Methyl radical

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas34.821kcal/molReviewChase, 1998Data last reviewed in June, 1969
Δfgas35.1 ± 0.2kcal/molN/ATsang, 1996 
Quantity Value Units Method Reference Comment
gas,1 bar46.408cal/mol*KReviewChase, 1998Data last reviewed in June, 1969

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1400.1400. to 6000.
A 6.72511016.05660
B 8.7828301.875341
C -1.039011-0.344383
D -0.3813750.022152
E 0.000444-4.221160
F 32.4359022.10110
G 51.9793056.38200
H 34.8201034.82010
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1969 Data last reviewed in June, 1969

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CH3+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.84 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Δf(+) ion261.8kcal/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K262.6kcal/molN/AN/A 

Electron affinity determinations

EA (eV) Method Reference Comment
0.080 ± 0.030LPESEllison, Engelking, et al., 1978B
<0.499990PDFeldman, Rackwitz, et al., 1977B
<0.6244 ± 0.0053D-EABohme, Lee-Ruff, et al., 1972B
0.12983N/ACheck, Faust, et al., 2001FeBr3; ; ΔS(EA)=9.3; B
1.12747SIPage, 1972The Magnetron method, lacking mass analysis, is not considered reliable.; B
1.0 ± 1.1SIPage and Goode, 1969The Magnetron method, lacking mass analysis, is not considered reliable.; B
1.07543SIGaines and Page, 1968The Magnetron method, lacking mass analysis, is not considered reliable.; B

Ionization energy determinations

IE (eV) Method Reference Comment
9.843 ± 0.002EVALBerkowitz, Ellison, et al., 1994LL
9.84DERNagano, Murthy, et al., 1993LL
9.84 ± 0.02PEHoule and Beauchamp, 1979LLK
9.84 ± 0.05EIReeher, Flesch, et al., 1976LLK
9.6 ± 0.3EIKaposi, Riedel, et al., 1975LLK
9.837 ± 0.005PEGolob, Jonathan, et al., 1973LLK
9.86 ± 0.04PEPotts, Glenn, et al., 1972LLK
9.81 ± 0.02PEJonathan, 1972LLK
9.84 ± 0.03EILossing and Semeluk, 1970RDSH
9.87 ± 0.05EIWilliams and Hamill, 1968RDSH
9.83 ± 0.01PIChupka and Lifshitz, 1968RDSH
9.82 ± 0.04PIElder, Giese, et al., 1962RDSH
9.842 ± 0.002SHerzberg and Shoosmith, 1956RDSH
9.840 ± 0.005PEDyke, Jonathan, et al., 1976Vertical value; LLK
9.82 ± 0.02PEKoenig, Balle, et al., 1975Vertical value; LLK
9.86 ± 0.04PEPotts, Glenn, et al., 1972, 2Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH+15.58 ± 0.30H2EIWaldron, 1956RDSH
CH2+15.09 ± 0.03HPIChupka and Lifshitz, 1968RDSH

Cation De-protonation reactions

CH2- + Hydrogen cation = Methyl cation

By formula: CH2- + H+ = CH3+

Quantity Value Units Method Reference Comment
Δr409.11 ± 0.41kcal/molD-EALeopold, Murray, et al., 1985gas phase; Singlet-triplet splitting of CH2 = 9.0 kcal; B
Quantity Value Units Method Reference Comment
Δr401.42 ± 0.48kcal/molH-TSLeopold, Murray, et al., 1985gas phase; Singlet-triplet splitting of CH2 = 9.0 kcal; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Cobalt ion (1+) + Methyl radical = (Cobalt ion (1+) • Methyl radical)

By formula: Co+ + CH3 = (Co+ • CH3)

Quantity Value Units Method Reference Comment
Δr48.8 ± 3.0kcal/molCIDTFisher, Sunderlin, et al., 1989 
Δr49.1 ± 3.5kcal/molCIDTGeorgiadis, Fisher, et al., 1989 

Chromium ion (1+) + Methyl radical = (Chromium ion (1+) • Methyl radical)

By formula: Cr+ + CH3 = (Cr+ • CH3)

Quantity Value Units Method Reference Comment
Δr30.2 ± 2.3kcal/molCIDTGeorgiadis and Armentrout, 1989 

Copper ion (1+) + Methyl radical = (Copper ion (1+) • Methyl radical)

By formula: Cu+ + CH3 = (Cu+ • CH3)

Quantity Value Units Method Reference Comment
Δr29.7 ± 1.7kcal/molCIDTGeorgiadis, Fisher, et al., 1989 

Iron ion (1+) + Methyl radical = (Iron ion (1+) • Methyl radical)

By formula: Fe+ + CH3 = (Fe+ • CH3)

Quantity Value Units Method Reference Comment
Δr57.3 ± 3.0kcal/molCIDTFisher, Schultz, et al., 1989 
Δr56.9 ± 1.6kcal/molCIDTFisher, Schultz, et al., 1989 
Δr57.9 ± 2.4kcal/molCIDTSchultz, Elkind, et al., 1988 

Lanthanum ion (1+) + Methyl radical = (Lanthanum ion (1+) • Methyl radical)

By formula: La+ + CH3 = (La+ • CH3)

Quantity Value Units Method Reference Comment
Δr55.1 ± 3.5kcal/molCIDTSunderlin and Armentrout, 1989 

Lutetium ion (1+) + Methyl radical = (Lutetium ion (1+) • Methyl radical)

By formula: Lu+ + CH3 = (Lu+ • CH3)

Quantity Value Units Method Reference Comment
Δr45.4 ± 4.8kcal/molCIDTSunderlin and Armentrout, 1989 

Manganese ion (1+) + Methyl radical = (Manganese ion (1+) • Methyl radical)

By formula: Mn+ + CH3 = (Mn+ • CH3)

Quantity Value Units Method Reference Comment
Δr51.5 ± 3.9kcal/molCIDTGeorgiadis and Armentrout, 1989, 2 

Nickel ion (1+) + Methyl radical = (Nickel ion (1+) • Methyl radical)

By formula: Ni+ + CH3 = (Ni+ • CH3)

Quantity Value Units Method Reference Comment
Δr45.1 ± 3.0kcal/molCIDTFisher, Sunderlin, et al., 1989 
Δr45.0 ± 2.4kcal/molCIDTGeorgiadis, Fisher, et al., 1989 

Silicon ion (1+) + Methyl radical = (Silicon ion (1+) • Methyl radical)

By formula: Si+ + CH3 = (Si+ • CH3)

Quantity Value Units Method Reference Comment
Δr98.7 ± 1.4kcal/molCIDT,BIRDLin, Dunbar, et al., 1996 

(Silicon ion (1+) • Methyl radical) + Methyl radical = (Silicon ion (1+) • 2Methyl radical)

By formula: (Si+ • CH3) + CH3 = (Si+ • 2CH3)

Quantity Value Units Method Reference Comment
Δr29. ± 12.kcal/molCIDT,BIRDLin, Dunbar, et al., 1996 

(Silicon ion (1+) • 2Methyl radical) + Methyl radical = (Silicon ion (1+) • 3Methyl radical)

By formula: (Si+ • 2CH3) + CH3 = (Si+ • 3CH3)

Quantity Value Units Method Reference Comment
Δr122.7 ± 6.0kcal/molCIDT,BIRDLin, Dunbar, et al., 1996 

(Silicon ion (1+) • 3Methyl radical) + Methyl radical = (Silicon ion (1+) • 4Methyl radical)

By formula: (Si+ • 3CH3) + CH3 = (Si+ • 4CH3)

Quantity Value Units Method Reference Comment
Δr15.9 ± 1.4kcal/molCIDT,BIRDLin, Dunbar, et al., 1996 

Yttrium ion (1+) + Methyl radical = (Yttrium ion (1+) • Methyl radical)

By formula: Y+ + CH3 = (Y+ • CH3)

Quantity Value Units Method Reference Comment
Δr59.5 ± 1.1kcal/molCIDTSunderlin and Armentrout, 1989 

References

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Tsang, 1996
Tsang, W., Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals, Martinho Simoes, J.A.; Greenberg, A.; Liebman, J.F., eds., Blackie Academic and Professional, London, 1996, 22-58. [all data]

Ellison, Engelking, et al., 1978
Ellison, G.B.; Engelking, P.C.; Lineberger, W.C., An experimental determination of the geometry and electron affinity of CH3, J. Am. Chem. Soc., 1978, 100, 2556. [all data]

Feldman, Rackwitz, et al., 1977
Feldman, D.; Rackwitz, R.; Kaiser, H.J.; Heincke, E., Photodetachment bei einigen neagtiven molekulionen: P2-, As2-, CH2-, CH3-, S3-, Z. Naturforsch. A:, 1977, 32, 600. [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Page, 1972
Page, F.M., Experimental determination of the electron affinities of inorganic radicals, Adv. Chem. Ser., 1972, 36, 68. [all data]

Page and Goode, 1969
Page, F.M.; Goode, G.C., Negative Ions and the Magnetron., Wiley, NY, 1969. [all data]

Gaines and Page, 1968
Gaines, A.F.; Page, F.M., The Stabilities of Negative Ions.I. The Methyl-, Diphenylmethyl, and Triphenylmethyl Negative Ions, Int. J. Mass Spectrom. Ion Phys., 1968, 1, 4-5, 315, https://doi.org/10.1016/0020-7381(68)85008-9 . [all data]

Berkowitz, Ellison, et al., 1994
Berkowitz, J.; Ellison, G.B.; Gutman, D., Three methods to measure RH bond energies, J. Phys. Chem., 1994, 98, 2744. [all data]

Nagano, Murthy, et al., 1993
Nagano, Y.; Murthy, S.; Beauchamp, J.L., Thermochemical properties and gas-phase ion chemistry of phenylsilane investigated by FT-ICR spectrometry. Identification of parent- and fragment-ion structural isomers by their specific reactivities, J. Am. Chem. Soc., 1993, 115, 10805. [all data]

Houle and Beauchamp, 1979
Houle, F.A.; Beauchamp, J.L., Photoelectron spectroscopy of methyl, ethyl, isopropyl, and tert-butyl radicals. Implications for the thermochemistry and structures of the radicals and their corresponding carbonium ions, J. Am. Chem. Soc., 1979, 101, 4067. [all data]

Reeher, Flesch, et al., 1976
Reeher, J.R.; Flesch, G.D.; Svec, H.J., The mass spectra and ionization potentials of the neutral fragments produced during the electron bombardment of aromatic compounds, Org. Mass Spectrom., 1976, 11, 154. [all data]

Kaposi, Riedel, et al., 1975
Kaposi, O.; Riedel, M.; Sanchez, G.R., Mass-spectrometric study of electron-impact and heterogeneous pyrolytic decomposition of methyl bromide, Acta Chim. Acad. Sci. Hung., 1975, 85, 361. [all data]

Golob, Jonathan, et al., 1973
Golob, L.; Jonathan, N.; Morris, A.; Okuda, M.; Ross, K.J., The first ionization potential of the methyl radical as determined by photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 506. [all data]

Potts, Glenn, et al., 1972
Potts, A.W.; Glenn, K.G.; Price, W.C., General discussion, Faraday Discuss. Chem. Soc., 1972, 54, 64. [all data]

Jonathan, 1972
Jonathan, N., General discussion, Faraday Discuss. Chem. Soc., 1972, 54, 64. [all data]

Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P., Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals, Can. J. Chem., 1970, 48, 955. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Chupka and Lifshitz, 1968
Chupka, W.A.; Lifshitz, C., Photoionization of CH3+; heat of formation of CH2, J. Chem. Phys., 1968, 48, 1109. [all data]

Elder, Giese, et al., 1962
Elder, F.A.; Giese, C.; Steiner, B.; Inghram, M., Photo-ionization of alkyl free radicals, J. Chem. Phys., 1962, 36, 3292. [all data]

Herzberg and Shoosmith, 1956
Herzberg, G.; Shoosmith, J., Absorption spectrum of free CH3 and CD3 radicals, Can. J. Phys., 1956, 34, 523. [all data]

Dyke, Jonathan, et al., 1976
Dyke, J.; Jonathan, N.; Lee, E.; Morris, A., Vacuum ultraviolet photoelectron spectroscopy of transient species, J. Chem. Soc. Faraday Trans. 2, 1976, 72, 1385. [all data]

Koenig, Balle, et al., 1975
Koenig, T.; Balle, T.; Snell, W., Helium(I) photoelectron spectra of organic radicals, J. Am. Chem. Soc., 1975, 97, 662. [all data]

Potts, Glenn, et al., 1972, 2
Potts, A.W.; Glenn, K.G.; Price, W.C., General discussion, Faraday Discuss. Chem. Soc., 1972, 54, 65. [all data]

Waldron, 1956
Waldron, J.D., The ionization and dissociation of methyl radicals on electron impact, Metropolitan Vickers Gaz., 1956, 27, 66. [all data]

Leopold, Murray, et al., 1985
Leopold, D.G.; Murray, K.K.; Miller, A.E.S.; Lineberger, W.C., Methylene: A study of the X3B1 and the 1A1 states by photoelectron spectroscopy of CH2- and CD2-, J. Chem. Phys., 1985, 83, 4849. [all data]

Fisher, Sunderlin, et al., 1989
Fisher, E.R.; Sunderlin, L.S.; Armentrout, P.B., Guided Ion Beam Studies of the Reactions of CO+ and Ni+ with CH3X (X=Cl, Br, I). Implications for the Metal-Methyl Ion Bond Energies, J. Phys. Chem., 1989, 93, 21, 7375, https://doi.org/10.1021/j100358a026 . [all data]

Georgiadis, Fisher, et al., 1989
Georgiadis, R.; Fisher, E.R.; Armentrout, P.B., Neutral and Ionic Metal-Hydrogen and Metal-Carbon Bond Energies: Reactions of Co+, Ni+, and Cu+ with Ethane, Propane, Methylpropane, and Dimethylpropane, J. Am. Chem. Soc., 1989, 111, 12, 4251, https://doi.org/10.1021/ja00194a016 . [all data]

Georgiadis and Armentrout, 1989
Georgiadis, R.; Armentrout, P.B., Reactions of Ground State Cr+ with C2H6, C2H4, cyclo-C3H6, and cyclo-C2H4O: Bond Energies for CrCHn+ (n= 1-3), Int. J. Mass Spectrom. Ion Proc., 1989, 89, 2-3, 227, https://doi.org/10.1016/0168-1176(89)83062-9 . [all data]

Fisher, Schultz, et al., 1989
Fisher, E.R.; Schultz, r.H.; Armentrout, P.B., Guided Ion Beam Studies of the State - Specific Reactions of Fe+(6D,4F) with CH3X (X = Cl, Br, I), J. Phys. Chem., 1989, 93, 21, 7382, https://doi.org/10.1021/j100358a027 . [all data]

Schultz, Elkind, et al., 1988
Schultz, R.H.; Elkind, J.L.; Armentrout, P.B., Electronic Effects in C-H and C-C Bond Activation: State-Specific Reactions of Fe+(6D,4F) with Methane, Ethane and Propane, J. Am. Chem. Soc., 1988, 110, 2, 411, https://doi.org/10.1021/ja00210a017 . [all data]

Sunderlin and Armentrout, 1989
Sunderlin, L.S.; Armentrout, P.B., Periodic Trends in Chemical Reactivity: Reactions of Sc+, Y+, La+, and Lu+ with Methane and Ethane, J. Am. Chem. Soc., 1989, 111, 11, 3845, https://doi.org/10.1021/ja00193a015 . [all data]

Georgiadis and Armentrout, 1989, 2
Georgiadis, R.; Armentrout, P.B., Translational and Electronic Energy Dependence of the Reaction of Mn+ with Ethane, Int. J. Mass Spectrom. Ion Proc., 1989, 91, 2, 123, https://doi.org/10.1016/0168-1176(89)83003-4 . [all data]

Lin, Dunbar, et al., 1996
Lin, C.-Y.; Dunbar, R.C.; Haynes, C.L.; Armentrout, P.B.; Tonner, D.S.; McMahon, T.J., The Dissociation Thermochemistry of Tetramethylsilane Ion. Comparative Determination by Thermal Dissociation and Threshold Collisional Dissociation, J. Phys. Chem., 1996, 100, 50, 19659, https://doi.org/10.1021/jp962523s . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References