Benzene
- Formula: C6H6
- Molecular weight: 78.1118
- IUPAC Standard InChIKey: UHOVQNZJYSORNB-UHFFFAOYSA-N
- CAS Registry Number: 71-43-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: [6]Annulene; Benzol; Benzole; Coal naphtha; Cyclohexatriene; Phenyl hydride; Pyrobenzol; Pyrobenzole; Benzolene; Bicarburet of hydrogen; Carbon oil; Mineral naphtha; Motor benzol; Benzeen; Benzen; Benzin; Benzine; Benzolo; Fenzen; NCI-C55276; Phene; Rcra waste number U019; UN 1114; NSC 67315; 1,3,5-Cyclohexatriene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 99
- IR Spectrum
- UV/Visible spectrum
- Vibrational and/or electronic energy levels
- Gas Chromatography
- Fluid Properties
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 19.8 ± 0.2 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°gas | 19.8 | kcal/mol | N/A | Good and Smith, 1969 | Value computed using ΔfHliquid° value of 49.0±0.5 kj/mol from Good and Smith, 1969 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB |
ΔfH°gas | 19.82 ± 0.12 | kcal/mol | Ccb | Prosen, Gilmont, et al., 1945 | Hf by Prosen, Johnson, et al., 1946; ALS |
ΔfH°gas | 19.1 | kcal/mol | N/A | Landrieu, Baylocq, et al., 1929 | Value computed using ΔfHliquid° value of 46.0 kj/mol from Landrieu, Baylocq, et al., 1929 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
7.952 | 50. | Thermodynamics Research Center, 1997 | GT |
8.391 | 100. | ||
10.02 | 150. | ||
12.71 | 200. | ||
17.82 | 273.15 | ||
19.70 | 298.15 | ||
19.84 | 300. | ||
27.132 | 400. | ||
33.305 | 500. | ||
38.262 | 600. | ||
42.251 | 700. | ||
45.519 | 800. | ||
48.236 | 900. | ||
50.528 | 1000. | ||
52.476 | 1100. | ||
54.140 | 1200. | ||
55.566 | 1300. | ||
56.800 | 1400. | ||
57.866 | 1500. | ||
59.969 | 1750. | ||
61.487 | 2000. | ||
62.608 | 2250. | ||
63.456 | 2500. | ||
64.109 | 2750. | ||
64.620 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
22.30 ± 0.01 | 333.15 | Todd S.S., 1978 | Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Scott D.W., 1947.; GT |
22.90 | 341.60 | ||
23.42 ± 0.01 | 348.15 | ||
24.85 ± 0.01 | 368.15 | ||
25.100 | 370. | ||
25.041 | 371.20 | ||
26.00 ± 0.30 | 388. | ||
26.501 | 390. | ||
26.40 ± 0.30 | 393. | ||
27.230 | 402.30 | ||
27.32 ± 0.02 | 403.15 | ||
27.600 | 410. | ||
28.10 ± 0.30 | 417. | ||
28.40 ± 0.30 | 428. | ||
29.491 | 436.15 | ||
29.62 ± 0.02 | 438.15 | ||
30.30 ± 0.30 | 463. | ||
31.649 | 471.10 | ||
31.77 ± 0.02 | 473.15 | ||
31.40 ± 0.30 | 481. | ||
33.33 ± 0.02 | 500.15 | ||
34.80 ± 0.02 | 527.15 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 12. ± 0.2 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°liquid | 11.70 ± 0.13 | kcal/mol | Ccb | Good and Smith, 1969 | ALS |
ΔfH°liquid | 11.72 ± 0.12 | kcal/mol | Ccb | Prosen, Gilmont, et al., 1945 | Hf by Prosen, Johnson, et al., 1946; ALS |
ΔfH°liquid | 11.0 | kcal/mol | Ccb | Landrieu, Baylocq, et al., 1929 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -781. ± 4. | kcal/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 41.410 | cal/mol*K | N/A | Oliver, Eaton, et al., 1948 | DH |
S°liquid | 41.90 | cal/mol*K | N/A | Huffman, Parks, et al., 1930 | Extrapolation below 90 K, 47.49 J/mol*K.; DH |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 10.89 | cal/mol*K | N/A | Ahlberg, Blanchard, et al., 1937 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
32.431 | 298.15 | Grolier, Roux-Desgranges, et al., 1993 | DH |
32.48 | 298.5 | Czarnota, 1991 | p = 0.1 MPa. Cp values given for the pressure range 0.1 to 68.1 MPa.; DH |
32.414 | 298.15 | Lainez, Rodrigo, et al., 1989 | DH |
32.177 | 298.15 | Shiohama, Ogawa, et al., 1988 | DH |
32.445 | 298.15 | Grolier, Roux-Desgranges, et al., 1987 | DH |
32.173 | 293.15 | Kalali, Kohler, et al., 1987 | T = 293.15, 313.15 K.; DH |
32.4348 | 298.15 | Tanaka, 1987 | DH |
33.44 | 322.05 | Naziev, Bashirov, et al., 1986 | T = 322.05, 351.15 K. p = 0.1 MPa. Unsmoothed experimental datum given as 1.7915 kJ/kg*K.; DH |
32.84 | 303.15 | Reddy, 1986 | T = 303.15, 313.15 K.; DH |
32.519 | 298.15 | Ogawa and Murakami, 1985 | DH |
32.4374 | 298.15 | Tanaka, 1985 | DH |
32.562 | 298.15 | Gorbunova, Simonov, et al., 1983 | T = 283.78 to 348.47 K. Cp = 1.3943 - 5.857x10-4T + 5.89x10-6T2 kJ/kg*K. Cp value calculated from equation.; DH |
32.62 | 300. | Gorbunova, Grigoriev, et al., 1982 | T = 280 to 353 K. Data also given by equation.; DH |
32.43 | 298.15 | Grolier, Inglese, et al., 1982 | T = 298.15 K.; DH |
32.443 | 298.15 | Tanaka, 1982 | Temperatures 293.15, 298.15, 303.15 K.; DH |
32.409 | 298.15 | Wilhelm, Faradjzadeh, et al., 1982 | DH |
31.93 | 293.15 | Atalla, El-Sharkawy, et al., 1981 | DH |
32.481 | 298.15 | Vesely, Zabransky, et al., 1979 | DH |
32.412 | 298.15 | Grolier, Wilhelm, et al., 1978 | DH |
32.481 | 298.15 | Vesely, Svoboda, et al., 1977 | T = 298 to 318 K.; DH |
32.409 | 298.15 | Wilhelm, Grolier, et al., 1977 | DH |
32.447 | 298.15 | Fortier, Benson, et al., 1976 | DH |
32.4474 | 298.15 | Fortier and Benson, 1976 | DH |
32.43 | 298.15 | Rajagopal and Subrahmanyam, 1974 | T = 298.15 to 323.15 K.; DH |
32.10 | 298. | Deshpande and Bhatagadde, 1971 | T = 298 to 318 K.; DH |
32.48 | 298.15 | Hyder Khan and Subrahmanyam, 1971 | T = 298; 313 K.; DH |
32.48 | 298. | Subrahmanyam and Khan, 1969 | DH |
32.36 | 298. | Recko, 1968 | T = 24 to 40°C, equation only.; DH |
31.1 | 298. | Pacor, 1967 | DH |
32.17 | 293. | Rastorguev and Ganiev, 1967 | T = 293 to 353 K.; DH |
32.337 | 300. | Findenegg, Gruber, et al., 1965 | DH |
32.261 | 298. | Rabinovich and Nikolaev, 1962 | T = 10 to 35°C.; DH |
32.29 | 316. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 21 to 66°C.; DH |
32.60 | 303. | Duff and Everett, 1956 | T = 303 to 353 K.; DH |
32.321 | 298. | Staveley, Tupman, et al., 1955 | T = 288 to 347 K.; DH |
7.60 | 293. | Sieg, Crtzen, et al., 1951 | DH |
32.519 | 298.15 | Oliver, Eaton, et al., 1948 | T = 13 to 337 K.; DH |
28.4 | 295. | Tschamler, 1948 | DH |
31.91 | 298. | Kurbatov, 1947 | T = 9 to 80°C, mean Cp, five temperatures.; DH |
32.50 | 298.1 | Zhdanov, 1941 | T = 8 to 46°C.; DH |
32.371 | 298.2 | Burlew, 1940 | T = 281 to 353 K.; DH |
31.41 | 287.8 | Kolosovskii and Udovenko, 1934 | DH |
31.41 | 287.8 | de Kolossowsky and Udowenko, 1933 | DH |
31.41 | 298.15 | Ferguson and Miller, 1933 | T = 293 to 323 K. Data calculated from equation.; DH |
32.29 | 298.1 | Richards and Wallace, 1932 | T = 293 to 333 K.; DH |
34.314 | 323.15 | Fiock, Ginnings, et al., 1931 | T = 50 to 110°C.; DH |
32.29 | 300.0 | Huffman, Parks, et al., 1930 | T = 93 to 300 K. Value is unsmoothed experimental datum.; DH |
31.60 | 298. | Andrews, Lynn, et al., 1926 | T = -18 to 110°C.; DH |
31.81 | 293.2 | Williams and Daniels, 1925 | T = 20 to 60°C.; DH |
32.00 | 303. | Willams and Daniels, 1924 | T = 303 to 333 K. Equation only.; DH |
32.79 | 298. | Dejardin, 1919 | T = 24 to 50°C.; DH |
31.91 | 298. | von Reis, 1881 | T = 292 to 364 K.; DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
11.44 | 90. | Ahlberg, Blanchard, et al., 1937 | T = 4 to 93 K.; DH |
23.4 | 223.9 | Aoyama and Kanda, 1935 | T = 82 to 224 K. Value is unsmoothed experimental datum.; DH |
28.30 | 273. | Maass and Walbauer, 1925 | T = 93 to 273 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 353.3 ± 0.1 | K | AVG | N/A | Average of 147 out of 183 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 278.64 ± 0.08 | K | AVG | N/A | Average of 57 out of 69 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 278.5 ± 0.6 | K | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 562.0 ± 0.8 | K | AVG | N/A | Average of 36 out of 41 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 48.3 ± 0.4 | atm | AVG | N/A | Average of 24 out of 26 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.25 ± 0.03 | l/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.9 ± 0.2 | mol/l | AVG | N/A | Average of 12 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 8.10 ± 0.03 | kcal/mol | AVG | N/A | Average of 10 out of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 10.6 | kcal/mol | TE,ME | Kruif, 1980 | Based on data from 183. to 197. K.; AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
7.342 | 353.3 | N/A | Majer and Svoboda, 1985 | |
7.93 | 320. | N/A | Lubomska, Banas, et al., 2002 | Based on data from 305. to 345. K.; AC |
8.51 | 258. to 313. | GC | Liu and Dickhut, 1994 | AC |
8.01 | 311. | EB | Ambrose, Ewing, et al., 1990 | Based on data from 296. to 377. K.; AC |
7.98 | 307. | C | Dong, Lin, et al., 1988 | AC |
7.91 | 314. | C | Dong, Lin, et al., 1988 | AC |
7.74 | 324. | C | Dong, Lin, et al., 1988 | AC |
7.62 | 332. | C | Dong, Lin, et al., 1988 | AC |
7.50 | 344. | C | Dong, Lin, et al., 1988 | AC |
7.31 | 353. | C | Dong, Lin, et al., 1988 | AC |
8.22 | 294. | A | Stephenson and Malanowski, 1987 | Based on data from 279. to 377. K.; AC |
7.53 | 368. | A | Stephenson and Malanowski, 1987 | Based on data from 353. to 422. K.; AC |
7.22 | 435. | A | Stephenson and Malanowski, 1987 | Based on data from 420. to 502. K.; AC |
7.24 | 516. | A | Stephenson and Malanowski, 1987 | Based on data from 501. to 562. K.; AC |
7.36 | 352. | N/A | Natarajan, 1983 | AC |
7.29 | 361. | N/A | Natarajan, 1983 | AC |
7.22 | 366. | N/A | Natarajan, 1983 | AC |
8.44 | 343. | N/A | Tsonopoulos and Wilson, 1983 | Based on data from 313. to 373. K.; AC |
7.4 | 350. | N/A | Rao and Viswanath, 1977 | AC |
7.89 ± 0.02 | 313. | C | Svoboda, Veselý, et al., 1973 | AC |
7.70 ± 0.02 | 328. | C | Svoboda, Veselý, et al., 1973 | AC |
7.60 ± 0.02 | 333. | C | Svoboda, Veselý, et al., 1973 | AC |
7.50 ± 0.02 | 343. | C | Svoboda, Veselý, et al., 1973 | AC |
7.39 ± 0.02 | 353. | C | Svoboda, Veselý, et al., 1973 | AC |
7.79 ± 0.1 | 313. | DSC | Mita, Imai, et al., 1971 | AC |
7.8 ± 0.1 | 328. | DSC | Mita, Imai, et al., 1971 | AC |
7.55 ± 0.1 | 345. | DSC | Mita, Imai, et al., 1971 | AC |
8.15 | 299. | N/A | Forziati, Norris, et al., 1949 | Based on data from 284. to 354. K.; AC |
8.15 | 293. | N/A | Yarym-Agaev, Fedos'ev, et al., 1949 | AC |
8.15 | 297. | N/A | Thomson, 1946 | Based on data from 282. to 354. K.; AC |
7.46 | 294. | N/A | Scott and Brickwedde, 1945 | AC |
8.15 | 303. | MM | Willingham, Taylor, et al., 1945 | Based on data from 288. to 354. K.; AC |
7.98 | 313. | EB | Smith, 1941 | Based on data from 298. to 373. K.; AC |
8.25 | 288. | N/A | Stuckey and Saylor, 1940 | Based on data from 273. to 348. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 293. to 469. |
---|---|
A (kcal/mol) | 11.33 |
α | 0.1231 |
β | 0.3602 |
Tc (K) | 562.1 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
333.4 to 373.5 | 4.72012 | 1660.652 | -1.461 | Eon, Pommier, et al., 1971 | Coefficents calculated by NIST from author's data. |
297.9 to 318. | 0.14020 | 39.165 | -261.236 | Deshpande and Pandya, 1967 | Coefficents calculated by NIST from author's data. |
421.56 to 554.8 | 4.59791 | 1701.073 | 20.806 | Kalafati, Rasskazov, et al., 1967 | Coefficents calculated by NIST from author's data. |
287.70 to 354.07 | 4.01243 | 1203.835 | -53.226 | Williamham, Taylor, et al., 1945 |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
9.97 | 258. to 273. | N/A | Liu and Dickhut, 1994 | AC |
10.8 | 264. | A | Stephenson and Malanowski, 1987 | Based on data from 223. to 279. K. See also Ha, Morrison, et al., 1976.; AC |
10.8 | 278. | N/A | Hessler, 1984 | AC |
12.9 ± 0.2 | 193. | N/A | De Kruif and Van Ginkel, 1977 | AC |
11.8 ± 0.1 | 193. | N/A | De Kruif and Van Ginkel, 1977 | AC |
10.9 | 279. | MM | Jackowski, 1974 | Based on data from 221. to 268. K.; AC |
10.5 | 261. | N/A | Jones, 1960 | AC |
10.3 | 229. | N/A | Jones, 1960 | AC |
10.7 | 279. | N/A | Milazzo, 1956 | AC |
11.1 | 282. | A | Stull, 1947 | Based on data from 263. to 270. K.; AC |
9.2 | 303. | V | Wolf and Weghofer, 1938 | ALS |
10.7 | 273. | N/A | de Boer, 1936 | See also Jackowski, 1974.; AC |
10.3 | 226. | A | Mündel, 1913 | Based on data from 214. to 238. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
2.3581 | 278.69 | N/A | Oliver, Eaton, et al., 1948 | DH |
2.370 | 278.65 | N/A | Ziegler and Andrews, 1942 | DH |
2.36 | 278.7 | C | Domalski and Hearing, 1996 | See also Andrews, Lynn, et al., 1926 and Ziegler and Andrews, 1942.; AC |
2.223 | 279.1 | N/A | Smith, 1979 | DH |
2.139 | 278.8 | N/A | Pacor, 1967 | DH |
2.375 | 278.6 | N/A | Tschamler, 1948 | DH |
2.343 | 278.6 | N/A | Huffman, Parks, et al., 1930 | DH |
2.360 | 278.55 | N/A | Andrews, Lynn, et al., 1926 | DH |
2.3901 | 278.64 | N/A | Maass and Walbauer, 1925 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.461 | 278.69 | Oliver, Eaton, et al., 1948 | DH |
8.506 | 278.65 | Ziegler and Andrews, 1942 | DH |
7.96 | 279.1 | Smith, 1979 | DH |
7.67 | 278.8 | Pacor, 1967 | DH |
8.411 | 278.6 | Huffman, Parks, et al., 1930 | DH |
8.48 | 278.55 | Andrews, Lynn, et al., 1926 | DH |
8.58 | 278.64 | Maass and Walbauer, 1925 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.18 | M | N/A | missing citation also measured solubilities in salt solutions. | |
0.16 | 4100. | L | N/A | |
0.21 | 3600. | M | N/A | |
0.21 | M | N/A | ||
0.18 | X | N/A | Value given here as cited in missing citation. | |
0.17 | M | N/A | ||
0.19 | 3800. | M | N/A | |
0.17 | 3900. | X | N/A | |
0.18 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.16 | 4300. | X | N/A | |
0.18 | 3200. | X | N/A | |
0.18 | 2200. | X | N/A | |
0.18 | 4000. | X | Leighton and Calo, 1981 | |
0.18 | L | N/A | ||
0.12 | 5300. | X | N/A | |
0.19 | 4300. | X | N/A | |
0.18 | M | Mackay, Shiu, et al., 1979 | ||
0.18 | T | Mackay, Shiu, et al., 1979 | ||
0.18 | V | N/A | ||
0.18 | M | N/A | ||
0.22 | 4200. | M | N/A | |
0.16 | 4500. | M | N/A | |
0.18 | V | Bohon and Claussen, 1951 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C6H6+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.24378 ± 0.00007 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 179.3 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 173.4 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
178.4 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kcal/mol) | Reference | Comment |
---|---|---|
172.5 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
C6H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 401.22 ± 0.50 | kcal/mol | G+TS | Davico, Bierbaum, et al., 1995 | gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B |
ΔrH° | 401.16 ± 0.21 | kcal/mol | D-EA | Gunion, Gilles, et al., 1992 | gas phase; B |
ΔrH° | 400.7 ± 2.5 | kcal/mol | TDEq | Meot-ner and Sieck, 1986 | gas phase; B |
ΔrH° | 401. ± 10. | kcal/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
ΔrH° | 398.0 ± 5.6 | kcal/mol | G+TS | Bohme and Young, 1971 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 392.40 ± 0.40 | kcal/mol | IMRE | Davico, Bierbaum, et al., 1995 | gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B |
ΔrG° | 390.9 ± 2.0 | kcal/mol | TDEq | Meot-ner and Sieck, 1986 | gas phase; B |
ΔrG° | 390.1 ± 6.5 | kcal/mol | IMRB | Bartmess and McIver Jr., 1979 | gas phase; B |
ΔrG° | 389.2 ± 5.5 | kcal/mol | IMRB | Bohme and Young, 1971 | gas phase; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Ag+ + C6H6 = (Ag+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37.3 ± 1.7 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 39.9 ± 4.5 | kcal/mol | RAK | Ho, Yang, et al., 1997 | RCD |
By formula: (Ag+ • C6H6) + C6H6 = (Ag+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.9 ± 4.5 | kcal/mol | RAK | Ho, Yang, et al., 1997 | RCD |
By formula: Al+ + C6H6 = (Al+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.1 ± 1.9 | kcal/mol | RAK | Dunbar, Klippenstein, et al., 1996 | RCD |
By formula: Au+ + C6H6 = (Au+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.0 | kcal/mol | IMRB | Schroeder, Hrusak, et al., 1995 | RCD |
By formula: Bi+ + C6H6 = (Bi+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | <35.5 | kcal/mol | PDis | Willey, Yeh, et al., 1992 | RCD |
By formula: Br- + C6H6 = (Br- • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 ± 2.0 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.0 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 17. | cal/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.5 ± 1.0 | kcal/mol | IMRE | Paul and Kebarle, 1991 | gas phase; B |
ΔrG° | 3.9 ± 2.6 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
0.0 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: CH6N+ + C6H6 = (CH6N+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.8 | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.1 | cal/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: C2H7O+ + C6H6 = (C2H7O+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.7 | 491. | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
By formula: C3H3+ + C6H6 = (C3H3+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 | kcal/mol | HPMS | Field, Hamlet, et al., 1969 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 9. | cal/mol*K | HPMS | Field, Hamlet, et al., 1969 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6. | kcal/mol | HPMS | Field, Hamlet, et al., 1969 | gas phase; Entropy change is questionable; M |
By formula: C3H9Si+ + C6H6 = (C3H9Si+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.9 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 34.7 | cal/mol*K | PHPMS | Wojtyniak and Stone, 1986 | gas phase; M |
By formula: C3H10N+ + C6H6 = (C3H10N+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.9 | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.7 | cal/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: C4H4S+ + C6H6 = (C4H4S+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. | kcal/mol | HPMS | Field, Hamlet, et al., 1969 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23. | cal/mol*K | HPMS | Field, Hamlet, et al., 1969 | gas phase; M |
By formula: C4H9+ + C6H6 = (C4H9+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. | kcal/mol | PHPMS | Sen Sharma, Ikuta, et al., 1982 | gas phase; forms protonated t-butylbenzene; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 49. | cal/mol*K | PHPMS | Sen Sharma, Ikuta, et al., 1982 | gas phase; forms protonated t-butylbenzene; M |
By formula: C6H5Cl+ + C6H6 = (C6H5Cl+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C6H6+ + C6H6 = (C6H6+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14. ± 8. | kcal/mol | AVG | N/A | Average of 7 out of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.8 | cal/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1991 | gas phase; M |
ΔrS° | 27. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
ΔrS° | 23. | cal/mol*K | HPMS | Field, Hamlet, et al., 1969 | gas phase; M |
By formula: (C6H6+ • C6H6) + C6H6 = (C6H6+ • 2C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.8 ± 0.5 | kcal/mol | PHPMS | Hiraoka, Fujimaki, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.8 | cal/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1991 | gas phase; M |
By formula: (C6H6+ • 2C6H6) + C6H6 = (C6H6+ • 3C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.0 | kcal/mol | PHPMS | Hiraoka, Fujimaki, et al., 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20. | cal/mol*K | N/A | Hiraoka, Fujimaki, et al., 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: (C6H6+ • 5C6H6) + C6H6 = (C6H6+ • 6C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.5 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: (C6H6+ • 6C6H6) + C6H6 = (C6H6+ • 7C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.3 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: (C6H6+ • 7C6H6) + C6H6 = (C6H6+ • 8C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.0 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: (C6H6+ • 8C6H6) + C6H6 = (C6H6+ • 9C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.9 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: (C6H6+ • 9C6H6) + C6H6 = (C6H6+ • 10C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.8 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: (C6H6+ • 10C6H6) + C6H6 = (C6H6+ • 11C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.8 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: (C6H6+ • 11C6H6) + C6H6 = (C6H6+ • 12C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.0 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: (C6H6+ • 12C6H6) + C6H6 = (C6H6+ • 13C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.3 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: (C6H6+ • 13C6H6) + C6H6 = (C6H6+ • 14C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.1 | kcal/mol | PDiss | Beck and Hecht, 1991 | gas phase; M |
By formula: C6H6NO- + 2C6H6 = C12H12NO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.5 ± 2.3 | kcal/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: C6H7+ + C6H6 = (C6H7+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C6H7N+ + C6H6 = (C6H7N+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.9 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.6 | cal/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C7H8+ + C6H6 = (C7H8+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.2 | kcal/mol | MPI | Ernstberger, Krause, et al., 1990 | gas phase; M |
ΔrH° | 5.5 | kcal/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 12.4 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C7H9N+ + C6H6 = (C7H9N+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.3 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.6 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C8H11N+ + C6H6 = (C8H11N+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.0 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.2 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C9H12+ + C6H6 = (C9H12+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.6 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C9H13N+ + C6H6 = (C9H13N+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.2 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
2.6 | 331. | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C10H10Fe+ + C6H6 = (C10H10Fe+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. | kcal/mol | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20. | cal/mol*K | N/A | Meot-Ner (Mautner), 1989 | gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.0 | 252. | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M |
By formula: C11H10+ + C6H6 = (C11H10+ • C6H6)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 | kcal/mol | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.0 | cal/mol*K | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; M |
By formula: Cd+ + C6H6 = (Cd+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.5 ± 4.5 | kcal/mol | RAK | Ho, Yang, et al., 1997 | RCD |
By formula: Cl- + C6H6 = (Cl- • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.00 ± 0.46 | kcal/mol | N/A | Tschurl, Ueberfluss, et al., 2007 | gas phase; B |
ΔrH° | 9.4 ± 2.0 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 9.90 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
ΔrH° | 8.7 | kcal/mol | PHPMS | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
ΔrH° | 10.4 | kcal/mol | PHPMS | Sunner, Nishizawa, et al., 1981 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.9 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 17. | cal/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
ΔrS° | 17.1 | cal/mol*K | N/A | Larson and McMahon, 1984, 2 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
ΔrS° | 22. | cal/mol*K | N/A | Sunner, Nishizawa, et al., 1981 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.0 ± 2.6 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 3.8 ± 1.6 | kcal/mol | IMRE | Chowdhury and Kebarle, 1986 | gas phase; B |
ΔrG° | 4.8 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
ΔrG° | 3.80 | kcal/mol | IMRE | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.6 | 300. | PHPMS | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
3.8 | 300. | PHPMS | Chowdhury and Kebarle, 1986 | gas phase; M |
3.8 | 300. | PHPMS | Sunner, Nishizawa, et al., 1981 | gas phase; Entropy change calculated or estimated; M |
By formula: Co+ + C6H6 = (Co+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.2 ± 2.6 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
61.1 (+2.5,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Co+ • C6H6) + C6H6 = (Co+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.9 ± 3.3 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.8 | cal/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(490 K); M |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
39.9 (+3.2,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M | |
27.0 (+1.0,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(490 K); M |
By formula: Cr+ + C6H6 = (Cr+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.2 | kcal/mol | MID | Lin, Chen, et al., 1997 | RCD |
ΔrH° | 39.2 ± 3.3 | kcal/mol | RAK | Lin and Dunbar, 1997 | RCD |
ΔrH° | 40.6 ± 2.4 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
40.6 (+2.3,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • C6H6) + C6H6 = (Cr+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.7 ± 9.1 | kcal/mol | RAK | Lin and Dunbar, 1997 | RCD |
ΔrH° | 55.4 ± 4.3 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
55.3 (+4.4,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Cs+ + C6H6 = (Cs+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.4 ± 1.2 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
By formula: (Cs+ • C6H6) + C6H6 = (Cs+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.0 ± 1.9 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
By formula: Cu+ + C6H6 = (Cu+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.1 ± 2.4 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
52.1 (+2.3,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • C6H6) + C6H6 = (Cu+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37.0 ± 2.9 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
37.1 (+2.8,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: F- + C6H6 = (F- • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.30 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.5 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.40 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: Fe+ + C6H6 = (Fe+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.1 | kcal/mol | RAK | Gapeev and Dunbar, 2002 | RCD |
ΔrH° | 49.5 ± 2.9 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
49.6 (+2.3,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • C6H6) + C6H6 = (Fe+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.7 ± 3.8 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
44.7 (+3.9,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: H4N+ + C6H6 = (H4N+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.3 | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.3 | cal/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: (H4N+ • C6H6) + C6H6 = (H4N+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.0 | kcal/mol | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.5 | cal/mol*K | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
By formula: (H4N+ • 2C6H6) + C6H6 = (H4N+ • 3C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.2 | kcal/mol | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.9 | cal/mol*K | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
By formula: I- + C6H6 = (I- • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.1 ± 2.0 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 9.1 ± 1.0 | kcal/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 14.2 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.8 ± 2.6 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: K+ + C6H6 = (K+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.5 ± 0.9 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
ΔrH° | 19.2 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.6 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; M |
By formula: (K+ • C6H6) + C6H6 = (K+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.1 ± 1.7 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
ΔrH° | 18.8 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 33.9 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; M |
By formula: (K+ • 2C6H6) + C6H6 = (K+ • 3C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.5 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.7 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; M |
By formula: (K+ • 3C6H6) + C6H6 = (K+ • 4C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.6 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 41.4 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; M |
By formula: (K+ • C6H6 • H2O) + C6H6 = (K+ • 2C6H6 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.4 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.1 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M |
By formula: (K+ • C6H6 • 2H2O) + C6H6 = (K+ • 2C6H6 • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.8 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 33.7 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M |
By formula: (K+ • H2O) + C6H6 = (K+ • C6H6 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.8 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.1 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M |
By formula: (K+ • 2H2O) + C6H6 = (K+ • C6H6 • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.4 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.3 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M |
By formula: (K+ • 3H2O) + C6H6 = (K+ • C6H6 • 3H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.6 | kcal/mol | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.6 | cal/mol*K | HPMS | Sunner, Nishizawa, et al., 1981 | gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M |
By formula: Li+ + C6H6 = (Li+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38.5 ± 3.2 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
ΔrH° | 37.9 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
ΔrH° | 36.5 | kcal/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.5 | cal/mol*K | N/A | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 29.7 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
By formula: (Li+ • C6H6) + C6H6 = (Li+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.9 ± 1.7 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
By formula: Mg+ + C6H6 = (Mg+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.0 ± 2.3 | kcal/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
ΔrH° | 37.0 | kcal/mol | RAK | Gapeev and Dunbar, 2000 | RCD |
By formula: Mn+ + C6H6 = (Mn+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.4 | kcal/mol | MID | Lin, Chen, et al., 1997 | RCD |
ΔrH° | 31.8 ± 2.2 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
31.8 (+2.1,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • C6H6) + C6H6 = (Mn+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.5 ± 3.8 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
48.4 (+3.9,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
+ = C6H6NO-
By formula: NO- + C6H6 = C6H6NO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.5 ± 2.3 | kcal/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: NO- + C6H6 = (NO- • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.1 | kcal/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: Na+ + C6H6 = (Na+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.8 ± 1.4 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 21.1 ± 1.2 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
ΔrH° | 21.1 ± 1.1 | kcal/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 28.0 | kcal/mol | HPMS | Guo, Purnell, et al., 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.2 | cal/mol*K | HPMS | Guo, Purnell, et al., 1990 | gas phase; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15.7 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: (Na+ • C6H6) + C6H6 = (Na+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 1. | kcal/mol | AVG | N/A | Average of 7 values; Individual data points |
By formula: Ni+ + C6H6 = (Ni+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.1 ± 2.6 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
58.1 (+2.5,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • C6H6) + C6H6 = (Ni+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.1 ± 2.9 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
35.1 (+2.8,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
+ = C6H6O2-
By formula: O2- + C6H6 = C6H6O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.1 ± 2.3 | kcal/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: Pb+ + C6H6 = (Pb+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.2 | kcal/mol | PHPMS | Guo, Purnell, et al., 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.6 | cal/mol*K | PHPMS | Guo, Purnell, et al., 1990 | gas phase; M |
By formula: Rb+ + C6H6 = (Rb+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.4 ± 0.9 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
By formula: (Rb+ • C6H6) + C6H6 = (Rb+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.0 ± 1.9 | kcal/mol | CIDT | Amicangelo and Armentrout, 2000 | RCD |
By formula: Ti+ + C6H6 = (Ti+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.9 | kcal/mol | RAK | Gapeev and Dunbar, 2002 | RCD |
ΔrH° | 61.9 ± 2.2 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
61.8 (+2.1,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Ti+ • C6H6) + C6H6 = (Ti+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.5 ± 4.3 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
60.4 (+4.4,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: V+ + C6H6 = (V+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >55. | kcal/mol | RAK | Gapeev and Dunbar, 2002 | RCD |
ΔrH° | 55.9 ± 2.4 | kcal/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
55.8 (+2.3,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (V+ • C6H6) + C6H6 = (V+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.8 ± 4.4 | kcal/mol | CID | Meyer, Khan, et al., 1995 | gas phase; ΔrH(0k), guided ion beam CID; M,RCD |
By formula: (V- • C6H5F) + C6H6 = (V- • C6H6 • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3. ± 15. | kcal/mol | N/A | Judai, Hirano, et al., 1997 | gas phase; B |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1990. |
NIST MS number | 114388 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Good and Smith, 1969
Good, W.D.; Smith, N.K.,
Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane,
J. Chem. Eng. Data, 1969, 14, 102-106. [all data]
Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D.,
Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene,
J. Res. NBS, 1945, 34, 65-70. [all data]
Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D.,
Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes,
J. Res. NBS, 1946, 36, 455-461. [all data]
Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R.,
Etude thermochimique dans la serie furanique,
Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Todd S.S., 1978
Todd S.S.,
Vapor-flow calorimetry of benzene,
J. Chem. Thermodyn., 1978, 10, 641-648. [all data]
Montgomery J.B., 1942
Montgomery J.B.,
The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene,
J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]
Pitzer K.S., 1943
Pitzer K.S.,
The thermodynamics and molecular structure of benzene and its methyl derivatives,
J. Am. Chem. Soc., 1943, 65, 803-829. [all data]
Scott D.W., 1947
Scott D.W.,
The heat capacity of benzene vapor. The contribution of anharmonicity,
J. Chem. Phys., 1947, 15, 565-568. [all data]
Oliver, Eaton, et al., 1948
Oliver, G.D.; Eaton, M.; Huffman, H.M.,
The heat capacity, heat of fusion and entropy of benzene,
J. Am. Chem. Soc., 1948, 70, 1502-1505. [all data]
Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C.,
Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]
Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O.,
The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures,
J. Chem. Phys., 1937, 5, 537-551. [all data]
Grolier, Roux-Desgranges, et al., 1993
Grolier, J.-P.E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E.,
Heat capacities and densities of mixtures of very polar substances 2. Mixtures containing N,N-dimethylformamide,
J. Chem. Thermodynam., 1993, 25(1), 41-50. [all data]
Czarnota, 1991
Czarnota, I.,
Heat capacity of benzene at high pressures,
J. Chem. Thermodynam., 1991, 23, 25-30. [all data]
Lainez, Rodrigo, et al., 1989
Lainez, A.; Rodrigo, M.M.; Wilhelm, E.; Grolier, J.-P.E.,
Excess volumes and excess heaat capacitiies of some mixtures with trans,trans,cis-1,5,9-cyclododecatriene at 298.15K,
J. Chem. Eng. Data, 1989, 34, 332-335. [all data]
Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I.,
Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K,
J. Chem. Thermodynam., 1988, 20, 1183-1189. [all data]
Grolier, Roux-Desgranges, et al., 1987
Grolier, J.-P.E.; Roux-Desgranges, G.; Kooner, Z.S.; Smith, J.F.; Hepler, L.G.,
Thermal and volumetric properties of chloroform + benzene mixtures and the ideal associated solution model of complex formation,
J. Solution Chem., 1987, 16, 745-752. [all data]
Kalali, Kohler, et al., 1987
Kalali, H.; Kohler, F.; Svejda, P.,
Excess properties of the mixture bis(2-dichlorethyl)ether (chlorex) + 2,2,4-trimethylpentane (isooctane),
Monatsh. Chem., 1987, 118, 1-18. [all data]
Tanaka, 1987
Tanaka, R.,
Excess heat capacities for mixture of benzene with n-heptane at 293.15, 298.15 and 303.15 K,
J. Chem. Eng. Data, 1987, 32, 176-177. [all data]
Naziev, Bashirov, et al., 1986
Naziev, Ya.M.; Bashirov, M.M.; Badalov, Yu.A.,
Experimental device for measurement of isobaric specific heat of electrolytes at elevated pressures,
Inzh-Fiz. Zhur., 1986, 51(5), 789-795. [all data]
Reddy, 1986
Reddy, K.S.,
Isentropic compressibilities of binary liquid mixtures at 303.15 and 313.15 K,
J. Chem. Eng. Data, 1986, 31, 238-240. [all data]
Ogawa and Murakami, 1985
Ogawa, H.; Murakami, S.,
Flow microcalorimeter for heat capacities of solutions,
Thermochim. Acta, 1985, 88, 255-260. [all data]
Tanaka, 1985
Tanaka, R.,
Excess heat capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15 K,
J. Chem. Eng. Data, 1985, 30, 267-269. [all data]
Gorbunova, Simonov, et al., 1983
Gorbunova, N.I.; Simonov, V.M.; Shipova, V.A.,
Thermodynamic properties of benzene,
Teplofiz. Vys. Temp., 1983, 21(2), 270-275. [all data]
Gorbunova, Grigoriev, et al., 1982
Gorbunova, N.I.; Grigoriev, V.A.; Simonov, V.M.; Shipova, V.A.,
Heat capacity of liquid benzene and hexafluorobenzene at atmospheric pressure,
Int. J. Thermophysics, 1982, 3, 1-15. [all data]
Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K,
J. Chem. Thermodynam., 1982, 14, 523-529. [all data]
Tanaka, 1982
Tanaka, R.,
Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter,
J. Chem. Thermodynam., 1982, 14, 259-268. [all data]
Wilhelm, Faradjzadeh, et al., 1982
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E.,
Excess volumes and excess heat capacities of 2,3-dimethylbutane + butane and + toluene,
J. Chem. Thermodynam., 1982, 14, 1199-1200. [all data]
Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A.,
Measurement of thermal properties of liquids with an AC heated-wire technique,
Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]
Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J.,
The use of mixing calorimeter for measuring heat capacities of liquids,
Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]
Grolier, Wilhelm, et al., 1978
Grolier, J.-P.E.; Wilhelm, E.; Hamedi, M.H.,
Molar heat capacities and isothermal compressibility of binary liquid mixtures: carbon tetrachloride + benzene, carbon tetrachloride + cyclohexane and benzene + cyclohexane,
Ber. Bunsenges. Phys. Chem., 1978, 82, 1282-1290. [all data]
Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J.,
Heat capacities of some organic liquids determined with the mixing calorimeter,
1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]
Wilhelm, Grolier, et al., 1977
Wilhelm, E.; Grolier, J.-P.E.; Karbalai Ghassemi, M.H.,
Molar heat capacities of binary liquid mixtures: 1,2-dichloroethane + benzene, + toluene, and + p-xylene,
Ber. Bunsenges. Phys. Chem., 1977, 81, 925-930. [all data]
Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P.,
Heat capacities of some organic liquids determined with the Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 289-299. [all data]
Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 411-423. [all data]
Rajagopal and Subrahmanyam, 1974
Rajagopal, E.; Subrahmanyam, S.V.,
Excess function of VE,(dVE/dp)T, and CpE of isooctane + benzene and + toluene,
J. Chem. Thermodynam., 1974, 6, 873-876. [all data]
Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G.,
Heat capacities at constant volume, free volumes, and rotational freedom in some liquids,
Aust. J. Chem., 1971, 24, 1817-1822. [all data]
Hyder Khan and Subrahmanyam, 1971
Hyder Khan, V.; Subrahmanyam, S.V.,
Excess thermodynamic functions of the systems: benzene + p-xylene and benzene + p-dioxan,
Trans. Faraday Soc., 1971, 67, 2282-2291. [all data]
Subrahmanyam and Khan, 1969
Subrahmanyam, S.V.; Khan, V.H.,
Thermodynamics of the system benzene - p-dioxane,
Curr. Sci., 1969, 38, 510-511. [all data]
Recko, 1968
Recko, W.M.,
Excess heat capacity of the binary systems formed by n-propyl alcohol with benzene, mesitylene and cyclohexane,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1968, 16, 549-552. [all data]
Pacor, 1967
Pacor, P.,
Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis,
Anal. Chim. Acta, 1967, 37, 200-208. [all data]
Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A.,
Study of the heat capacity of selected solvents,
Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]
Findenegg, Gruber, et al., 1965
Findenegg, G.H.; Gruber, K.; Pereira, J.F.; Kohler, F.,
Kalorimetrische Messungen an Mischungen von Nichtelektrolyten, 1. Mitt.: Molwarme des Systems 1,2-Dibromathan-Benzol,
Monatsh. Chem., 1965, 96, 669-678. [all data]
Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N.,
Isotopic effect in the specific heat of some deutero compounds,
Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat in homologous series of binary and ternary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]
Duff and Everett, 1956
Duff, G.M.; Everett, D.H.,
The heat capacity of the system benzene + diphenylmethane,
Trans. Faraday Soc., 1956, 52, 753-763. [all data]
Staveley, Tupman, et al., 1955
Staveley, L.A.K.; Tupman, W.I.; Hart, K.R.,
Some thermodynamice properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + chloroform, and acetone + carbon disulphide,
Trans. Faraday Soc., 1955, 51, 323-342. [all data]
Sieg, Crtzen, et al., 1951
Sieg, L.; Crtzen, J.L.; Jost, W.,
Zur Thermodynamik von Mischphasen IX. Über das Verdampfungsgleichgewicht Benzol-1-2-Dichloraethan,
Z. Phys. Chem., 1951, 198, 263-269. [all data]
Tschamler, 1948
Tschamler, H.,
Uber binare flussige Mischungen I. Mischungswarment, Volumseffekte und Zustandsdiagramme von chlorex mit benzol und n-alkylbenzolen,
Monatsh. Chem., 1948, 79, 162-177. [all data]
Kurbatov, 1947
Kurbatov, V.Ya.,
Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons,
Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]
Zhdanov, 1941
Zhdanov, A.K.,
Specific heats of some liquids and azeotropic mixtures,
Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]
Burlew, 1940
Burlew, J.S.,
Measurement of the heat capacity of a small volume of liquid by the piezo-thermometric method. III. Heat capacity of benzene and of toluene from 8°C. to the boiling point,
J. Am. Chem. Soc., 1940, 62, 696-700. [all data]
Kolosovskii and Udovenko, 1934
Kolosovskii, N.A.; Udovenko, W.W.,
Specific heat of liquids. II.,
Zhur. Obshchei Khim., 1934, 4, 1027-1033. [all data]
de Kolossowsky and Udowenko, 1933
de Kolossowsky, N.A.; Udowenko, W.W.,
Mesure des chaleurs specifique moleculaires de quelques liquides,
Compt. rend., 1933, 197, 519-520. [all data]
Ferguson and Miller, 1933
Ferguson, A.; Miller, J.T.,
A method for the determination of the specific heats of liquids, and a determination of the specific heats of aniline and benzene over the approximate range 20°C to 50°C,
Proc. Phys. Soc. London, 1933, 45, 194-207. [all data]
Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr.,
The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients,
J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]
Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B.,
Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene,
J. Res., 1931, NBS 6, 881-900. [all data]
Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J.,
The heat capacities and heat of crystallization of some isomeric aromatic compounds,
J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]
Williams and Daniels, 1925
Williams, J.W.; Daniels, F.,
The specific heats of binary mixtures,
J. Am. Chem. Soc., 1925, 47, 1490-1503. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
Dejardin, 1919
Dejardin, G.,
Pressions maxima des vapeurs du benzene et du cyclohexane aux temperatures moyennes et calcul de leurs chaleurs specifiques principales,
Ann. phys. [9], 1919, 11, 253-291. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E.,
Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature,
Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]
Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J.,
The specific heats and latent heats of fusion of ice and of several organic compounds,
J. Am. Chem. Soc., 1925, 47, 1-9. [all data]
Kruif, 1980
Kruif, C.G.,
Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons,
J. Chem. Thermodyn., 1980, 12, 243-248. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Lubomska, Banas, et al., 2002
Lubomska, Monika; Banas, Agnieszka; Malanowski, Stanislaw K.,
Vapor-Liquid Equilibrium in Binary Systems Formed by Allyl Alcohol with Benzene and with Cyclohexane,
J. Chem. Eng. Data, 2002, 47, 6, 1466-1471, https://doi.org/10.1021/je025540l
. [all data]
Liu and Dickhut, 1994
Liu, Kewen; Dickhut, Rebecca M.,
Saturation vapor pressures and thermodynamic properties of benzene and selected chlorinated benzenes at environmental temperatures,
Chemosphere, 1994, 29, 3, 581-589, https://doi.org/10.1016/0045-6535(94)90445-6
. [all data]
Ambrose, Ewing, et al., 1990
Ambrose, D.; Ewing, M.B.; Ghiassee, N.B.; Sanchez Ochoa, J.C.,
The ebulliometric method of vapour-pressure measurement: vapour pressures of benzene, hexafluorobenzene, and naphthalene,
The Journal of Chemical Thermodynamics, 1990, 22, 6, 589-605, https://doi.org/10.1016/0021-9614(90)90151-F
. [all data]
Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing,
Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene,
Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Natarajan, 1983
Natarajan, G.,
High-temperature calorimeter for the measurement of vapor pressure and enthalpy of vaporization,
Rev. Sci. Instrum., 1983, 54, 9, 1175, https://doi.org/10.1063/1.1137545
. [all data]
Tsonopoulos and Wilson, 1983
Tsonopoulos, Constantine; Wilson, G.M.,
High-temperature mutual solubilities of hydrocarbons and water. Part I: Benzene, cyclohexane andn-hexane,
AIChE J., 1983, 29, 6, 990-999, https://doi.org/10.1002/aic.690290618
. [all data]
Rao and Viswanath, 1977
Rao, Yaddanapudi J.; Viswanath, Dabir S.,
Integral isobaric heats of vaporization of benzene-chloroethane systems,
J. Chem. Eng. Data, 1977, 22, 1, 36-38, https://doi.org/10.1021/je60072a011
. [all data]
Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J.,
Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature,
Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539
. [all data]
Mita, Imai, et al., 1971
Mita, Itaru; Imai, Isao; Kambe, Hirotaro,
Determination of heat of mixing and heat of vaporization with a differential scanning calorimeter,
Thermochimica Acta, 1971, 2, 4, 337-344, https://doi.org/10.1016/0040-6031(71)85035-9
. [all data]
Forziati, Norris, et al., 1949
Forziati, Alphonse F.; Norris, William R.; Rossini, Frederick D.,
Vapor pressures and boiling points of sixty API-NBS hydrocarbons,
J. RES. NATL. BUR. STAN., 1949, 43, 6, 555-17, https://doi.org/10.6028/jres.043.050
. [all data]
Yarym-Agaev, Fedos'ev, et al., 1949
Yarym-Agaev, N.L.; Fedos'ev, N.N.; Skorikov, K.G.,
Zh. Fiz. Khim., 1949, 11, 1257. [all data]
Thomson, 1946
Thomson, George Wm.,
The Antoine Equation for Vapor-pressure Data.,
Chem. Rev., 1946, 38, 1, 1-39, https://doi.org/10.1021/cr60119a001
. [all data]
Scott and Brickwedde, 1945
Scott, R.B.; Brickwedde, F.G.,
Thermodynamic properties of solid and liquid ethylbenzene from 0 to 300 degrees K,
J. RES. NATL. BUR. STAN., 1945, 35, 6, 501-17, https://doi.org/10.6028/jres.035.024
. [all data]
Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons,
J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009
. [all data]
Smith, 1941
Smith, E.R.,
Boiling points of benzene, 2,2,3-trimethylbutane, 3-ethylpentane, and 2,2,4,4-tetramethylpentane within the range 100 to 1,500 millimeters of mercury,
J. RES. NATL. BUR. STAN., 1941, 26, 2, 129-17, https://doi.org/10.6028/jres.026.004
. [all data]
Stuckey and Saylor, 1940
Stuckey, James M.; Saylor, John H.,
The Vapor Pressures of Some Organic Compounds. I. 1,
J. Am. Chem. Soc., 1940, 62, 11, 2922-2925, https://doi.org/10.1021/ja01868a011
. [all data]
Eon, Pommier, et al., 1971
Eon, C.; Pommier, C.; Guiochon, G.,
Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives,
J. Chem. Eng. Data, 1971, 16, 4, 408-410, https://doi.org/10.1021/je60051a008
. [all data]
Deshpande and Pandya, 1967
Deshpande, D.D.; Pandya, M.V.,
Thermodynamics of Binary Solutions. Part 2. Vapour Pressures and Excess Free Energies of Aniline Solutions,
Trans. Faraday Soc., 1967, 63, 2149-2157, https://doi.org/10.1039/tf9676302149
. [all data]
Kalafati, Rasskazov, et al., 1967
Kalafati, D.D.; Rasskazov, D.S.; Petrov, E.K.,
Experimental Determination of a Dependence of a Saturated Vapor Pressure of Benzene on Temperature,
Zh. Fiz. Khim., 1967, 41, 1357-1359. [all data]
Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons,
J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009
. [all data]
Ha, Morrison, et al., 1976
Ha, H.; Morrison, J.A.; Richards, E.L.,
Vapour pressures of solid benzene, cyclohexane and their mixtures,
J. Chem. Soc., Faraday Trans. 1, 1976, 72, 0, 1051, https://doi.org/10.1039/f19767201051
. [all data]
Hessler, 1984
Hessler, W.,
Wiss. Zeitschr. Wilhelm-Pieck-Univ. Rostock, Naturwiss. Reihe, 1984, 33, 9. [all data]
De Kruif and Van Ginkel, 1977
De Kruif, C.G.; Van Ginkel, C.H.D.,
Torsion-weighing effusion vapour-pressure measurements on organic compounds,
The Journal of Chemical Thermodynamics, 1977, 9, 8, 725-730, https://doi.org/10.1016/0021-9614(77)90015-5
. [all data]
Jackowski, 1974
Jackowski, A.W.,
Vapour pressures of solid benzene and of solid cyclohexane,
The Journal of Chemical Thermodynamics, 1974, 6, 1, 49-52, https://doi.org/10.1016/0021-9614(74)90205-5
. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Milazzo, 1956
Milazzo, G.,
Ann. Chim. (Rome), 1956, 46, 1105. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.,
Uber sublimationswarmen,
Z. Phys. Chem., 1938, 39, 194-208. [all data]
de Boer, 1936
de Boer, J.H.,
The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins,
Trans. Faraday Soc., 1936, 32, 10, https://doi.org/10.1039/tf9363200010
. [all data]
Mündel, 1913
Mündel, C.F.,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1913, 85, 435. [all data]
Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H.,
The heat capacity of benzene-d6,
J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Smith, 1979
Smith, G.W.,
Phase behavior of some linear polyphenyls,
Mol. Cryst. Liq. Cryst., 1979, 49, 207-209. [all data]
Leighton and Calo, 1981
Leighton, D.T.; Calo, J.M.,
Distribution Coefficients of Chlorinated Hydrocarbons in Dilute Air-Water Systems for Groundwater Contamination Applications,
J. Chem. Eng. Data, 1981, 26, 382-385. [all data]
Mackay, Shiu, et al., 1979
Mackay, D.; Shiu, W.-Y.; Sutherland, R.P.,
Determination of Air-Water Henry's Law Constants for Hydrophobic Pollutants,
Environ. Sci. Technol., 1979, 13, 333-337. [all data]
Bohon and Claussen, 1951
Bohon, R.L.; Claussen, W.F.,
The solubility of aromatic hydrocarbons in water,
J. Am. Chem. Soc., 1951, 73, 1571-1578. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Nemeth, Selzle, et al., 1993
Nemeth, G.I.; Selzle, H.L.; Schlag, E.W.,
Magnetic ZEKE experiments with mass analysis,
Chem. Phys. Lett., 1993, 215, 151. [all data]
Chewter, Sander, et al., 1987
Chewter, L.A.; Sander, M.; Muller-Dethlefs, K.; Schalg, E.W.,
High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential,
J. Chem. Phys., 1987, 86, 4737. [all data]
Stahl and Maquin, 1984
Stahl, D.; Maquin, F.,
Charge-stripping mass spectrometry of molecular ions from polyacenes and molecular orbital theory,
Chem. Phys. Lett., 1984, 108, 613. [all data]
Grubb, Whetten, et al., 1984
Grubb, S.G.; Whetten, R.L.; Albrecht, A.C.; Grant, E.R.,
A precise determination of the first ionization potential of benzene,
Chem. Phys. Lett., 1984, 108, 420. [all data]
Arimura and Yoshikawa, 1984
Arimura, M.; Yoshikawa, Y.,
Ionization efficiency and ionization energy of cyclic compounds by electron impact,
Mass Spectrosc. (Tokyo), 1984, 32, 375. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Cetinkaya, Lappert, et al., 1983
Cetinkaya, B.; Lappert, M.F.; Suffolk, R.J.,
Photoelectron spectra of some sterically hindered phenols and related compounds,
J. Chem. Res. Synop., 1983, 316. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Duncan, Dietz, et al., 1981
Duncan, M.A.; Dietz, T.G.; Smalley, R.E.,
Two-color photoionization of naphthalene and benzene at threshold,
J. Chem. Phys., 1981, 75, 2118. [all data]
Clare and Sowerby, 1981
Clare, P.; Sowerby, D.B.,
Electron impact ionisation energies of some halo-cyclotriphosphazenes,
J. Inorg. Nucl. Chem., 1981, 43, 477. [all data]
Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]
Sell, Mintz, et al., 1978
Sell, J.A.; Mintz, D.M.; Kupperman, A.,
Photoelectron angular distributions of carbon-carbon π electrons in ethylene, benzene, and their fluorinated derivatives,
Chem. Phys. Lett., 1978, 58, 601. [all data]
Mattsson, Karlsson, et al., 1977
Mattsson, L.; Karlsson, L.; Jadrny, R.; Siegbahn, K.,
Valence electron spectrum of C6H6 excited by linearly polarized HeI radiation,
Phys. Scr., 1977, 16, 221. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Selim, 1976
Selim, E.T.M.,
Electron impact study of benzene,
Egypt. J. Phys., 1976, 7, 91. [all data]
Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W.,
An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes,
Org. Mass Spectrom., 1976, 11, 207. [all data]
Baldwin, Loudon, et al., 1976
Baldwin, M.A.; Loudon, A.G.; Maccoll, A.; Webb, K.S.,
The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds,
Org. Mass Spectrom., 1976, 11, 1181. [all data]
Pitt, 1973
Pitt, C.G.,
Hyperconjugation and its role in group IV chemistry,
J. Organomet. Chem., 1973, 61, 49. [all data]
Tajima, Shimizu, et al., 1972
Tajima, S.; Shimizu, Y.; Tsuchiya, T.,
The effect of the shield voltage on appearance potential measurements using a mass spectrometer,
Bull. Chem. Soc. Jpn., 1972, 45, 931. [all data]
Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G.,
A third-derivative method for determining electron-impact onset potentials,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]
Chizhov, Kleimenov, et al., 1972
Chizhov, Yu.V.; Kleimenov, V.I.; Medynskii, G.S.; Vilesov, F.I.,
Photoelectron spectra of some bromoethylenes and 2-bromopropene,
Can. J. Chem., 1972, 50, 2642. [all data]
Sergeev, Akopyan, et al., 1970
Sergeev, Yu.L.; Akopyan, M.E.; Vilesov, F.I.; Kleimenov, V.I.,
Photoionization processes in phenyl halides,
Opt. i Spektroskopiya, 1970, 29, 119, In original 63. [all data]
Demeo and El-Sayed, 1970
Demeo, D.A.; El-Sayed, M.A.,
Ionization potential and structure of olefins,
J. Chem. Phys., 1970, 52, 2622. [all data]
Buchs, 1970
Buchs, A.,
Etude par spectrometrie de masse de l'ionisation de benzonitriles, de phenylacetonitriles et de N,N-dimethylanilines substitues,
Helv. Chim. Acta, 1970, 53, 2026. [all data]
Asbrink, Lindholm, et al., 1970
Asbrink, L.; Lindholm, E.; Edqvist, O.,
Jahn-Teller effect in the vibrational structure of the photoelectron spectrum of benzene,
Chem. Phys. Lett., 1970, 5, 609. [all data]
Peatman, Borne, et al., 1969
Peatman, W.B.; Borne, T.B.; Schlag, E.W.,
Photoionization resonance spectra. I. Nitric oxide and benzene,
Chem. Phys. Lett., 1969, 3, 492. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Momigny, Goffart, et al., 1968
Momigny, J.; Goffart, C.; D'Or, L.,
Photoionization studies by total ionization measurements. I. Benzene and its monohalogeno derivatives,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 53. [all data]
Bock, Seidl, et al., 1968
Bock, H.; Seidl, H.; Fochler, M.,
d-Orbitaleffekte in silicium-substituierten π-Elektronensystemen. X. Vertikale Ionisierungsenergien von Alkyl- und Silyl-benzolen,
Chem. Ber., 1968, 101, 2815. [all data]
Baker, May, et al., 1968
Baker, A.D.; May, D.P.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part VII. The vertical ionisation potentials of benzene and some of its monosubstituted and 1,4-disubstituted derivatives,
J. Chem. Soc. B, 1968, 22. [all data]
Baker, Brundle, et al., 1968
Baker, A.D.; Brundle, C.R.; Turner, D.W.,
The interpretation of photoelectron spectra especially those of benzene and water,
Int. J. Mass Spectrom. Ion Phys., 1968, 1, 443. [all data]
Clark and Frost, 1967
Clark, I.D.; Frost, D.C.,
A study of the energy levels in benzene and some fluorobenzenes by photoelectron spectroscopy,
J. Am. Chem. Soc., 1967, 89, 244. [all data]
Nounou, 1966
Nounou, P.,
Etude des composes aromatiques par spectrometrie de masse. I. Mesure des potentials d'ionisation et d'apparition par la methode du potential retardateur et interpretation des courbes d'ionisation differentielle,
J. Chim. Phys., 1966, 63, 994. [all data]
Brehm, 1966
Brehm, B.,
Massenspektrometrische Untersuchung der Photoionisation von Molekulen,
Z. Naturforsch., 1966, 21a, 196. [all data]
Nicholson, 1965
Nicholson, A.J.C.,
Photoionization-efficiency curves. II. False and genuine structure,
J. Chem. Phys., 1965, 43, 1171. [all data]
Dibeler and Reese, 1964
Dibeler, V.H.; Reese, R.M.,
Mass spectrometric study of photoionization. I. Apparatus and initial observations on acetylene, acetylene-d2, benzene, and benzene-d6,
J. Res. NBS, 1964, 68A, 409. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Terenin, 1961
Terenin, A.,
Charge transfer in organic solids, induced by light,
Proc. Chem. Soc., London, 1961, 321. [all data]
El-Sayed, Kaaba, et al., 1961
El-Sayed, M.F.A.; Kaaba, M.; Tanaka, Y.,
Ionization potentials of benzene, hexadeuterobenzene, and pyridine from their observed Rydberg series in the region 600-2000 A,
J. Chem. Phys., 1961, 34, 334. [all data]
Wilkinson, 1956
Wilkinson, P.G.,
Absorption spectra and ionization potentials of benzene and benzene-d6,
J. Chem. Phys., 1956, 24, 917. [all data]
Watanabe, 1954
Watanabe, K.,
Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO,
J. Chem. Phys., 1954, 22, 1564. [all data]
Hustrulid, Kusch, et al., 1938
Hustrulid, A.; Kusch, P.; Tate, J.T.,
The dissociation of benzene (C6H6), pyridine (C5H5N) and cyclohexane (C6H12) by electron impact,
Phys. Rev., 1938, 54, 1037. [all data]
Price and Wood, 1935
Price, W.C.; Wood, R.W.,
The far ultraviolet absorption spectra and ionization potentials of C6H6 and C6D6,
J. Chem. Phys., 1935, 3, 439. [all data]
Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K.,
Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials,
J. Am. Chem. Soc., 1984, 106, 3968. [all data]
Kovac, Mohraz, et al., 1980
Kovac, B.; Mohraz, M.; Heilbronner, E.; Boekelheide, V.; Hopf, H.,
Photoelectron spectra of the cyclophanes,
J. Am. Chem. Soc., 1980, 102, 4314. [all data]
Kaim, Tesmann, et al., 1980
Kaim, W.; Tesmann, H.; Bock, H.,
Me3C-, Me3Si-, Me3Ge-, Me3Sn- und Me3Pb-substituierte benzol- und naphthalin-derivate und ihre radikalanionen,
Chem. Ber., 1980, 113, 3221. [all data]
Sell and Kupperman, 1978
Sell, J.A.; Kupperman, A.,
Angular distributions in the photoelectron spectra of benzene and its monohalogenated derivatives,
Chem. Phys., 1978, 33, 367. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G.,
Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode,
Croat. Chem. Acta, 1978, 51, 43. [all data]
Schmidt, 1977
Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series,
J. Chem. Phys., 1977, 66, 828. [all data]
Gower, Kane-Maguire, et al., 1977
Gower, M.; Kane-Maguire, L.A.P.; Maier, J.P.; Sweigart, D.A.,
Ultraviolet photoelectron spectra of cyclohepta-1,3,5-triene and mesitylene tricarbonyl complexes of the group 6A metals,
J. Chem. Soc. Dalton Trans., 1977, 316. [all data]
Bock, Kaim, et al., 1977
Bock, H.; Kaim, W.; Rohwer, H.E.,
Radical ions XI*. One-electron oxidation of alkylsilyl benzenes in the gas phase and in solution,
J. Organomet. Chem., 1977, 135, 14. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Kobayashi and Nagakura, 1975
Kobayashi, T.; Nagakura, S.,
Angular distribution for the photoelectron spectra of benzene and hexafluorobenzene,
J. Electron Spectrosc. Relat. Phenom., 1975, 7, 187. [all data]
Bischof, Dewar, et al., 1974
Bischof, P.K.; Dewar, M.J.S.; Goodman, D.W.; Jones, T.B.,
Photoelectron spectra of molecules. VI. Hyperconjugation versus pπ-dπ bonding in group IVb compounds,
J. Organomet. Chem., 1974, 82, 89. [all data]
Schafer and Schweig, 1972
Schafer, W.; Schweig, A.,
Zur Konjugation in aromatischen Aminen und Phosphanen,
Angew. Chem., 1972, 84, 898. [all data]
Klessinger, 1972
Klessinger, M.,
Ionization potentials of substituted benzenes,
Angew. Chem. Int. Ed. Engl., 1972, 11, 525. [all data]
Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J.,
Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten,
Chem. Ber., 1972, 105, 3850. [all data]
Carlson and Anderson, 1971
Carlson, T.A.; Anderson, C.P.,
Angular distribution of the photoelectron spectrum for benzene,
Chem. Phys. Lett., 1971, 10, 561. [all data]
Bock and Fuss, 1971
Bock, H.; Fuss, W.,
Arguments concerning the orbital sequence in borazin,
Angew. Chem. Int. Ed. Engl., 1971, 10, 182. [all data]
Gleiter, Heilbronner, et al., 1970
Gleiter, R.; Heilbronner, E.; Hornung, V.,
Lone pair interaction in pyridazine, pyrimidine, and pyrazine,
Angew. Chem. Int. Ed. Engl., 1970, 9, 901. [all data]
Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S.,
Excess-kinetic-energy ions in organic mass spectra,
J. Chem. Phys., 1964, 40, 2114. [all data]
Lifshitz and Reuben, 1969
Lifshitz, C.; Reuben, B.G.,
Ion-molecule reactions in aromatic systems. I. Secondary ions and reaction rates in benzene,
J. Chem. Phys., 1969, 50, 951. [all data]
Natalis and Franklin, 1965
Natalis, P.; Franklin, J.L.,
Ionization and dissociation of diphenyl and condensed ring aromatics by electron impact. I. Biphenyl, diphenylacetylene, and phenanthrene,
J. Phys. Chem., 1965, 69, 2935. [all data]
Kuhlewind, Kiermeier, et al., 1986
Kuhlewind, H.; Kiermeier, A.; Neusser, H.J.,
Multiphoton ionization in a reflectron time-of-flight mass spectrometer: Individual rates of competing dissociation channels in energy-selected benzene cations [Data derived from reported threshold energies taking value of 9.244 eV for IE[Benzene]],
J. Chem. Phys., 1986, 85, 4427. [all data]
Eland, Frey, et al., 1976
Eland, J.H.D.; Frey, R.; Schulte, H.; Brehm, B.,
New results on the fragmentation of the benzene ion,
Int. J. Mass Spectrom. Ion Phys., 1976, 21, 209. [all data]
Rosenstock, Larkins, et al., 1973
Rosenstock, H.M.; Larkins, J.T.; Walker, J.A.,
Interpretation of photoionization thresholds: Quasiequilibrium theory and the fragmentation of benzene,
Int. J. Mass Spectrom. Ion Phys., 1973, 11, 309. [all data]
Rosenstock, McCulloh, et al., 1977
Rosenstock, H.M.; McCulloh, K.E.; Lossing, F.P.,
On the mechanisms of C6H6 ionization fragmentation,
Int. J. Mass Spectrom. Ion Phys., 1977, 25, 327. [all data]
Hickling and Jennings, 1970
Hickling, R.D.; Jennings, K.R.,
Kinetic shifts and metastable transitions,
Org. Mass Spectrom., 1970, 3, 1499. [all data]
Bentley, Johnstone, et al., 1973
Bentley, T.W.; Johnstone, R.A.W.; McMaster, B.N.,
Appearance potentials of metastable and normal ions and the kinetic shift,
J. Chem. Soc., Chem. Commun., 1973, 510. [all data]
Klippenstein, Faulk, et al., 1993
Klippenstein, S.J.; Faulk, J.D.; Dunbar, R.C.,
A combined theoretical and experimental study of the dissociation of benzene cation,
J. Chem. Phys., 1993, 98, 243. [all data]
Gross, 1972
Gross, M.L.,
Ion cyclotron resonance spectrometry. A means of evaluating 'kinetic shifts',
Org. Mass Spectrom., 1972, 6, 827. [all data]
Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R.,
The C-H bond energy of benzene,
J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023
. [all data]
Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F.,
Anchoring the gas-phase acidity scale,
J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n
. [all data]
Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P.,
Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5,
J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o
. [all data]
Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C.,
Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions.,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H
. [all data]
Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W.,
Relative acidities of water and methanol, and the stabilities of the dimer adducts,
J. Phys. Chem., 1986, 90, 6687. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Bohme and Young, 1971
Bohme, D.K.; Young, L.B.,
Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2,
Can. J. Chem., 1971, 49, 2918. [all data]
Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr.,
The Gas Phase Acidity Scale
in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Ho, Yang, et al., 1997
Ho, Y.-P.; Yang, Y.-C.; Klippenstein, S.J.; Dunbar, R.C.,
Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics,
J. Phys. Chem. A, 1997, 101, 18, 3338, https://doi.org/10.1021/jp9637284
. [all data]
Dunbar, Klippenstein, et al., 1996
Dunbar, R.C.; Klippenstein, S.J.; Hrusak, J.; Stockigt, D.; Schwarz, H.,
Binding Energy of Al(C6H6)+ from the Analysis of Radiative Association Kinetics,
J. Am. Chem. Soc., 1996, 118, 22, 5277, https://doi.org/10.1021/ja953235x
. [all data]
Schroeder, Hrusak, et al., 1995
Schroeder, D.; Hrusak, J.; Hertwig, R.H.; Koch, W.; Schwerdtfeger, P.; Schwarz, H.,
Experimental and Theoretical Studies of Gold(I) Complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6),
Organometallics, 1995, 14, 1, 312, https://doi.org/10.1021/om00001a045
. [all data]
Willey, Yeh, et al., 1992
Willey, K.F.; Yeh, C.S.; Robbins, D.L.; Duncan, M.A.,
Charge-transfer in the photodissociation of metal ion-benzene complexes,
J. Phys. Chem., 1992, 96, 23, 9106, https://doi.org/10.1021/j100202a007
. [all data]
Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S.,
Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I),
Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4
. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Field, Hamlet, et al., 1969
Field, F.H.; Hamlet, P.; Libby, W.F.,
Effect of Temperature on the Mass Spectrum of Benzene at High Pressures,
J. Am. Chem. Soc., 1969, 91, 11, 2839, https://doi.org/10.1021/ja01039a003
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Sen Sharma, Ikuta, et al., 1982
Sen Sharma, D.K.; Ikuta, S.; Kebarle, P.,
Alkylation of Benzene by Alkyl Cations. Stability of the tert - Butyl Benzenium Ion,
Can. J. Chem., 1982, 60, 18, 2325, https://doi.org/10.1139/v82-331
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Hiraoka, Fujimaki, et al., 1991
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S.,
Stability and Structure of Benzene Dimer Cation (C6H6)2+,
J. Chem. Phys., 1991, 95, 11, 8413, https://doi.org/10.1063/1.461270
. [all data]
Beck and Hecht, 1991
Beck, S.M.; Hecht, J.H.,
Photofragmentation of Mass - Selected (C6H6)n+ Clusters: Measurement of Monomer - Cluster Binding Energy for n = 7 - 15,
J. Chem. Phys., 1991, 96, 3, 1975, https://doi.org/10.1063/1.462099
. [all data]
Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H.,
Microsolvation of small anions by aromatic molecules: An exploratory study,
J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J.,
Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer,
J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603
. [all data]
Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H.,
Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet,
Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6
. [all data]
Meot-Ner (Mautner), 1989
Meot-Ner (Mautner), M.,
Ion DChemistry of Ferrocene. Thermochemistry of Ionization and Protonation and Solvent Clustering. Slow and Entropy - Driven Proton - Transfer Kinetics,
J. Am. Chem. Soc., 1989, 111, 8, 2830, https://doi.org/10.1021/ja00190a014
. [all data]
El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M.,
Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors,
J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017
. [all data]
Tschurl, Ueberfluss, et al., 2007
Tschurl, M.; Ueberfluss, C.; Boesl, U.,
Anion photoelectron, photodetachment, and infrared dissociation spectra of Cl-center dot C6H6,
Chem. Phys. Lett., 2007, 439, 1-3, 23-28, https://doi.org/10.1016/j.cplett.2007.03.059
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Sunner, Nishizawa, et al., 1981
Sunner, J.; Nishizawa, K.; Kebarle, P.,
Ion - Solvent Molecule Interactions in the Gas Phase. Potassium Ion and Benzene,
J. Phys. Chem., 1981, 85, 13, 1814, https://doi.org/10.1021/j150613a011
. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Chowdhury and Kebarle, 1986
Chowdhury, S.; Kebarle, P.,
Role of Binding Energies in A-.B and A.B- Complexes in the Kinetics of Gas Phase Electron Transfer Reactions:A- + B = A + B- Involving Perfluoro Compounds: SF6, C6F11CF3,
J. Chem. Phys., 1986, 85, 9, 4989, https://doi.org/10.1063/1.451687
. [all data]
Meyer, Khan, et al., 1995
Meyer, F.; Khan, F.A.; Armentrout, P.B.,
Thermochemistry of Transition Metal Benzene complexes: Binding energies of M(C6H6)x+ (x = 1,2) for M = Ti to Cu,
J. Am. Chem. Soc., 1995, 117, 38, 9740, https://doi.org/10.1021/ja00143a018
. [all data]
Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T.,
Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters,
J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016
. [all data]
Lin, Chen, et al., 1997
Lin, C.-Y.; Chen, Q.; Chen, H.; Freiser, B.S.,
Observing Unimolecular Dissociation of Metastable Ions in FT-ICR: A Novel Application of the Continuous Ejection Technique,
J. Phys. Chem. A, 1997, 101, 34, 6023, https://doi.org/10.1021/jp970446a
. [all data]
Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C.,
Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives,
Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n
. [all data]
Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B.,
Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory,
J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f
. [all data]
Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S.,
A Determination of the Stability and Structure of F-(C6H6) and F-(C6F6) Clusters,
J. Chem. Phys., 1987, 86, 7, 4102, https://doi.org/10.1063/1.451920
. [all data]
Gapeev and Dunbar, 2002
Gapeev, A.; Dunbar, R.C.,
Reactivity and Binding Energies of Transition Metal Halide Ions with Benzene,
J. Am. Soc. Mass Spectrom., 2002, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2
. [all data]
Liebman, Romm, et al., 1991
Liebman, J.F.; Romm, M.J.; Meot-Ner (Mautner), M.; Cybulski, S.M.; Scheiner, S.,
Isotropy in ionic interactions. 2. How spherical is the ammonium ion? Comparison of the gas-phase clustering energies and condensed-phase thermochemistry of K+ and NH4+,
J. Phys. Chem., 1991, 95, 3, 1112, https://doi.org/10.1021/j100156a018
. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Searles and Kebarle, 1969
Searles, S.K.; Kebarle, P.,
Hydration of the Potassium Ion in the Gas Phase: Enthalpies and Entropies of Hydration Reactions K+(H2O)n-1 + H2O = K+(H2O)n for n=1 to n=6,
Can. J. Chem., 1969, 47, 14, 2619, https://doi.org/10.1139/v69-432
. [all data]
Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L.,
Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids,
J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B.,
Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6,
J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t
. [all data]
Gapeev and Dunbar, 2000
Gapeev, A.; Dunbar, R.C.,
Binding of Alkaline Earth Halide Ions MX+ to Benzene and Mesitylene,
J. Am. Soc. Mass Spectrom., 2000, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B.,
Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments,
Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Guo, Purnell, et al., 1990
Guo, B.C.; Purnell, J.W.; Castleman, A.W.,
The Clustering Reactions of Benzene with Sodium and Lead Ions,
Chem. Phys. Lett., 1990, 168, 2, 155, https://doi.org/10.1016/0009-2614(90)85122-S
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Judai, Hirano, et al., 1997
Judai, K.; Hirano, M.; Kawamata, H.; Yabushita, S.; Nakajima, A.; Kaya, K.,
Formation of Vanadium-Arene Complex Anions and Their Photoelectron Spectroscopy,
Chem. Phys. Lett., 1997, 270, 1-2, 23, https://doi.org/10.1016/S0009-2614(97)00336-9
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.