Phenol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-96.36 ± 0.59kJ/molCcbCox, 1961ALS
Δfgas-96.44 ± 0.63kJ/molCcbAndon, Biddiscombe, et al., 1960ALS
Δfgas-94.2kJ/molN/AParks, Manchester, et al., 1954Value computed using ΔfHsolid° value of -162.8±1.0 kj/mol from Parks, Manchester, et al., 1954 and ΔsubH° value of 68.6 kj/mol from Cox, 1961.; DRB
Δfgas-95.3kJ/molN/ABadoche, 1941Value computed using ΔfHsolid° value of -163.9 kj/mol from Badoche, 1941 and ΔsubH° value of 68.6 kj/mol from Cox, 1961.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
33.9150.Kudchadker S.A., 1978Recommended S(T) and Cp(T) values are in close agreement with statistical values calculated by [ Evans J.C., 1960, Green J.H.S., 1961]. Entropy value calculated by [ Sarin V.N., 1973] agrees well with the third-law entropy at 298.15 K but not at 400 K. Statistical values calculated by [ Ramaswamy V., 1970] seem to be erroneous.; GT
41.38100.
54.19150.
69.65200.
94.61273.15
103.22298.15
103.86300.
135.79400.
161.91500.
182.48600.
198.84700.
212.14800.
223.19900.
232.491000.
240.411100.
247.201200.
253.061300.
258.121400.
262.521500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid-165.0kJ/molCcbCox, 1961ALS
Δfsolid-165.1 ± 1.3kJ/molCcbAndon, Biddiscombe, et al., 1960ALS
Δfsolid-162.8 ± 1.0kJ/molCcbParks, Manchester, et al., 1954ALS
Δfsolid-163.9kJ/molCcbBadoche, 1941Author's hf298_condensed=-41.49 kcal/mol; ALS
Quantity Value Units Method Reference Comment
Δcsolid-3058. ± 10.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
solid,1 bar144.01J/mol*KN/AAndon, Counsell, et al., 1963DH
solid,1 bar142.7J/mol*KN/AParks, Huffman, et al., 1933Extrapolation below 90 K, 49.04 J/mol*K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
127.21298.15Nichols and Wads, 1975DH
199.8313.Rastorguev and Ganiev, 1967T = 313 to 373 K.; DH
127.44298.15Andon, Counsell, et al., 1963T = 13 to 336 K.; DH
93.7293.Campbell and Campbell, 1940DH
103.8229.3Aoyama and Kanda, 1935T = 78 to 229 K. Value is unsmoothed experimental datum.; DH
133.09295.8Parks, Huffman, et al., 1933T = 93 to 296 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil455.0 ± 0.6KAVGN/AAverage of 25 out of 27 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus314. ± 1.KAVGN/AAverage of 60 out of 61 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple314.06KN/AAndon, Counsell, et al., 1963, 2Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Tc694.3KN/ADelaunois, 1968Uncertainty assigned by TRC = 0.4 K; TRC
Tc694.25KN/AAmbrose, 1963Uncertainty assigned by TRC = 0.15 K; TRC
Tc692.4KN/ARadice, 1899Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Pc59.30barN/ADelaunois, 1968Uncertainty assigned by TRC = 0.7845 bar; TRC
Pc61.3016barN/AHerz and Neukirch, 1923Uncertainty assigned by TRC = 0.8106 bar; TRC
Quantity Value Units Method Reference Comment
Δvap58.8kJ/molCGCChickos, Hosseini, et al., 1995Based on data from 393. to 433. K.; AC
Quantity Value Units Method Reference Comment
Δsub69.7 ± 0.9kJ/molMEParsons, Rochester, et al., 1971Based on data from 230. to 273. K.; AC
Δsub68.6kJ/molN/ACox, 1961DRB
Δsub68.66 ± 0.50kJ/molVAndon, Biddiscombe, et al., 1960ALS
Δsub68.7kJ/molN/AAndon, Biddiscombe, et al., 1960DRB

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
53.2378.EBChylinski, Fras, et al., 2001Based on data from 363. to 391. K.; AC
49.5470.AStephenson and Malanowski, 1987Based on data from 455. to 655. K.; AC
57.4329.AStephenson and Malanowski, 1987Based on data from 314. to 395. K.; AC
50.9402.AStephenson and Malanowski, 1987Based on data from 387. to 456. K.; AC
46.8464.AStephenson and Malanowski, 1987Based on data from 449. to 526. K.; AC
43.8535.AStephenson and Malanowski, 1987Based on data from 520. to 625. K.; AC
51.3398.EB,GSStephenson and Malanowski, 1987Based on data from 383. to 473. K. See also Andon, Biddiscombe, et al., 1960, 2 and Dykyj, 1972.; AC
51.4395.N/ADreisbach and Shrader, 1949Based on data from 380. to 455. K. See also Dreisbach and Martin, 1949 and Boublik, Fried, et al., 1984.; AC
48.1434.N/AGoldblum, Martin, et al., 1947Based on data from 414. to 454. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
380.30 to 454.904.246881509.677-98.949Dreisbach and Shrader, 1949Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
65.3 ± 3.3280.HSAChickos, 1975Based on data from 263. to 298. K.; AC
68.7 ± 0.5282. to 313.GSAndon, Biddiscombe, et al., 1960, 2See also Cox and Pilcher, 1970.; AC
68.2293.MESklyarenko, Markin, et al., 1958Based on data from 283. to 303. K.; AC
68.1292.N/ANitta and Seki, 1948Based on data from 270. to 313. K.; AC
67.8278. to 305.TEBalson, 1947See also Jones, 1960.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
11.514314.06Andon, Counsell, et al., 1963DH
12.125314.13Mastrangelo, 1957DH
11.51314.Inozemtsev, Liakumovich, et al., 1972See also Domalski and Hearing, 1996.; AC
10.581312.7Eykman, 1889DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
36.66314.06Andon, Counsell, et al., 1963DH
33.3314.Bret-Dibat and Lichanot, 1989CAL
33.8312.7Eykman, 1889DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
3000. XN/A 
0.078 XHowe, Mullins, et al., 1987Value given here as quoted by missing citation.
190.3600.XN/A 
3000. XN/AValue given here as quoted by missing citation.
1900.7300.XN/A 
2900.6800.MN/AIt is assumed here that the thermodynamic data in missing citation refers to the units [mol/dm3] and [atm] as standard states.
490. RN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C6H6O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)8.49 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)817.3kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity786.3kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.508 ± 0.001PILipert and Colson, 1990LL
8.506 ± 0.001PIFuke, Yoshiuchi, et al., 1984LBLHLM
8.49PEFuke, Yoshiuchi, et al., 1984LBLHLM
8. ± 0.PIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1984LBLHLM
~8.21PEKlasinc, Kovac, et al., 1983LBLHLM
8.55PEBehan, Johnstone, et al., 1976LLK
8.47 ± 0.02PEMaier and Turner, 1973LLK
9.1 ± 0.1EIHenion and Kingston, 1973LLK
8.37PEDebies and Rabalais, 1973LLK
8.50EICooks, Bertrand, et al., 1973LLK
8.69EIJohnstone, Mellon, et al., 1971LLK
8.48 ± 0.05PEEland, 1969RDSH
8.52PEDewar and Worley, 1969RDSH
8.50 ± 0.01PIWatanabe, 1957RDSH
8.52 ± 0.02PIVilesov and Terenin, 1957RDSH
8.75PEBallard, Jones, et al., 1987Vertical value; LBLHLM
8.61PEKlasinc, Kovac, et al., 1983Vertical value; LBLHLM
8.70PEKimura, Katsumata, et al., 1981Vertical value; LLK
8.56PEPalmer, Moyes, et al., 1979Vertical value; LLK
8.69PEKobayashi, 1978Vertical value; LLK
8.73PEKobayashi and Nagakura, 1974Vertical value; LLK
8.67PEDewar, Ernstbrunner, et al., 1974Vertical value; LLK
8.56PEDebies and Rabalais, 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C5H5+12.96 ± 0.10CO+HDERFraser-Monteiro, Fraser-Monteiro, et al., 1984LBLHLM
C5H5+14.2 ± 0.2CO+HEITajima and Tsuchiya, 1973LLK
C5H5+14.25CO+HEIOccolowitz and White, 1968RDSH
C5H6+11.4 ± 0.1COTRPILifshitz and Malinovich, 1984LBLHLM
C5H6+12.5 ± 0.1COEIHenion and Kingston, 1973LLK
C5H6+11.67COEIHowe and Williams, 1969RDSH
C5H6+[c-C5H6]11.59 ± 0.10COPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1984T = 0K; LBLHLM

De-protonation reactions

phenoxide anion + Hydrogen cation = Phenol

By formula: C6H5O- + H+ = C6H6O

Quantity Value Units Method Reference Comment
Δr1462. ± 10.kJ/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1432. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; Shiner, Vorner, et al., 1986: tautomer acidities ΔHacid(ortho) = 343.9±3.1 kcal, para = 340.1±2 kcal. However, Capponi, Gut, et al., 1999 based on aq. soln. results, imply 18 and 14 kcal/mol difference.; value altered from reference due to change in acidity scale; B
Δr1426. ± 7.9kJ/molCIDCAngel and Ervin, 2004gas phase; B
Δr1437. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B
Δr>1429. ± 7.5kJ/molH-TSRichardson, Stephenson, et al., 1975gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Phenol = (Bromine anion • Phenol)

By formula: Br- + C6H6O = (Br- • C6H6O)

Quantity Value Units Method Reference Comment
Δr87.0 ± 7.5kJ/molIMREPaul and Kebarle, 1990gas phase; ΔGaff at 423 K; B,M
Δr82.0kJ/molPHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Δr96.J/mol*KN/APaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr46.4 ± 4.2kJ/molIMREPaul and Kebarle, 1990gas phase; ΔGaff at 423 K; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
46.4423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
46.4423.PHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M

MeCO2 anion + Phenol = (MeCO2 anion • Phenol)

By formula: C2H3O2- + C6H6O = (C2H3O2- • C6H6O)

Quantity Value Units Method Reference Comment
Δr109. ± 4.2kJ/molN/AMeot-Ner and Sieck, 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr79.1 ± 6.7kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B

Chlorine anion + Phenol = (Chlorine anion • Phenol)

By formula: Cl- + C6H6O = (Cl- • C6H6O)

Quantity Value Units Method Reference Comment
Δr109. ± 8.4kJ/molTDAsFrench, Ikuta, et al., 1982gas phase; B,M
Δr109. ± 8.4kJ/molTDEqCummings, French, et al., 1977gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B
Δr115.kJ/molPHPMSKebarle, 1977gas phase; M
Δr111.kJ/molPHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Δr81.2 ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; B,M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSFrench, Ikuta, et al., 1982gas phase; M
Δr100.J/mol*KPHPMSKebarle, 1977gas phase; M
Δr100.J/mol*KN/APaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Δr64.9J/mol*KPHPMSYamdagni and Kebarle, 1971gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3 ± 8.4kJ/molTDAsFrench, Ikuta, et al., 1982gas phase; B
Δr77.4 ± 8.4kJ/molTDEqCummings, French, et al., 1977gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B
Δr61.9 ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
66.5423.PHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M

Cesium ion (1+) + Phenol = (Cesium ion (1+) • Phenol)

By formula: Cs+ + C6H6O = (Cs+ • C6H6O)

Quantity Value Units Method Reference Comment
Δr66. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Cesium ion (1+) • Phenol) + Phenol = (Cesium ion (1+) • 2Phenol)

By formula: (Cs+ • C6H6O) + C6H6O = (Cs+ • 2C6H6O)

Quantity Value Units Method Reference Comment
Δr61. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Fluorine anion + Phenol = (Fluorine anion • Phenol)

By formula: F- + C6H6O = (F- • C6H6O)

Quantity Value Units Method Reference Comment
Δr173. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr140. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Iodide + Phenol = (Iodide • Phenol)

By formula: I- + C6H6O = (I- • C6H6O)

Quantity Value Units Method Reference Comment
Δr72.4 ± 7.5kJ/molIMREPaul and Kebarle, 1990gas phase; ΔGaff at 423 K; B,M
Quantity Value Units Method Reference Comment
Δr88.J/mol*KN/APaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr35. ± 4.2kJ/molIMREPaul and Kebarle, 1990gas phase; ΔGaff at 423 K; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
35.423.PHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M

Potassium ion (1+) + Phenol = (Potassium ion (1+) • Phenol)

By formula: K+ + C6H6O = (K+ • C6H6O)

Quantity Value Units Method Reference Comment
Δr74. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Potassium ion (1+) • Phenol) + Phenol = (Potassium ion (1+) • 2Phenol)

By formula: (K+ • C6H6O) + C6H6O = (K+ • 2C6H6O)

Quantity Value Units Method Reference Comment
Δr68. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Lithium ion (1+) + Phenol = (Lithium ion (1+) • Phenol)

By formula: Li+ + C6H6O = (Li+ • C6H6O)

Quantity Value Units Method Reference Comment
Δr178. ± 17.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Lithium ion (1+) • Phenol) + Phenol = (Lithium ion (1+) • 2Phenol)

By formula: (Li+ • C6H6O) + C6H6O = (Li+ • 2C6H6O)

Quantity Value Units Method Reference Comment
Δr115. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Sodium ion (1+) + Phenol = (Sodium ion (1+) • Phenol)

By formula: Na+ + C6H6O = (Na+ • C6H6O)

Quantity Value Units Method Reference Comment
Δr102. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD
Δr98. ± 3.kJ/molCIDTArmentrout and Rodgers, 2000RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
69.9298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Sodium ion (1+) • Phenol) + Phenol = (Sodium ion (1+) • 2Phenol)

By formula: (Na+ • C6H6O) + C6H6O = (Na+ • 2C6H6O)

Quantity Value Units Method Reference Comment
Δr82. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Rubidium ion (1+) + Phenol = (Rubidium ion (1+) • Phenol)

By formula: Rb+ + C6H6O = (Rb+ • C6H6O)

Quantity Value Units Method Reference Comment
Δr69. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Rubidium ion (1+) • Phenol) + Phenol = (Rubidium ion (1+) • 2Phenol)

By formula: (Rb+ • C6H6O) + C6H6O = (Rb+ • 2C6H6O)

Quantity Value Units Method Reference Comment
Δr64. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1994
NIST MS number 133909

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, 1961
Cox, J.D., The heats of combustion of phenol and the three cresols, Pure Appl. Chem., 1961, 2, 125-128. [all data]

Andon, Biddiscombe, et al., 1960
Andon, R.J.L.; Biddiscombe, D.P.; Cox, J.D.; Handley, R.; Harrop, D.; Herington, E.F.G.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part I. Preparation and physical properties of pure phenol, cresols, and xylenols, J. Chem. Soc., 1960, 5246-5254. [all data]

Parks, Manchester, et al., 1954
Parks, G.S.; Manchester, K.E.; Vaughan, L.M., Heats of combustion and formation of some alcohols, phenols, and ketones, J. Chem. Phys., 1954, 22, 2089-2090. [all data]

Badoche, 1941
Badoche, M., No 19. - Chaleurs de combustion du phenol, du-m-cresol et del leurs ethers; par M. Marius BADOCHE., Bull. Soc. Chim. Fr., 1941, 8, 212-220. [all data]

Kudchadker S.A., 1978
Kudchadker S.A., Ideal gas thermodynamic properties of phenol and cresols, J. Phys. Chem. Ref. Data, 1978, 7, 417-423. [all data]

Evans J.C., 1960
Evans J.C., The vibrational spectra phenol and phenol-OD, Spectrochim. Acta, 1960, 16, 1382-1392. [all data]

Green J.H.S., 1961
Green J.H.S., The thermodynamic properties of organic oxygen compounds. II. Vibrational assignment and calculated thermodynamic properties of phenol, J. Chem. Soc., 1961, 2236-2241. [all data]

Sarin V.N., 1973
Sarin V.N., Thermodynamic properties in the gaseous state of certain monosubstituted benzenes, Thermochim. Acta, 1973, 6, 39-46. [all data]

Ramaswamy V., 1970
Ramaswamy V., Thermo data for n-alkyl phenols, Hydrocarbon Process., 1970, 49, 217-218. [all data]

Andon, Counsell, et al., 1963
Andon, R.J.L.; Counsell, J.F.; Herington, E.F.G.; Martin, J.F., Thermodynamic properties of organic oxygen compounds, Trans. Faraday Soc., 1963, 59, 830-835. [all data]

Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]

Nichols and Wads, 1975
Nichols, N.; Wads, I., Thermochemistry of solutions of biochemical model compounds. 3. Some benzene derivatives in aqueous solution, J. Chem. Thermodynam., 1975, 7, 329-336. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Campbell and Campbell, 1940
Campbell, A.N.; Campbell, A.J.R., The heats of solution, heats of formation, specific heats and equilibrium diagrams of certain molecular compounds. J. Am. Chem. Soc., 1940, 62, 291-297. [all data]

Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E., Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature, Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]

Andon, Counsell, et al., 1963, 2
Andon, R.J.L.; Counsell, J.F.; Herington, E.F.G.; Martin, J.F., Thermodyn. prop. of organic oxygen compds., part 7- calorimetric study of phenol from 12 to330o K, Trans. Faraday Soc., 1963, 59, 830. [all data]

Delaunois, 1968
Delaunois, C., Effect of the Filling Rate of a Reactor on the Vapor Tension and the Temperature at the Beginning of Cracking of Phenols at High Pressures, Ann. Mines Belg., 1968, No. 1, 9-16. [all data]

Ambrose, 1963
Ambrose, D., Critical Temperatures of Some Phenols and Other Organic Compounds, Trans. Faraday Soc., 1963, 59, 1988. [all data]

Radice, 1899
Radice, G., , Ph. D. Thesis, Univ. of Geneve, 1899. [all data]

Herz and Neukirch, 1923
Herz, W.; Neukirch, E., On Knowldge of the Critical State, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Parsons, Rochester, et al., 1971
Parsons, G.H.; Rochester, C.H.; Wood, C.E.C., Effect of 4-substitution on the thermodynamics of hydration of phenol and the phenoxide anion, J. Chem. Soc., B:, 1971, 533, https://doi.org/10.1039/j29710000533 . [all data]

Chylinski, Fras, et al., 2001
Chylinski, K.; Fras, Z.; Malanowski, S.K., Vapor-Liquid Equilibrium in Phenol + 2-Ethoxyethanol at 363.15 to 383.15 K, J. Chem. Eng. Data, 2001, 46, 1, 29-33, https://doi.org/10.1021/je0001072 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Andon, Biddiscombe, et al., 1960, 2
Andon, R.J.L.; Biddiscombe, D.P.; Cox, J.D.; Handley, R.; Harrop, D.; Herington, E.F.G.; Martin, J.F., 1009. Thermodynamic properties of organic oxygen compounds. Part I. Preparation and physical properties of pure phenol, cresols, and xylenols, J. Chem. Soc., 1960, 5246, https://doi.org/10.1039/jr9600005246 . [all data]

Dykyj, 1972
Dykyj, J., Petrochemia, 1972, 12, 1, 13. [all data]

Dreisbach and Shrader, 1949
Dreisbach, R.R.; Shrader, S.A., Vapor Pressure--Temperature Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2879-2880, https://doi.org/10.1021/ie50480a054 . [all data]

Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2875-2878, https://doi.org/10.1021/ie50480a053 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Goldblum, Martin, et al., 1947
Goldblum, K.B.; Martin, R.W.; Young, R.B., Vapor Pressure Data for Phenols, Ind. Eng. Chem., 1947, 39, 11, 1474-1476, https://doi.org/10.1021/ie50455a017 . [all data]

Chickos, 1975
Chickos, James Speros, A simple equilibrium method for determining heats of sublimation, J. Chem. Educ., 1975, 52, 2, 134-39, https://doi.org/10.1021/ed052p134 . [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]

Sklyarenko, Markin, et al., 1958
Sklyarenko, S.I.; Markin, B.I.; Belyaeva, L.B., Zh. Fiz. Khim., 1958, 32, 1916. [all data]

Nitta and Seki, 1948
Nitta, I.; Seki, S., J. Chem. Soc. Jpn. Pure Chem. Sect., 1948, 69, 141. [all data]

Balson, 1947
Balson, E.W., Studies in vapour pressure measurement, Part III.?An effusion manometer sensitive to 5 «65533» 10?6 millimetres of mercury: vapour pressure of D.D.T. and other slightly volatile substances, Trans. Faraday Soc., 1947, 43, 54, https://doi.org/10.1039/tf9474300054 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Mastrangelo, 1957
Mastrangelo, S.V.R., Adiabatic calorimeter for determination of cryoscopic data, Anal. Chem., 1957, 29(5), 841-845. [all data]

Inozemtsev, Liakumovich, et al., 1972
Inozemtsev, P.P.; Liakumovich, A.G.; Gracheva, Z.D., Russ. J. Phys. Chem., 1972, 46, 6, 914. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Eykman, 1889
Eykman, J.F., Zur kryoskopischen Molekulargewichtsbestimmung, Z. Physik. Chem., 1889, 4, 497-519. [all data]

Bret-Dibat and Lichanot, 1989
Bret-Dibat, P.; Lichanot, A., Proprietes thermodynamiques des isomeres de position de benzenes disubstitues en phase condensee, Thermochim. Acta, 1989, 147, 2, 261, https://doi.org/10.1016/0040-6031(89)85181-0 . [all data]

Howe, Mullins, et al., 1987
Howe, G.B.; Mullins, M.E.; Rogers, T.N., , Evaluation and Prediction of Henry's Law Constants and Aqueous Sol. for Solvents and Hydrocarbon Fuel Comp. NTIS Rep. ELS-86-66, 1987. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Lipert and Colson, 1990
Lipert, R.J.; Colson, S.D., Accurate ionization potentials of phenol and phenol-(H2O) from the electric field dependence of the pump-probe photoionization threshold, J. Chem. Phys., 1990, 92, 3240. [all data]

Fuke, Yoshiuchi, et al., 1984
Fuke, K.; Yoshiuchi, H.; Kaya, K.; Achiba, Y.; Sato, K.; Kimura, K., Multiphoton ionization photoelectron spectroscopy and two-color multiphoton ionization threshold spectroscopy on the hydrogen bonded phenol and 7-azaindole in a supersonic jet, Chem. Phys. Lett., 1984, 108, 179. [all data]

Fraser-Monteiro, Fraser-Monteiro, et al., 1984
Fraser-Monteiro, M.L.; Fraser-Monteiro, L.; de Wit, J.; Baer, T., Dissociation dynamics of energy-selected phenol ions, J. Phys. Chem., 1984, 88, 3622. [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W., An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes, Org. Mass Spectrom., 1976, 11, 207. [all data]

Maier and Turner, 1973
Maier, J.P.; Turner, D.W., Steric inhibition of resonance studied by molecular photoelectron spectroscopy Part 3. Anilines, Phenols and Related Compounds, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 521. [all data]

Henion and Kingston, 1973
Henion, J.D.; Kingston, D.G.I., Mass spectrometry of organic compounds. VII. Energetics of substituent isomerization in diphenyl sulfide and diphenyl ether, J. Am. Chem. Soc., 1973, 95, 8358. [all data]

Debies and Rabalais, 1973
Debies, T.P.; Rabalais, J.W., Photoelectron spectra of substituted benzenes. II. Seven valence electron substituents, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 355. [all data]

Cooks, Bertrand, et al., 1973
Cooks, R.G.; Bertrand, M.; Beynon, J.H.; Rennekamp, M.E.; Setser, D.W., Energy partitioning data as an ion structure probe. Substituted anisoles, J. Am. Chem. Soc., 1973, 95, 1732. [all data]

Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., On-line computer methods used in conjunction with the measurement of ionization appearance potentials, Adv. Mass Spectrom., 1971, 5, 334. [all data]

Eland, 1969
Eland, J.H.D., Photoelectron spectra of conjugated hydrocarbons and heteromolecules, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N., The photoionization of the vapors of certain organic compounds, Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]

Ballard, Jones, et al., 1987
Ballard, R.E.; Jones, J.; Read, D.; Inchley, A.; Cranmer, M., He(I) photoelectron studies of liquids and gases, Chem. Phys. Lett., 1987, 137, 125. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Palmer, Moyes, et al., 1979
Palmer, M.H.; Moyes, W.; Speirs, M.; Ridyard, J.N.A., The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for phenol, the methyl- and fluoro-derivatives, and the dihydroxybenzenes, J. Mol. Struct., 1979, 52, 293. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S., Photoelectron spectra of substituted benzenes, Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]

Dewar, Ernstbrunner, et al., 1974
Dewar, P.S.; Ernstbrunner, E.; Gilmore, J.R.; Godfrey, M.; Mellor, J.M., Conformational analysis of alkyl aryl ethers and alkyl aryl sulphides by photoelectron spectroscopy, Tetrahedron, 1974, 30, 2455. [all data]

Tajima and Tsuchiya, 1973
Tajima, S.; Tsuchiya, T., Energetics consideration of C5H5+ ions produced from various precursors by electron impact, Bull. Chem. Soc. Jpn., 1973, 46, 3291. [all data]

Occolowitz and White, 1968
Occolowitz, J.L.; White, G.L., Energetic considerations in the assignment of some fragment ion structures, Australian J. Chem., 1968, 21, 997. [all data]

Lifshitz and Malinovich, 1984
Lifshitz, C.; Malinovich, Y., Time resolved photoionization mass spectrometry in the millisecond range, Int. J. Mass Spectrom. Ion Processes, 1984, 60, 99. [all data]

Howe and Williams, 1969
Howe, I.; Williams, D.H., Calculation and qualitative predictions of mass spectra. Mono- and paradisubstituted benzenes, J. Am. Chem. Soc., 1969, 91, 7137. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Shiner, Vorner, et al., 1986
Shiner, C.S.; Vorner, P.E.; Kass, S.R., Gas phase acidities and heats of formation of 2,4- and 2,5- cyclohexadien-1-one, the keto tautomers of phenol, J. Am. Chem. Soc., 1986, 108, 5699. [all data]

Capponi, Gut, et al., 1999
Capponi, M.; Gut, I.G.; Hellrung, B.; Persy, G.; Wirz, J., Ketonization equilibria of phenol in aqueous solution, Can. J. Chem., 1999, 77, 5-6, 605-613, https://doi.org/10.1139/v99-048 . [all data]

Angel and Ervin, 2004
Angel, L.A.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidity and O-H bond dissociation enthalpy of phenol, J. Phys. Chem. A, 2004, 108, 40, 8346-8352, https://doi.org/10.1021/jp0474529 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Richardson, Stephenson, et al., 1975
Richardson, J.H.; Stephenson, L.M.; Brauman, J.I., Photodetachment of electrons from phenoxides and thiophenoxide, J. Am. Chem. Soc., 1975, 97, 2967. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Stabilities in the Gas Phase of the Hydrogen Bonded Complexes, YC6H4OH-X-, of Substituted Phenols, YC6H4OH, with the Halide Anions X-(Cl-, Br-), Can. J. Chem., 1990, 68, 11, 2070, https://doi.org/10.1139/v90-316 . [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Cummings, French, et al., 1977
Cummings, J.B.; French, M.A.; Kebarle, P., Effect of charge delocalization on hydrogen bonding to negative ions and solvation of negative ions. Substituted phenols and phenoxide ions, J. Am. Chem. Soc., 1977, 99, 6999. [all data]

Kebarle, 1977
Kebarle, P., Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria, Ann. Rev. Phys. Chem., 1977, 28, 1, 445, https://doi.org/10.1146/annurev.pc.28.100177.002305 . [all data]

Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P., Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria, J. Am. Chem. Soc., 1971, 93, 7139. [all data]

Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T., The influence of substituents on cation-pi interactions. 4. Absolute binding energies of alkali metal cation - Phenol complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 42, 9718, https://doi.org/10.1021/jp0211584 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References