2-Butanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-293.1kJ/molN/AChao and Rossini, 1965Value computed using ΔfHliquid° value of -342.7±0.6 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 49.6 kj/mol from Skinner and Snelson, 1960.; DRB
Δfgas-293. ± 1.5kJ/molCcbSkinner and Snelson, 1960ALS
Quantity Value Units Method Reference Comment
gas355.37J/mol*KN/AChao J., 1986p=1 bar. Other third-law value of entropy at 298.15 K is 357.2 J/mol*K [ Andon R.J.L., 1971]. The value of S(298.15 K)=358.5 J/mol*K was obtained from equilibrium studies [ Buckley E., 1965].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
41.8750.Thermodynamics Research Center, 1997p=1 bar. Calculated entropy at 298.15 K is 4.1 J/mol*K higher than the third-law value. Authors [ Chao J., 1986] believe that this is greater than the expected experimental uncertainty and reflects the approximations made in the calculated value. However, it should be noted that other experimental values of S(298.15 K), 357.2 [ Andon R.J.L., 1971] and 358.5 J/mol*K [ Buckley E., 1965], are in better agreement with calculated value. Selected S(T) and Cp(T) values agree with other statistically calculated values [62BER/MCC] within 1 J/mol*K. Values calculated by [ Rodionov P.P., 1969] are up to 9 and 11 J/mol*K lower than selected ones fo Cp(T) and S(T) values, respectively. Please also see Chao J., 1986.; GT
59.06100.
74.17150.
86.94200.
105.90273.15
112.74 ± 0.17298.15
113.25300.
140.74400.
165.63500.
186.83600.
204.82700.
220.27800.
233.65900.
245.301000.
255.451100.
264.301200.
272.031300.
278.771400.
284.661500.
296.41750.
304.92000.
311.22250.
315.92500.
319.42750.
322.13000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
131.71 ± 0.40365.15Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.67 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Berman N.S., 1962.; GT
137.87 ± 0.67380.95
136.52 ± 0.41383.15
139.10 ± 0.67386.25
140.85 ± 0.67393.75
141.46 ± 0.42401.15
143.50 ± 0.67405.15
143.74 ± 0.67406.15
146.32 ± 0.67417.25
146.23 ± 0.44419.15
150.96 ± 0.45437.15
151.79 ± 0.67440.75
155.64 ± 0.47455.15
158.81 ± 0.67470.85
169.31 ± 0.67515.95
179.65 ± 0.67560.35
184.89 ± 0.67582.85

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-342.7 ± 0.59kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-342.6 ± 0.92kJ/molCcbSkinner and Snelson, 1960ALS
Quantity Value Units Method Reference Comment
Δcliquid-2660.6 ± 0.54kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -342.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2660.6 ± 0.92kJ/molCcbSkinner and Snelson, 1960Corresponding Δfliquid = -342.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid213.1J/mol*KN/AAndon, Connett, et al., 1971DH
liquid214.7J/mol*KN/AAndon, Connett, et al., 1971DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
197.1298.15N/ADH
198.03298.15Okano, Ogawa, et al., 1988DH
196.67298.15Piekarski and Somsen, 1988DH
199.2298.Conti, Gianni, et al., 1976DH
197.4298.15Andon, Connett, et al., 1971T = 11 to 350 K.; DH
196.8298.15Andon, Connett, et al., 1971T = 11 to 350 K.; DH
184.9281.7Parks, Thomas, et al., 1936T = 103 to 282 K. Glass at lower temperature. Unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil372. ± 1.KAVGN/AAverage of 69 out of 71 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple184.73KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.1 K; TRC
Ttriple184.70KN/AAndon, Connett, et al., 1971, 2Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc536. ± 1.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Pc42.0 ± 0.2barAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.269l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc3.72 ± 0.02mol/lN/AGude and Teja, 1995 
ρc3.72mol/lN/ATeja, Lee, et al., 1989TRC
ρc3.717mol/lN/AAmbrose and Townsend, 1963TRC
Quantity Value Units Method Reference Comment
Δvap48. ± 5.kJ/molAVGN/AAverage of 9 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
40.75372.7N/AMajer and Svoboda, 1985 
48.8330.EBGierycz, Kosowski, et al., 2009Based on data from 315. to 371. K.; AC
46.2335.N/AMartínez, Lladosa, et al., 2009Based on data from 320. to 379. K.; AC
47.7321.N/ADejoz, Cruz Burguet, et al., 1995Based on data from 306. to 373. K.; AC
49.3318.AStephenson and Malanowski, 1987Based on data from 303. to 403. K.; AC
43.2370.AStephenson and Malanowski, 1987Based on data from 359. to 381. K.; AC
47.9387.AStephenson and Malanowski, 1987Based on data from 372. to 524. K.; AC
57.5225.AStephenson and Malanowski, 1987Based on data from 210. to 303. K.; AC
43.2369.AStephenson and Malanowski, 1987Based on data from 359. to 380. K.; AC
42.383.AStephenson and Malanowski, 1987Based on data from 368. to 404. K.; AC
39.6410.AStephenson and Malanowski, 1987Based on data from 395. to 485. K.; AC
35.491.AStephenson and Malanowski, 1987Based on data from 476. to 536. K.; AC
44.7355.EBStephenson and Malanowski, 1987Based on data from 340. to 379. K. See also Berman and McKetta, 1962 and Ambrose, Counsell, et al., 1970.; AC
47.8322.N/ASachek, Peshchenko, et al., 1982Based on data from 307. to 373. K.; AC
53.2308.N/ADi Cave, Chianese, et al., 1978Based on data from 293. to 380. K.; AC
44.1334.N/ABrazhnikov, Andreevskii, et al., 1975Based on data from 319. to 372. K.; AC
50.2295.N/ACabani, Conti, et al., 1975Based on data from 280. to 314. K.; AC
48.1313.N/AWilhoit and Zwolinski, 1973Based on data from 298. to 393. K.; AC
46.3338.N/ABrown, Fock, et al., 1969Based on data from 323. to 373. K. See also Boublik, Fried, et al., 1984.; AC
44.1360.EBBiddiscombe, Collerson, et al., 1963Based on data from 345. to 381. K.; AC
45.3 ± 0.1340.CBerman and McKetta, 1962AC
43.3 ± 0.1355.CBerman and McKetta, 1962AC
41.9 ± 0.1365.CBerman and McKetta, 1962AC
40.8 ± 0.1372.CBerman and McKetta, 1962AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 372.
A (kJ/mol) 52.6
α -1.462
β 1.0701
Tc (K) 536.
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
422.11 to 535.94.198271094.254-111.603Ambrose and Townsend, 1963, 2Coefficents calculated by NIST from author's data.
345.54 to 380.304.329431158.672-104.683Biddiscombe, Collerson, et al., 1963, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
6.000177.38Andon, Connett, et al., 1971DH
5.970184.70Andon, Connett, et al., 1971DH
5.97184.7Andon, Connett, et al., 1971, 3AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
33.83177.38Andon, Connett, et al., 1971DH
32.32184.70Andon, Connett, et al., 1971DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
110.7300.MN/A
97. MButler, Ramchandani, et al., 1935
97. VButler, Ramchandani, et al., 1935

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.88 ± 0.03eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)815.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity784.6kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.88 ± 0.03PIPECOShao, Baer, et al., 1988LL
9.88 ± 0.07EIBowen and Maccoll, 1984LBLHLM
9.88EIHolmes, Burgers, et al., 1982LBLHLM
9.88EIHolmes, Fingas, et al., 1981LLK
10.23PEBenoit and Harrison, 1977Vertical value; LLK
10.35 ± 0.03PEPeel and Willett, 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3O+12.2 ± 0.1C2H4+CH3EIBurgers and Holmes, 1982LBLHLM
CH3O+12.40?EIHolmes, Rye, et al., 1979LLK
CH3O+12.5?EIHarrison, Ivko, et al., 1966RDSH
C2H4O+10.05 ± 0.02C2H6PIPECOShao, Baer, et al., 1988LL
C2H4O+10.12C2H6EIBowen and Maccoll, 1984LBLHLM
C2H4O+10.12C2H6EIHolmes, Burgers, et al., 1982LBLHLM
C2H5O+10.20 ± 0.02C2H5PIPECOShao, Baer, et al., 1988LL
C2H5O+10.22C2H5EIHolmes, Lossing, et al., 1988LL
C2H5O+10.22 ± 0.08C2H5EIBowen and Maccoll, 1984LBLHLM
C2H5O+10.18C2H5EIHolmes, Burgers, et al., 1982LBLHLM
C2H5O+10.22C2H5EILossing, 1977LLK
C2H5O+10.4C2H5EIHarrison, Ivko, et al., 1966RDSH
C3H5+12.0 ± 0.1CH3+H2OEIBurgers and Holmes, 1982LBLHLM
C3H6O+10.22CH4EIHolmes, Burgers, et al., 1982LBLHLM
C3H7O+10.14 ± 0.02CH3PIPECOShao, Baer, et al., 1988LL
C3H7O+10.18 ± 0.08CH3EIBowen and Maccoll, 1984LBLHLM
C3H7O+10.24CH3EIHolmes, Burgers, et al., 1982LBLHLM
C3H7O+10.18CH3EILossing, 1977LLK
C3H7O+10.7CH3EIHarrison, Ivko, et al., 1966RDSH
C3H8O+10.22CH4EIBowen and Maccoll, 1984LBLHLM

De-protonation reactions

C4H9O- + Hydrogen cation = 2-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr1565. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1566. ± 8.8kJ/molG+TSTaft, 1987gas phase; value altered from reference due to change in acidity scale; B
Δr1565. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1538. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1538. ± 8.4kJ/molIMRETaft, 1987gas phase; value altered from reference due to change in acidity scale; B
Δr1538. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Lithium ion (1+) + 2-Butanol = (Lithium ion (1+) • 2-Butanol)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr174. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Sodium ion (1+) + 2-Butanol = (Sodium ion (1+) • 2-Butanol)

By formula: Na+ + C4H10O = (Na+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr117. ± 5.0kJ/molCIDTRodgers and Armentrout, 1999 

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin R.A.FRIEDEL BUREAU OF MINES U.S.DEPT.OF INT.BRUCETON PA U.S.A.
NIST MS number 19165

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A., The heats of combustion of the four isomeric butyl alcohols, Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Andon R.J.L., 1971
Andon R.J.L., Thermodynamic properties of organic oxygen compounds. Part XXVII. (+/-)-Butan-2-ol and (+)-butan-2-ol, J. Chem. Soc. A, 1971, 661-664. [all data]

Buckley E., 1965
Buckley E., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Rodionov P.P., 1969
Rodionov P.P., Thermodynamic functions of 2-butanol (d,l), Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 1969, 12, 1214-1218. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Berman N.S., 1962
Berman N.S., Thermodynamic properties of 2-butanol, J. Phys. Chem., 1962, 66, 1444-1448. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Andon, Connett, et al., 1971
Andon, R.J.; Connett, J.E.; Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XXVII. (±)-Butan-2-ol and (+)-Butan-2-ol, 1971, J. [all data]

Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S., Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K, Can. J. Chem., 1988, 66, 713-717. [all data]

Piekarski and Somsen, 1988
Piekarski, H.; Somsen, G., Heat capacities and volumes of mixtures of N,N-dimethylformamide with isobutanol, sec-butanol and t-pentanol, J. Chem. Soc., Faraday Trans. 1, 1988, 84(2), 529-537. [all data]

Conti, Gianni, et al., 1976
Conti, G.; Gianni, P.; Matteoli, E.; Mengheri, M., Capacita termiche molari di alcuni composti organici mono- e bifunzionali nel liquido puro e in soluzione acquosa a 25C, Chim. Ind. (Milan), 1976, 58, 225. [all data]

Parks, Thomas, et al., 1936
Parks, G.S.; Thomas, S.B.; Light, D.W., XII. Some new heat capacity data for organic glasses. The entropy and free energy of DL-lactic acid, J. Chem. Phys., 1936, 4, 64-69. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Andon, Connett, et al., 1971, 2
Andon, R.J.L.; Connett, J.E.; Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds: xxvii racemate of - butan-2-ol and (+)-butan-2-ol, J. Chem. Soc. A, 1971, 1971, 661-4. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 54, 3614-25. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard, Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols, J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z . [all data]

Martínez, Lladosa, et al., 2009
Martínez, Nelson F.; Lladosa, Estela; Burguet, MªCruz; Montón, Juan B.; Yazimon, Marlen, Isobaric vapour--liquid equilibria for the binary systems 4-methyl-2-pentanone+1-butanol and+2-butanol at 20 and 101.3kPa, Fluid Phase Equilibria, 2009, 277, 1, 49-54, https://doi.org/10.1016/j.fluid.2008.11.012 . [all data]

Dejoz, Cruz Burguet, et al., 1995
Dejoz, Ana; Cruz Burguet, M.; Munoz, Rosa; Sanchotello, Margarita, Isobaric Vapor-Liquid Equilibria of Tetrachloroethylene with 1-Butanol and 2-Butanol at 6 and 20 kPa, J. Chem. Eng. Data, 1995, 40, 1, 290-292, https://doi.org/10.1021/je00017a064 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Berman and McKetta, 1962
Berman, Neil S.; McKetta, John J., THE THERMODYNAMIC PROPERTIES OF 2-BUTANOL, J. Phys. Chem., 1962, 66, 8, 1444-1448, https://doi.org/10.1021/j100814a016 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A., Termodin. Org. Soedin., 1982, 94. [all data]

Di Cave, Chianese, et al., 1978
Di Cave, Sergio; Chianese, Angelo; Prantera, Antonio, Vapor-liquid equilibrium of the system methylethylketone-sec-butyl alcohol, J. Chem. Eng. Data, 1978, 23, 4, 279-281, https://doi.org/10.1021/je60079a013 . [all data]

Brazhnikov, Andreevskii, et al., 1975
Brazhnikov, M.M.; Andreevskii, D.N.; Sachek, A.I.; Peshchenko, A.D., Zh. Prikl. Khim. (Leningrad), 1975, 48, 10, 2181. [all data]

Cabani, Conti, et al., 1975
Cabani, Sergio; Conti, G.; Mollica, V.; Lepori, L., Thermodynamic study of dilute aqueous solutions of organic compounds. Part 4.---Cyclic and straight chain secondary alcohols, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 0, 1943, https://doi.org/10.1039/f19757101943 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Brown, Fock, et al., 1969
Brown, I.; Fock, W.; Smith, F., The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane, The Journal of Chemical Thermodynamics, 1969, 1, 3, 273-291, https://doi.org/10.1016/0021-9614(69)90047-0 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., 364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols, J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954 . [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols, J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954 . [all data]

Andon, Connett, et al., 1971, 3
Andon, R.J.L.; Connett, J.E.; Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XXVII. («65533»)-Butan-2-ol and (+)-butan-2-ol, J. Chem. Soc., A, 1971, 661, https://doi.org/10.1039/j19710000661 . [all data]

Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols, J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Shao, Baer, et al., 1988
Shao, J.D.; Baer, T.; Lewis, D.K., Dissociation dynamics of energy-selected ion-dipole complexes. 2. Butyl alcohol ions, J. Phys. Chem., 1988, 92, 5123. [all data]

Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A., Low energy, low temperature mass spectra, Org. Mass Spectrom., 1984, 19, 379. [all data]

Holmes, Burgers, et al., 1982
Holmes, J.L.; Burgers, P.C.; Mollah, Y.A., Alkane elimination from ionized alkanols, Org. Mass Spectrom., 1982, 17, 127. [all data]

Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P., Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations, Can. J. Chem., 1981, 59, 80. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Burgers and Holmes, 1982
Burgers, P.C.; Holmes, J.L., Metastable ion studies. XIII. The measurement of appearance energies of metastable peaks, Org. Mass Spectrom., 1982, 17, 123. [all data]

Holmes, Rye, et al., 1979
Holmes, J.L.; Rye, R.T.B.; Terlouw, J.K., On the loss of ethylene from [C3H7O]+ ions of structure CH3CH2CHOH, Org. Mass Spectrom., 1979, 14, 606. [all data]

Harrison, Ivko, et al., 1966
Harrison, A.G.; Ivko, A.; Van Raalte, D., Energetics of formation of some oxygenated ions and the proton affinities of carbonyl compounds, Can. J. Chem., 1966, 44, 1625. [all data]

Holmes, Lossing, et al., 1988
Holmes, J.L.; Lossing, F.P.; Maccoll, A., Heats of formation of alkyl radicals from appearance energies, J. Am. Chem. Soc., 1988, 110, 7339. [all data]

Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References