + N2 = (NO2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr18. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 3Nitrogen) + Nitrogen = (NO2+ • 4Nitrogen)

By formula: (NO2+ • 3N2) + N2 = (NO2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr16. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 4Nitrogen) + Nitrogen = (NO2+ • 5Nitrogen)

By formula: (NO2+ • 4N2) + N2 = (NO2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 5Nitrogen) + Nitrogen = (NO2+ • 6Nitrogen)

By formula: (NO2+ • 5N2) + N2 = (NO2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 6Nitrogen) + Nitrogen = (NO2+ • 7Nitrogen)

By formula: (NO2+ • 6N2) + N2 = (NO2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 7Nitrogen) + Nitrogen = (NO2+ • 8Nitrogen)

By formula: (NO2+ • 7N2) + N2 = (NO2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 8Nitrogen) + Nitrogen = (NO2+ • 9Nitrogen)

By formula: (NO2+ • 8N2) + N2 = (NO2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 9Nitrogen) + Nitrogen = (NO2+ • 10Nitrogen)

By formula: (NO2+ • 9N2) + N2 = (NO2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr86.2J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 10Nitrogen) + Nitrogen = (NO2+ • 11Nitrogen)

By formula: (NO2+ • 10N2) + N2 = (NO2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(NO2+ • 11Nitrogen) + Nitrogen = (NO2+ • 12Nitrogen)

By formula: (NO2+ • 11N2) + N2 = (NO2+ • 12N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Nitrogen cation + Nitrogen = (Nitrogen cation • Nitrogen)

By formula: N2+ + N2 = (N2+ • N2)

Quantity Value Units Method Reference Comment
Δr102. to 102.kJ/molRNGN/ARange of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr67.8J/mol*KPHPMSTeng and Conway, 1973gas phase; M
Δr81.6J/mol*KPHPMSPayzant and Kebarle, 1970gas phase; M
Δr46.J/mol*KDTVarney, 1968gas phase; Entropy change is questionable; M
Δr-4.J/mol*KDTVarney, 1959gas phase; Entropy change is questionable; M

(Nitrogen cation • Nitrogen) + Nitrogen = (Nitrogen cation • 2Nitrogen)

By formula: (N2+ • N2) + N2 = (N2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr11.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr5.9kJ/molPILinn, Ono, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr62.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 2Nitrogen) + Nitrogen = (Nitrogen cation • 3Nitrogen)

By formula: (N2+ • 2N2) + N2 = (N2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr66.1J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 3Nitrogen) + Nitrogen = (Nitrogen cation • 4Nitrogen)

By formula: (N2+ • 3N2) + N2 = (N2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr10.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr69.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 4Nitrogen) + Nitrogen = (Nitrogen cation • 5Nitrogen)

By formula: (N2+ • 4N2) + N2 = (N2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 5Nitrogen) + Nitrogen = (Nitrogen cation • 6Nitrogen)

By formula: (N2+ • 5N2) + N2 = (N2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 6Nitrogen) + Nitrogen = (Nitrogen cation • 7Nitrogen)

By formula: (N2+ • 6N2) + N2 = (N2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr85.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 7Nitrogen) + Nitrogen = (Nitrogen cation • 8Nitrogen)

By formula: (N2+ • 7N2) + N2 = (N2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr7.8 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 8Nitrogen) + Nitrogen = (Nitrogen cation • 9Nitrogen)

By formula: (N2+ • 8N2) + N2 = (N2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7.4 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 9Nitrogen) + Nitrogen = (Nitrogen cation • 10Nitrogen)

By formula: (N2+ • 9N2) + N2 = (N2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7.4 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Nitrogen cation • 10Nitrogen) + Nitrogen = (Nitrogen cation • 11Nitrogen)

By formula: (N2+ • 10N2) + N2 = (N2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

N3+ + Nitrogen = (N3+ • Nitrogen)

By formula: N3+ + N2 = (N3+ • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • Nitrogen) + Nitrogen = (N3+ • 2Nitrogen)

By formula: (N3+ • N2) + N2 = (N3+ • 2N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 2Nitrogen) + Nitrogen = (N3+ • 3Nitrogen)

By formula: (N3+ • 2N2) + N2 = (N3+ • 3N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 3Nitrogen) + Nitrogen = (N3+ • 4Nitrogen)

By formula: (N3+ • 3N2) + N2 = (N3+ • 4N2)

Quantity Value Units Method Reference Comment
Δr15. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 4Nitrogen) + Nitrogen = (N3+ • 5Nitrogen)

By formula: (N3+ • 4N2) + N2 = (N3+ • 5N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 5Nitrogen) + Nitrogen = (N3+ • 6Nitrogen)

By formula: (N3+ • 5N2) + N2 = (N3+ • 6N2)

Quantity Value Units Method Reference Comment
Δr10. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 6Nitrogen) + Nitrogen = (N3+ • 7Nitrogen)

By formula: (N3+ • 6N2) + N2 = (N3+ • 7N2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 7Nitrogen) + Nitrogen = (N3+ • 8Nitrogen)

By formula: (N3+ • 7N2) + N2 = (N3+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr69.9J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 8Nitrogen) + Nitrogen = (N3+ • 9Nitrogen)

By formula: (N3+ • 8N2) + N2 = (N3+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr68.2J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 9Nitrogen) + Nitrogen = (N3+ • 10Nitrogen)

By formula: (N3+ • 9N2) + N2 = (N3+ • 10N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

(N3+ • 10Nitrogen) + Nitrogen = (N3+ • 11Nitrogen)

By formula: (N3+ • 10N2) + N2 = (N3+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr70.7J/mol*KPHPMSHiraoka and Yamabe, 1989, 2gas phase; M

Sodium ion (1+) + Nitrogen = (Sodium ion (1+) • Nitrogen)

By formula: Na+ + N2 = (Na+ • N2)

Quantity Value Units Method Reference Comment
Δr33.kJ/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8J/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
9.2310.FAPerry, Rowe, et al., 1980gas phase; M
8.4310.DTBeyer and Keller, 1971gas phase; low E/N; M

(Sodium ion (1+) • Nitrogen) + Nitrogen = (Sodium ion (1+) • 2Nitrogen)

By formula: (Na+ • N2) + N2 = (Na+ • 2N2)

Quantity Value Units Method Reference Comment
Δr22.kJ/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr70.3J/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-1.310.FAPerry, Rowe, et al., 1980gas phase; M

Nickel ion (1+) + Nitrogen = (Nickel ion (1+) • Nitrogen)

By formula: Ni+ + N2 = (Ni+ • N2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
111. (+10.,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • Nitrogen) + Nitrogen = (Nickel ion (1+) • 2Nitrogen)

By formula: (Ni+ • N2) + N2 = (Ni+ • 2N2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
111. (+10.,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • 2Nitrogen) + Nitrogen = (Nickel ion (1+) • 3Nitrogen)

By formula: (Ni+ • 2N2) + N2 = (Ni+ • 3N2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
56. (+4.,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • 3Nitrogen) + Nitrogen = (Nickel ion (1+) • 4Nitrogen)

By formula: (Ni+ • 3N2) + N2 = (Ni+ • 4N2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
42.3 (+9.6,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

Oxygen cation + Nitrogen = (Oxygen cation • Nitrogen)

By formula: O2+ + N2 = (O2+ • N2)

Quantity Value Units Method Reference Comment
Δr21. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr22.kJ/molHPMSSpeller and Fitaire, 1983gas phase; M
Δr24.kJ/molPHPMSJanik and Conway, 1967gas phase; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr66.1J/mol*KHPMSSpeller and Fitaire, 1983gas phase; M
Δr79.1J/mol*KPHPMSJanik and Conway, 1967gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.0296.FAHoward, Bierbaum, et al., 1972gas phase; M

(Oxygen cation • Nitrogen) + Nitrogen = (Oxygen cation • 2Nitrogen)

By formula: (O2+ • N2) + N2 = (O2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr18.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr57.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Oxygen cation • 2Nitrogen) + Nitrogen = (Oxygen cation • 3Nitrogen)

By formula: (O2+ • 2N2) + N2 = (O2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr18. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr15.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M
Δr50.6J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Oxygen cation • 3Nitrogen) + Nitrogen = (Oxygen cation • 4Nitrogen)

By formula: (O2+ • 3N2) + N2 = (O2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.204.HPMSSpeller and Fitaire, 1983gas phase; M

(Oxygen cation • 4Nitrogen) + Nitrogen = (Oxygen cation • 5Nitrogen)

By formula: (O2+ • 4N2) + N2 = (O2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.184.HPMSSpeller and Fitaire, 1983gas phase; M

(Oxygen cation • 5Nitrogen) + Nitrogen = (Oxygen cation • 6Nitrogen)

By formula: (O2+ • 5N2) + N2 = (O2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 6Nitrogen) + Nitrogen = (Oxygen cation • 7Nitrogen)

By formula: (O2+ • 6N2) + N2 = (O2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 7Nitrogen) + Nitrogen = (Oxygen cation • 8Nitrogen)

By formula: (O2+ • 7N2) + N2 = (O2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr8.8 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 8Nitrogen) + Nitrogen = (Oxygen cation • 9Nitrogen)

By formula: (O2+ • 8N2) + N2 = (O2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7.9 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 9Nitrogen) + Nitrogen = (Oxygen cation • 10Nitrogen)

By formula: (O2+ • 9N2) + N2 = (O2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7.0 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr87.0J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • 10Nitrogen) + Nitrogen = (Oxygen cation • 11Nitrogen)

By formula: (O2+ • 10N2) + N2 = (O2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka and Nakajima, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase; M

(Oxygen cation • Nitrogen • Oxygen) + Nitrogen = (Oxygen cation • 2Nitrogen • Oxygen)

By formula: (O2+ • N2 • O2) + N2 = (O2+ • 2N2 • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.230.HPMSSpeller and Fitaire, 1983gas phase; M

(Oxygen cation • Oxygen) + Nitrogen = (Oxygen cation • Nitrogen • Oxygen)

By formula: (O2+ • O2) + N2 = (O2+ • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr42.3J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

Oxygen anion + Nitrogen = (Oxygen anion • Nitrogen)

By formula: O2- + N2 = (O2- • N2)

Quantity Value Units Method Reference Comment
Δr25. ± 4.2kJ/molN/APosey and Johnson, 1988gas phase; B
Δr<56.90kJ/molIMRBAdams and Bohme, 1970gas phase; N2..O2- + O2 -> O4-; B

(Oxygen anion • Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 2Nitrogen • Oxygen)

By formula: (O2- • N2 • O2) + N2 = (O2- • 2N2 • O2)

Quantity Value Units Method Reference Comment
Δr11.7 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 2Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 3Nitrogen • Oxygen)

By formula: (O2- • 2N2 • O2) + N2 = (O2- • 3N2 • O2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 3Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 4Nitrogen • Oxygen)

By formula: (O2- • 3N2 • O2) + N2 = (O2- • 4N2 • O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 4Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 5Nitrogen • Oxygen)

By formula: (O2- • 4N2 • O2) + N2 = (O2- • 5N2 • O2)

Quantity Value Units Method Reference Comment
Δr8.1 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 5Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 6Nitrogen • Oxygen)

By formula: (O2- • 5N2 • O2) + N2 = (O2- • 6N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 6Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 7Nitrogen • Oxygen)

By formula: (O2- • 6N2 • O2) + N2 = (O2- • 7N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.1 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 7Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 8Nitrogen • Oxygen)

By formula: (O2- • 7N2 • O2) + N2 = (O2- • 8N2 • O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Δr6.40kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr75.3J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

(Oxygen anion • Oxygen) + Nitrogen = (Oxygen anion • Nitrogen • Oxygen)

By formula: (O2- • O2) + N2 = (O2- • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka, 1988gas phase; M

O3- + Nitrogen = (O3- • Nitrogen)

By formula: O3- + N2 = (O3- • N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.84kJ/molTDAsHiraoka, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr-11.7 ± 2.1kJ/molTDAsHiraoka, 1988gas phase; B

(O3- • Nitrogen) + Nitrogen = (O3- • 2Nitrogen)

By formula: (O3- • N2) + N2 = (O3- • 2N2)

Quantity Value Units Method Reference Comment
Δr11.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 2Nitrogen) + Nitrogen = (O3- • 3Nitrogen)

By formula: (O3- • 2N2) + N2 = (O3- • 3N2)

Quantity Value Units Method Reference Comment
Δr10.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 3Nitrogen) + Nitrogen = (O3- • 4Nitrogen)

By formula: (O3- • 3N2) + N2 = (O3- • 4N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 4Nitrogen) + Nitrogen = (O3- • 5Nitrogen)

By formula: (O3- • 4N2) + N2 = (O3- • 5N2)

Quantity Value Units Method Reference Comment
Δr8.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 5Nitrogen) + Nitrogen = (O3- • 6Nitrogen)

By formula: (O3- • 5N2) + N2 = (O3- • 6N2)

Quantity Value Units Method Reference Comment
Δr8.2 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 6Nitrogen) + Nitrogen = (O3- • 7Nitrogen)

By formula: (O3- • 6N2) + N2 = (O3- • 7N2)

Quantity Value Units Method Reference Comment
Δr7.6 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 7Nitrogen) + Nitrogen = (O3- • 8Nitrogen)

By formula: (O3- • 7N2) + N2 = (O3- • 8N2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr73.2J/mol*KPHPMSHiraoka, 1988gas phase; M

(O3- • 8Nitrogen) + Nitrogen = (O3- • 9Nitrogen)

By formula: (O3- • 8N2) + N2 = (O3- • 9N2)

Quantity Value Units Method Reference Comment
Δr6. ± 2.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr70.7J/mol*KPHPMSHiraoka, 1988gas phase; M

O4- + Nitrogen + Oxygen = N2O4-

By formula: O4- + N2 + O2 = N2O4-

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.84kJ/molTDAsHiraoka, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr-8.8 ± 2.1kJ/molTDAsHiraoka, 1988gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61309

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Jacobsen, Stewart, et al., 1986
Jacobsen, R.T.; Stewart, R.B.; Jahangiri, M., Termodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa, J. Phys. Chem. Ref. Data, 1986, 15, 735-909. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Angus, de Reuck, et al., 1979
Angus, S.; de Reuck, K.M.; Armstrong, B.; Jacobsen, R.T.; Stewart, R.B., International Thermodynamic Tables of the Fluid State - 6 Nitrogen, Pergamon, New York, 1979. [all data]

Henning and Otto, 1936
Henning, F.; Otto, J., Vapor pressure curves and triple points in the temperature region from 14 to 90 k, Phys. Z., 1936, 37, 633-8. [all data]

Giauque and Clayton, 1933
Giauque, W.F.; Clayton, J.O., Heat Capacity and Entropy of Nitrogen. Heat of Vaporization. Vapor Pressure of Solid and Liquid. The Reaction 1/2 N2 + 1/2 O2 = NO from Spectroscopic Data, J. Am. Chem. Soc., 1933, 55, 4875. [all data]

Weber, 1970
Weber, L.A., Some vapor pressure and P,V,T data on nitrogen in t he range 65 to 140 K, J. Chem. Thermodyn., 1970, 2, 839-846. [all data]

Cardoso, 1915
Cardoso, E., Study of the Critical Point of Several Difficultly LIquifiable Gases: Nitrogen, Carbon Monoxide, Oxygen and Methane, J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 312. [all data]

Edejer and Thodos, 1967
Edejer, Merardo P.; Thodos, George, Vapor pressures of liquid nitrogen between the triple and critical points, J. Chem. Eng. Data, 1967, 12, 2, 206-209, https://doi.org/10.1021/je60033a014 . [all data]

Giauque and Clayton, 1933, 2
Giauque, W.F.; Clayton, J.O., The Heat Capacity and Entropy of Nitrogen. Heat of Vaporization. Vapor Pressures of Solid and Liquid. The Reaction 1/2 N 2 + 1/2 O 2 = NO from Spectroscopic Data, J. Am. Chem. Soc., 1933, 55, 12, 4875-4889, https://doi.org/10.1021/ja01339a024 . [all data]

Moussa, Muijlwijk, et al., 1966
Moussa, M.R.; Muijlwijk, R.; van Dijk, H., The Vapour Pressure of Liquid Nitrogen, Physica (Amsterdam), 1966, 32, 5, 900-912, https://doi.org/10.1016/0031-8914(66)90021-8 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Trickl, Cromwell, et al., 1989
Trickl, T.; Cromwell, E.F.; Lee, Y.T.; Kung, A.H., State-selective ionization of nitrogen in the X2 =0 and v =1 states by two-color (1+1) photon excitation near threshold, J. Chem. Phys., 1989, 91, 6006. [all data]

Stephen, Mark, et al., 1984
Stephen, K.; Mark, T.D.; Futrell, J.H.; Helm, H., Electron impact ionization of (N2)2: Appearance energies of N3+ and N4+, J. Chem. Phys., 1984, 80, 3185. [all data]

Grade, Wienecke, et al., 1983
Grade, M.; Wienecke, J.; Rosinger, W.; Hirschwald, W., Electron impact investigation of the molecules SeS(g) and TeSe(g) under high-temperature equilibrium conditions, Ber. Bunsen-Ges. Phys. Chem., 1983, 87, 355. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Armentrout, Tarr, et al., 1981
Armentrout, P.B.; Tarr, S.M.; Dori, A.; Freund, R.S., Electron impact ionization cross section of metastable N2 (A2Σu+), J. Chem. Phys., 1981, 75, 2788. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Sahini, Constantin, et al., 1978
Sahini, V.E.; Constantin, V.; Serban, I., Determination of ionization potentials using a MI-1305 mass spectrometer, Rev. Roum. Chim., 1978, 23, 479. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Lee and Rabalais, 1974
Lee, T.H.; Rabalais, J.W., Vibrational transition probabilities in photoelectron spectra, J. Chem. Phys., 1974, 61, 2747. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Hotop and Niehaus, 1970
Hotop, H.; Niehaus, A., Reactions of excited atoms and molecules with atoms and molecules. V.Comparison of Penning electron and photoelectron spectra of H2, N2 and CO, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 415. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Cook and Metzger, 1964
Cook, G.R.; Metzger, P.H., Photoionization and absorption cross sections of O2 and N2 in the 600- to 1000-A region, J. Chem. Phys., 1964, 41, 321. [all data]

Ogawa and Tanaka, 1962
Ogawa, M.; Tanaka, Y., Rydberg absorption series of N2, Can. J. Phys., 1962, 40, 1593. [all data]

Worley, 1943
Worley, R.E., Absorption spectrum of N2 in the extreme ultraviolet, Phys. Rev., 1943, 64, 207. [all data]

Worley and Jenkins, 1938
Worley, R.E.; Jenkins, F.A., A new Rydberg series in N2, Phys. Rev., 1938, 54, 305. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Katrib, Debies, et al., 1973
Katrib, A.; Debies, T.P.; Colton, R.J.; Lee, T.H.; Rabalais, J.W., The use of differential photoionization cross sections as a function of excitation energy in assigning photoelectron spectra, Chem. Phys. Lett., 1973, 22, 196. [all data]

Locht, Schopman, et al., 1975
Locht, R.; Schopman, J.; Wankenne, H.; Momigny, J., The dissociative ionization of nitrogen, Chem. Phys., 1975, 7, 393. [all data]

Smyth, Schiavone, et al., 1973
Smyth, K.C.; Schiavone, J.A.; Freund, R.S., Dissociative excitation of N2 by electron impact: Translational spectroscopy of long-lived high- Rydberg fragment atoms, J. Chem. Phys., 1973, 59, 5225. [all data]

Crowe and McConkey, 1973
Crowe, A.; McConkey, J.W., Dissociative ionization by electron impact II. N+ N++ from N2, J. Phys. B:, 1973, 6, 2108. [all data]

Hierl and Franklin, 1967
Hierl, P.M.; Franklin, J.L., Appearance potentials and kinetic energies of ions from N2, CO, and NO, J. Chem. Phys., 1967, 47, 3154. [all data]

Frost and McDowell, 1956
Frost, D.C.; McDowell, C.A., The dissociation energy of the nitrogen molecule, Proc. Roy. Soc. (London), 1956, A236, 278. [all data]

Shul, Passarella, et al., 1987
Shul, R.J.; Passarella, R.; Upshulte, B.L.; Keesee, R.G.; Castleman, A.W., Thermal Energy Reactions Invoving Ar+ Monomer and Dimer with N2, H2, Xe, and Kr, J. Chem. Phys., 1987, 86, 8, 4446, https://doi.org/10.1063/1.452718 . [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Hiraoka, Nasu, et al., 1996
Hiraoka, K.; Nasu, M.; Fujimaki, S.; Ignacio, E.W.; Yamabe, S., Gas-Phase Stability and Structure of the Cluster Ions CF3+(CO)n, CF3+(N2)n, CF3+((CF4)n, and CF4H+(CF4)n, J. Phys. Chem., 1996, 100, 13, 5245, https://doi.org/10.1021/jp9530010 . [all data]

Speller, Fitaire, et al., 1982
Speller, C.V.; Fitaire, M.; Pointu, A.M., H2CN+.nN2 Clustering Formation and the Atmosphere of Titan, Nature, 1982, 300, 5892, 507, https://doi.org/10.1038/300507a0 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Speller, 1983
Speller, C.V., Ph. D. Thesis, Universite de Paris Sud, 1983. [all data]

Spears and Fehsenfeld, 1972
Spears, K.G.; Fehsenfeld, F.C., Termolecular Association Reactions of Mg, Ca, and Ba Ions, J. Chem. Phys., 1972, 56, 11, 5698, https://doi.org/10.1063/1.1677091 . [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Meot-Ner (Mautner) and Field, 1974
Meot-Ner (Mautner), M.; Field, F.H., Kinetics and Thermodynamics of the Association of CO+ with CO and of N2+ with N2 between 120 and 650 K, J. Chem. Phys., 1974, 61, 9, 3742, https://doi.org/10.1063/1.1682560 . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14, Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8 . [all data]

Gheno and Fitaire, 1987
Gheno, F.; Fitaire, M., Association of N2 with NH4+ and H3O+(H2O)n, n = 1,2,3, J. Chem. Phys., 1987, 87, 2, 953, https://doi.org/10.1063/1.453250 . [all data]

Beyer and Keller, 1971
Beyer, R.A.; Keller, G.E., The Clustering of Atmospheric Gases to Alkali Ions, Trans. Am. Geophys. Union, 1971, 52, 303. [all data]

Gatland, Colonna-Romano, et al., 1975
Gatland, I.R.; Colonna-Romano, L.M.; Keller, G.E., Single and Double Clustering of Nitrogen to Li+, Phys. Rev. A, 1975, 12, 5, 1885, https://doi.org/10.1103/PhysRevA.12.1885 . [all data]

National Bureau of Standards, 1968
National Bureau of Standards, US, Technical Note 270 - 3 in The NBS Tables of Chemical Thermodynamic Properties, 1968. [all data]

Saporoschenko, 1965
Saporoschenko, M., Mobility of Mass Analyzed N+, N2+, N3+, and N4+ Ions in Nitrogen Gas, Phys. Rev. A, 1965, 139, 352. [all data]

Franklin, Dibeler, et al., 1958
Franklin, J.L.; Dibeler, V.H.; Reese, R.M.; Krauss, M., Ionization and dissociation of hydrazoic acid and methyl azide by electron impact, J. Am. Chem. Soc., 1958, 80, 298. [all data]

Haynes, Freysinger, et al., 1995
Haynes, C.L.; Freysinger, W.; Armentrout, P.B., Collision-induced dissociation of N3+(X3-) with Ne, Ar, Kr, and Xe, Int. J. Mass Spectrom. Ion Processes, 1995, 149/150, 267. [all data]

Hiraoka and Yamabe, 1989
Hiraoka, K.; Yamabe, S., How are Nitrogen Molecules Bound to NO2+ and NO+?, J. Chem. Phys., 1989, 90, 6, 3268, https://doi.org/10.1063/1.455880 . [all data]

Speller, Fitaire, et al., 1983
Speller, C.V.; Fitaire, M.; Pointu, A.M., Three - Body Association Reactions of NO+ and O2+ with N2, J. Chem. Phys., 1983, 79, 5, 2190, https://doi.org/10.1063/1.446067 . [all data]

Turner and Conway, 1976
Turner, D.L.; Conway, D.C., Stability of the NO+.N2 Ion Cluster, J. Chem. Phys., 1976, 65, 10, 3944, https://doi.org/10.1063/1.432887 . [all data]

Johnsen, Huang, et al., 1975
Johnsen, R.; Huang, C.M.; Biondi, M.A., The Formation and Breakup of NO2+.N2 Clusters in N2 at Low Temperatures, J. Chem. Phys., 1975, 63, 8, 3374, https://doi.org/10.1063/1.431751 . [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E., Three-Body Association Reactions of NO+ with O2, N2, and CO2, J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432 . [all data]

Speller and Fitaire, 1983
Speller, C.V.; Fitaire, M., Proceedings of the 16th International Conference on Phenomena of Ionized Gases, H. Boetticher, H. Wenk and E. Shulz - Gulde, ed(s)., ICPIG, Dusseldorf, 1983, 568. [all data]

Hiraoka and Nakajima, 1988
Hiraoka, K.; Nakajima, G., A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria, J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285 . [all data]

Teng and Conway, 1973
Teng, H.H.; Conway, D.C., Ion - Molecule Equilibria in Mixtures of N2 and Ar, J. Chem. Phys., 1973, 59, 5, 2316, https://doi.org/10.1063/1.1680338 . [all data]

Payzant and Kebarle, 1970
Payzant, J.D.; Kebarle, P., Clustering Equilibrium N2+ + 2N2 = N4+ + N2 and the Bond Dissociation Energy of N4+, J. Chem. Phys., 1970, 53, 12, 4723, https://doi.org/10.1063/1.1674010 . [all data]

Varney, 1968
Varney, R.N., Equilibrium Constant and Rates for the Reversible Reaction N4+ -> N2+ + N2, Phys. Rev., 1968, 174, 1, 165, https://doi.org/10.1103/PhysRev.174.165 . [all data]

Varney, 1959
Varney, R.N., Molecular Ions, J. Chem. Phys., 1959, 31, 5, 1314, https://doi.org/10.1063/1.1730590 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Hiraoka and Yamabe, 1989, 2
Hiraoka, K.; Yamabe, S., Stabilities of the N3+(N2)n Cluster Ions with n = 1 - 11, Chem. Phys. Lett., 1989, 154, 2, 139, https://doi.org/10.1016/S0009-2614(89)87275-6 . [all data]

Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., Laboratory Measurements of Stratospheric Sodium Ion Measurements, Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693 . [all data]

Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B., Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]], J. Phys. Chem., 1995, 99, 7819. [all data]

Janik and Conway, 1967
Janik, G.S.; Conway, D.C., Bonding in Heteromolecular Ion Clusters. N2O2+, J. Phys. Chem., 1967, 71, 4, 823, https://doi.org/10.1021/j100863a007 . [all data]

Howard, Bierbaum, et al., 1972
Howard, C.J.; Bierbaum, V.M.; Rundle, H.W.; Kaufman, F., Kinetics and Mechanism of Formation of Water Cluster Ions from O2+ and H2O+, J. Chem. Phys., 1972, 57, 8, 3491, https://doi.org/10.1063/1.1678783 . [all data]

Posey and Johnson, 1988
Posey, L.A.; Johnson, M.A., Pulsed Photoelectron Spectroscopy of Negative Cluster Ions: Isolation of Three Distinguishable Forms of N2O2-, J. Chem. Phys., 1988, 88, 9, 5385, https://doi.org/10.1063/1.454576 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Hiraoka, 1988
Hiraoka, K., Determination of the Stabilities of O3-(N2)n, O3-(O2)n, and O4-(N2)n from Measurements of the Gas Phase Equilibria, Chem. Phys., 1988, 125, 2-3, 439, https://doi.org/10.1016/0301-0104(88)87096-4 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References