Sulfur dioxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase ion energetics data

Go To: Top, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to O2S+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)12.349 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)672.3kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity643.3kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
1.1070 ± 0.0080LPESNimlos and Ellison, 1986B
1.097 ± 0.036LPESCelotta, Bennett, et al., 1974B
1.10 ± 0.10TDEqChowdhury, Heinis, et al., 1986ΔGea(423 K) = -26.1 kcal/mol; ΔSea (estimated) = +2.0 eu. Original: Caldwell and Kebarle, 19842. Not direct measurement, but anchor for extensiveEA equilibrium scale. See text.; B
1.10 ± 0.20IMRBGrabowski, VanDoren, et al., 1984B
1.04998EndoRefaey and Franklin, 1976B
1.00 ± 0.10EndoHughes, Lifschitz, et al., 1973B
1.00 ± 0.050PDFeldman, 1970B
1.06 ± 0.10IMRBKraus, Muller-Duysing, et al., 1961Between NH2-, C-; B
1.14 ± 0.15NBIERothe, Tang, et al., 1975B

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
<622.Milligan, Fairley, et al., 1998Irreversible PT from SO2H+ to C2N2 shows GB(SO2) < GB(C2N2), and using GB(C2N2) for reference from this paper; MM
<607.Milligan, Fairley, et al., 1998Irreversible PT from SO2H+ to C2H2 shows GB(SO2) < (GB(C2H2) + 4.5 kcal/mol); MM

Ionization energy determinations

IE (eV) Method Reference Comment
12.5 ± 0.1EISnow and Thomas, 1990LL
12.3494 ± 0.0002PEWang, Lee, et al., 1987LBLHLM
12.5 ± 0.3EIOrient and Srivastava, 1984LBLHLM
12.4 ± 0.2EISmith and Stevenson, 1981LLK
12.3PELloyd and Roberts, 1973LLK
12.31PEBock, Solouki, et al., 1973LLK
12.30 ± 0.01PEEland and Danby, 1968RDSH
12.32 ± 0.01PIDibeler and Liston, 1968RDSH
12.34SGolomb, Watanabe, et al., 1962RDSH
12.34 ± 0.02PIWatanabe, 1957RDSH
12.50PEKimura, Katsumata, et al., 1981Vertical value; LLK
12.54PEKroner, Strack, et al., 1973Vertical value; LLK
12.50PEChadwick, Frost, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
O+23.5 ± 0.5SOEIOrient and Srivastava, 1984LBLHLM
O+20.6SOEIReese, Dibeter, et al., 1958RDSH
OS+16.5 ± 0.5OEIOrient and Srivastava, 1984LBLHLM
OS+16.2 ± 0.2OEISmith and Stevenson, 1981LLK
OS+15.930 ± 0.005OPEWeiss, Hsieh, et al., 1979LLK
SO+15.81 ± 0.02OPIDibeler and Liston, 1968RDSH
O2+17.5 ± 0.3SEIReese, Dibeter, et al., 1958RDSH
S+16.5 ± 0.5O2/2OEIOrient and Srivastava, 1984LBLHLM
S+22.2OEISmith and Stevenson, 1981LLK
S+16.334O2/2OPEWeiss, Hsieh, et al., 1979LLK
S+17.5 ± 0.3O2EIReese, Dibeter, et al., 1958RDSH

Ion clustering data

Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

(Bromine anion • Hydrogen bromide) + Sulfur dioxide = (Bromine anion • Sulfur dioxide • Hydrogen bromide)

By formula: (Br- • HBr) + O2S = (Br- • O2S • HBr)

Quantity Value Units Method Reference Comment
Δr45.6kJ/molPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M

(Bromine anion • Hydrogen chloride) + Sulfur dioxide = (Bromine anion • Sulfur dioxide • Hydrogen chloride)

By formula: (Br- • HCl) + O2S = (Br- • O2S • HCl)

Quantity Value Units Method Reference Comment
Δr50.6kJ/molPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M

Bromine anion + Sulfur dioxide = (Bromine anion • Sulfur dioxide)

By formula: Br- + O2S = (Br- • O2S)

Quantity Value Units Method Reference Comment
Δr80.8 ± 8.4kJ/molTDAsCaldwell and Kebarle, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr92.0J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr53. ± 11.kJ/molTDAsCaldwell and Kebarle, 1985gas phase; B

(Bromine anion • Sulfur dioxide) + Sulfur dioxide = (Bromine anion • 2Sulfur dioxide)

By formula: (Br- • O2S) + O2S = (Br- • 2O2S)

Quantity Value Units Method Reference Comment
Δr46.9kJ/molPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M

(Bromine anion • 2Sulfur dioxide) + Sulfur dioxide = (Bromine anion • 3Sulfur dioxide)

By formula: (Br- • 2O2S) + O2S = (Br- • 3O2S)

Quantity Value Units Method Reference Comment
Δr36.kJ/molPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr57.7J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M

Methyl cation + Sulfur dioxide = (Methyl cation • Sulfur dioxide)

By formula: CH3+ + O2S = (CH3+ • O2S)

Quantity Value Units Method Reference Comment
Δr254.kJ/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M

CN- + Sulfur dioxide = (CN- • Sulfur dioxide)

By formula: CN- + O2S = (CN- • O2S)

Quantity Value Units Method Reference Comment
Δr90.8 ± 3.3kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSLarson, Szulejko, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr56.07 ± 0.84kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B

CO3- + Sulfur dioxide = (CO3- • Sulfur dioxide)

By formula: CO3- + O2S = (CO3- • O2S)

Quantity Value Units Method Reference Comment
Δr59.kJ/molHPMSKeesee, Lee, et al., 1980gas phase; switching reaction(O-)CO2, Entropy change calculated or estimated; Fehsenfeld and Ferguson, 1974; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AKeesee, Lee, et al., 1980gas phase; switching reaction(O-)CO2, Entropy change calculated or estimated; Fehsenfeld and Ferguson, 1974; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
33.296.HPMSKeesee, Lee, et al., 1980gas phase; switching reaction(O-)CO2, Entropy change calculated or estimated; Fehsenfeld and Ferguson, 1974; M

C4H6+ + Sulfur dioxide = (C4H6+ • Sulfur dioxide)

By formula: C4H6+ + O2S = (C4H6+ • O2S)

Quantity Value Units Method Reference Comment
Δr15.kJ/molPIGrover, Walters, et al., 1985gas phase; M

C4H8+ + Sulfur dioxide = (C4H8+ • Sulfur dioxide)

By formula: C4H8+ + O2S = (C4H8+ • O2S)

Quantity Value Units Method Reference Comment
Δr10.kJ/molPIGrover, Walters, et al., 1985gas phase; M

C4H8+ + Sulfur dioxide = (C4H8+ • Sulfur dioxide)

By formula: C4H8+ + O2S = (C4H8+ • O2S)

Quantity Value Units Method Reference Comment
Δr10.kJ/molPIGrover, Walters, et al., 1985gas phase; M

(Chlorine anion • Hydrogen chloride) + Sulfur dioxide = (Chlorine anion • Sulfur dioxide • Hydrogen chloride)

By formula: (Cl- • HCl) + O2S = (Cl- • O2S • HCl)

Quantity Value Units Method Reference Comment
Δr51.5kJ/molPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M

(Chlorine anion • Water) + Sulfur dioxide = (Chlorine anion • Sulfur dioxide • Water)

By formula: (Cl- • H2O) + O2S = (Cl- • O2S • H2O)

Quantity Value Units Method Reference Comment
Δr72.8kJ/molHPMSUpschulte, Schelling, et al., 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KHPMSUpschulte, Schelling, et al., 1984gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
48.1296.HPMSFehsenfeld and Ferguson, 1974gas phase; switching reaction(Cl- H2O)H2O; M

(Chlorine anion • 2Water) + Sulfur dioxide = (Chlorine anion • Sulfur dioxide • 2Water)

By formula: (Cl- • 2H2O) + O2S = (Cl- • O2S • 2H2O)

Quantity Value Units Method Reference Comment
Δr59.0kJ/molHPMSUpschulte, Schelling, et al., 1984gas phase; From thermochemical cycle; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KHPMSUpschulte, Schelling, et al., 1984gas phase; From thermochemical cycle; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
35.296.HPMSUpschulte, Schelling, et al., 1984gas phase; From thermochemical cycle; M

Chlorine anion + Sulfur dioxide = (Chlorine anion • Sulfur dioxide)

By formula: Cl- + O2S = (Cl- • O2S)

Quantity Value Units Method Reference Comment
Δr92.9 ± 8.4kJ/molTDAsCaldwell and Kebarle, 1985gas phase; B,M
Δr87.4 ± 8.4kJ/molIMRELarson and McMahon, 1985gas phase; B
Δr92.9 ± 9.2kJ/molTDEqBohringer, Fahey, et al., 1984gas phase; Relative to HOH..Cl- in Keesee, Lee, et al., 1980; B,M
Δr91.21 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Δr87.4kJ/molICRLarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Quantity Value Units Method Reference Comment
Δr90.4J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M
Δr101.J/mol*KN/ABohringer, Fahey, et al., 1984gas phase; switching reaction(Cl-)H2O), Entropy change calculated or estimated; Keesee and Castleman, 1980; M
Δr87.0J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr97.1J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7 ± 8.4kJ/molTDAsCaldwell and Kebarle, 1985gas phase; B
Δr61.5 ± 8.4kJ/molIMRELarson and McMahon, 1985gas phase; B
Δr62.8 ± 6.7kJ/molTDEqBohringer, Fahey, et al., 1984gas phase; Relative to HOH..Cl- in Keesee, Lee, et al., 1980; B,M
Δr61.9 ± 1.3kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B
Δr61.5kJ/molICRLarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
59.4296.FAFehsenfeld and Ferguson, 1974gas phase; switching reaction(Cl-)H2O; M

(Chlorine anion • Sulfur dioxide • Water) + Sulfur dioxide = (Chlorine anion • 2Sulfur dioxide • Water)

By formula: (Cl- • O2S • H2O) + O2S = (Cl- • 2O2S • H2O)

Quantity Value Units Method Reference Comment
Δr49.4kJ/molHPMSUpschulte, Schelling, et al., 1984gas phase; From thermochemical cycle; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KHPMSUpschulte, Schelling, et al., 1984gas phase; From thermochemical cycle; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
17.296.HPMSUpschulte, Schelling, et al., 1984gas phase; From thermochemical cycle; M

(Chlorine anion • Sulfur dioxide) + Sulfur dioxide = (Chlorine anion • 2Sulfur dioxide)

By formula: (Cl- • O2S) + O2S = (Cl- • 2O2S)

Quantity Value Units Method Reference Comment
Δr51.5 ± 4.2kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Δr51.5kJ/molPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M
Δr95.0J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr23. ± 9.2kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(Chlorine anion • 2Sulfur dioxide) + Sulfur dioxide = (Chlorine anion • 3Sulfur dioxide)

By formula: (Cl- • 2O2S) + O2S = (Cl- • 3O2S)

Quantity Value Units Method Reference Comment
Δr41.84 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr96.7J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr13.0 ± 1.3kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(Chlorine anion • 3Sulfur dioxide) + Sulfur dioxide = (Chlorine anion • 4Sulfur dioxide)

By formula: (Cl- • 3O2S) + O2S = (Cl- • 4O2S)

Quantity Value Units Method Reference Comment
Δr36.0 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr6.7 ± 4.2kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

ClO4- + Sulfur dioxide = (ClO4- • Sulfur dioxide)

By formula: ClO4- + O2S = (ClO4- • O2S)

Quantity Value Units Method Reference Comment
Δr23.8 ± 0.42kJ/molTDAsBanic and Iribarne, 1985gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
24.290.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(Cesium ion (1+) • Water) + Sulfur dioxide = (Cesium ion (1+) • Sulfur dioxide • Water)

By formula: (Cs+ • H2O) + O2S = (Cs+ • O2S • H2O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(Cesium ion (1+) • 2Water) + Sulfur dioxide = (Cesium ion (1+) • Sulfur dioxide • 2Water)

By formula: (Cs+ • 2H2O) + O2S = (Cs+ • O2S • 2H2O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

Cesium ion (1+) + Sulfur dioxide = (Cesium ion (1+) • Sulfur dioxide)

By formula: Cs+ + O2S = (Cs+ • O2S)

Quantity Value Units Method Reference Comment
Δr45.2kJ/molDTMcKnight and Sawina, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KDTMcKnight and Sawina, 1972gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
22.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

Fluorine anion + Sulfur dioxide = (Fluorine anion • Sulfur dioxide)

By formula: F- + O2S = (F- • O2S)

Quantity Value Units Method Reference Comment
Δr225. ± 9.2kJ/molCIDTLobring, Check, et al., 2003gas phase; B
Δr222. ± 10.kJ/molCIDTSquires, 1992gas phase; B
Δr183.kJ/molICRLarson and McMahon, 1985gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Δr183. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Δr250.kJ/molSAMSRobbiani and Franklin, 1979gas phase; Cl- + CO2ClF --> SO2F- + Cl2, ΔrH>; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Δr96.2J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr153.kJ/molICRLarson and McMahon, 1985gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Δr154. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Hydrogen anion + Sulfur dioxide = (Hydrogen anion • Sulfur dioxide)

By formula: H- + O2S = (H- • O2S)

Quantity Value Units Method Reference Comment
Δr260. ± 67.kJ/molIMRBSheldon, Currie, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr240. ± 67.kJ/molIMRBSheldon, Currie, et al., 1985gas phase; B

HO- + Sulfur dioxide = (HO- • Sulfur dioxide)

By formula: HO- + O2S = (HO- • O2S)

Quantity Value Units Method Reference Comment
Δr259. ± 12.kJ/molCIDTSquires, 1992gas phase; Dissociative protonation between HCl, MeCHClCO2H; B
Δr>213. ± 13.kJ/molIMRBHierl and Paulson, 1984gas phase; CO2..HO- + SO2 ->. data revised per 92SQU; B

HO2S+ + Sulfur dioxide = (HO2S+ • Sulfur dioxide)

By formula: HO2S+ + O2S = (HO2S+ • O2S)

Quantity Value Units Method Reference Comment
Δr89.1kJ/molPHPMSSzulejko and McMahon, 1992gas phase; M
Δr97.1kJ/molPHPMSMcMahon and Kebarle, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M
Δr115.J/mol*KPHPMSMcMahon and Kebarle, 1986gas phase; M

HO4S- + Sulfur dioxide = (HO4S- • Sulfur dioxide)

By formula: HO4S- + O2S = (HO4S- • O2S)

Quantity Value Units Method Reference Comment
Δr57.3kJ/molHPMSKeesee and Castleman, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KHPMSKeesee and Castleman, 1986gas phase; M

(Hydronium cation • 3Water) + Sulfur dioxide = (Hydronium cation • Sulfur dioxide • 3Water)

By formula: (H3O+ • 3H2O) + O2S = (H3O+ • O2S • 3H2O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(Hydronium cation • 4Water) + Sulfur dioxide = (Hydronium cation • Sulfur dioxide • 4Water)

By formula: (H3O+ • 4H2O) + O2S = (H3O+ • O2S • 4H2O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
11.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M
11.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

Hydronium cation + Sulfur dioxide = (Hydronium cation • Sulfur dioxide)

By formula: H3O+ + O2S = (H3O+ • O2S)

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSSzulejko and McMahon, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr95.0J/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M

(NH4+ • Water) + Sulfur dioxide = (NH4+ • Sulfur dioxide • Water)

By formula: (H4N+ • H2O) + O2S = (H4N+ • O2S • H2O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
27.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(NH4+ • 2Water) + Sulfur dioxide = (NH4+ • Sulfur dioxide • 2Water)

By formula: (H4N+ • 2H2O) + O2S = (H4N+ • O2S • 2H2O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
21.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(NH4+ • 3Water) + Sulfur dioxide = (NH4+ • Sulfur dioxide • 3Water)

By formula: (H4N+ • 3H2O) + O2S = (H4N+ • O2S • 3H2O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(Iodide • Water) + Sulfur dioxide = (Iodide • Sulfur dioxide • Water)

By formula: (I- • H2O) + O2S = (I- • O2S • H2O)

Quantity Value Units Method Reference Comment
Δr37.7 ± 0.42kJ/molTDAsBanic and Iribarne, 1985gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
30.300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

Iodide + Sulfur dioxide = (Iodide • Sulfur dioxide)

By formula: I- + O2S = (I- • O2S)

Quantity Value Units Method Reference Comment
Δr59.8 ± 8.4kJ/molTDAsCaldwell and Kebarle, 1985gas phase; B,M
Δr53.97 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr73.6J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M
Δr84.5J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr38. ± 11.kJ/molTDAsCaldwell and Kebarle, 1985gas phase; B
Δr7.11 ± 0.42kJ/molTDAsBanic and Iribarne, 1985gas phase; B
Δr28.5 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
38.301.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(Iodide • Sulfur dioxide • Water) + Sulfur dioxide = (Iodide • 2Sulfur dioxide • Water)

By formula: (I- • O2S • H2O) + O2S = (I- • 2O2S • H2O)

Quantity Value Units Method Reference Comment
Δr29.7 ± 0.42kJ/molTDAsBanic and Iribarne, 1985gas phase; B

(Iodide • Sulfur dioxide) + Sulfur dioxide = (Iodide • 2Sulfur dioxide)

By formula: (I- • O2S) + O2S = (I- • 2O2S)

Quantity Value Units Method Reference Comment
Δr42.26 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr90.4J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr15.1 ± 1.3kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(Iodide • 2Sulfur dioxide) + Sulfur dioxide = (Iodide • 3Sulfur dioxide)

By formula: (I- • 2O2S) + O2S = (I- • 3O2S)

Quantity Value Units Method Reference Comment
Δr38.5 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr7.5 ± 2.5kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

Nitric oxide anion + Sulfur dioxide = (Nitric oxide anion • Sulfur dioxide)

By formula: NO- + O2S = (NO- • O2S)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
33.296.SAMSVanderhoff and Heimerl, 1977gas phase; switching reaction(NO+)NO; Puckett and Teague, 1971; M

Nitrogen oxide anion + Sulfur dioxide = (Nitrogen oxide anion • Sulfur dioxide)

By formula: NO2- + O2S = (NO2- • O2S)

Quantity Value Units Method Reference Comment
Δr108.4 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Δr102. ± 4.2kJ/molTDEqBohringer, Fahey, et al., 1984gas phase; Relative to HOH..NO2-, Keesee, Lee, et al., 1980; B,M
Quantity Value Units Method Reference Comment
Δr154.J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Δr132.J/mol*KN/ABohringer, Fahey, et al., 1984gas phase; switching reaction(NO2-)H2O, Entropy change calculated or estimated; Lee, Keesee, et al., 1980; M
Quantity Value Units Method Reference Comment
Δr62.3 ± 1.3kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(Nitrogen oxide anion • Sulfur dioxide) + Sulfur dioxide = (Nitrogen oxide anion • 2Sulfur dioxide)

By formula: (NO2- • O2S) + O2S = (NO2- • 2O2S)

Quantity Value Units Method Reference Comment
Δr37.7 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Δr41.kJ/molHPMSWlodek, Luczynski, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KHPMSWlodek, Luczynski, et al., 1983gas phase; M
Δr70.3J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr16.7 ± 1.7kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(Nitrogen oxide anion • 2Sulfur dioxide) + Sulfur dioxide = (Nitrogen oxide anion • 3Sulfur dioxide)

By formula: (NO2- • 2O2S) + O2S = (NO2- • 3O2S)

Quantity Value Units Method Reference Comment
Δr27.6 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr56.1J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr10.9 ± 3.3kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(NO3 anion • Water) + Sulfur dioxide = (NO3 anion • Sulfur dioxide • Water)

By formula: (NO3- • H2O) + O2S = (NO3- • O2S • H2O)

Quantity Value Units Method Reference Comment
Δr30.kJ/molHPMSBanic and Iribarne, 1985gas phase; From thermochemical cycle,switching reaction, electric fields; M

NO3 anion + Sulfur dioxide = (NO3 anion • Sulfur dioxide)

By formula: NO3- + O2S = (NO3- • O2S)

Quantity Value Units Method Reference Comment
Δr72.0 ± 8.4kJ/molTDEqBohringer, Fahey, et al., 1984gas phase; Relative to HOH..NO3-, Keesee, Lee, et al., 1980; B,M
Δr76.1 ± 5.0kJ/molTDAsWlodek, Luczynski, et al., 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KN/ABohringer, Fahey, et al., 1984gas phase; switching reaction(NO3-)H2O, Entropy change calculated or estimated; Lee, Keesee, et al., 1980; M
Δr132.J/mol*KHPMSWlodek, Luczynski, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr40. ± 8.4kJ/molTDEqBohringer, Fahey, et al., 1984gas phase; Relative to HOH..NO3-, Keesee, Lee, et al., 1980; B,M
Δr41.84 ± 0.42kJ/molTDAsBanic and Iribarne, 1985gas phase; B
Δr36.8 ± 3.8kJ/molTDAsWlodek, Luczynski, et al., 1983gas phase; B
Δr44.4kJ/molFAFehsenfeld and Ferguson, 1974gas phase; switching reaction(NO3-)SO2, Entropy change calculated or estimated; Lee, Keesee, et al., 1980; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
41.8299.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(NO3 anion • Sulfur dioxide) + Sulfur dioxide = (NO3 anion • 2Sulfur dioxide)

By formula: (NO3- • O2S) + O2S = (NO3- • 2O2S)

Quantity Value Units Method Reference Comment
Δr37.kJ/molHPMSWlodek, Luczynski, et al., 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr59.0J/mol*KHPMSWlodek, Luczynski, et al., 1983gas phase; Entropy change is questionable; M

(Sodium ion (1+) • Water) + Sulfur dioxide = (Sodium ion (1+) • Sulfur dioxide • Water)

By formula: (Na+ • H2O) + O2S = (Na+ • O2S • H2O)

Quantity Value Units Method Reference Comment
Δr59.0kJ/molHPMSUpschulte, Schelling, et al., 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KHPMSUpschulte, Schelling, et al., 1984gas phase; M

(Sodium ion (1+) • 3Water) + Sulfur dioxide = (Sodium ion (1+) • Sulfur dioxide • 3Water)

By formula: (Na+ • 3H2O) + O2S = (Na+ • O2S • 3H2O)

Quantity Value Units Method Reference Comment
Δr20.kJ/molHPMSBanic and Iribarne, 1985gas phase; electric fields; M

Sodium ion (1+) + Sulfur dioxide = (Sodium ion (1+) • Sulfur dioxide)

By formula: Na+ + O2S = (Na+ • O2S)

Quantity Value Units Method Reference Comment
Δr79.1kJ/molFAPerry, Rowe, et al., 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.9J/mol*KN/APerry, Rowe, et al., 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr53.6kJ/molFAPerry, Rowe, et al., 1980gas phase; Entropy change calculated or estimated; M

(Sodium ion (1+) • Sulfur dioxide) + Sulfur dioxide = (Sodium ion (1+) • 2Sulfur dioxide)

By formula: (Na+ • O2S) + O2S = (Na+ • 2O2S)

Quantity Value Units Method Reference Comment
Δr69.5kJ/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

(Sodium ion (1+) • 2Sulfur dioxide) + Sulfur dioxide = (Sodium ion (1+) • 3Sulfur dioxide)

By formula: (Na+ • 2O2S) + O2S = (Na+ • 3O2S)

Quantity Value Units Method Reference Comment
Δr59.8kJ/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

(Sodium ion (1+) • 3Sulfur dioxide) + Sulfur dioxide = (Sodium ion (1+) • 4Sulfur dioxide)

By formula: (Na+ • 3O2S) + O2S = (Na+ • 4O2S)

Quantity Value Units Method Reference Comment
Δr51.5kJ/molHPMSCastleman, Peterson, et al., 1983gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/ACastleman, Peterson, et al., 1983gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
13.328.HPMSCastleman, Peterson, et al., 1983gas phase; Entropy change calculated or estimated; M

O- + Sulfur dioxide = (O- • Sulfur dioxide)

By formula: O- + O2S = (O- • O2S)

Quantity Value Units Method Reference Comment
Δr250.kJ/molFAFehsenfeld and Ferguson, 1974gas phase; switching reaction(O-)CO2, ΔrH>; Hiller and Vestal, 1980, Keesee and Castleman, 1986; M

(O- • Sulfur dioxide) + Sulfur dioxide = (O- • 2Sulfur dioxide)

By formula: (O- • O2S) + O2S = (O- • 2O2S)

Quantity Value Units Method Reference Comment
Δr55.6kJ/molHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M

OS+ + Sulfur dioxide = (OS+ • Sulfur dioxide)

By formula: OS+ + O2S = (OS+ • O2S)

Quantity Value Units Method Reference Comment
Δr57.7kJ/molPIErickson and Ng, 1981gas phase; M

Oxygen cation + Sulfur dioxide = (Oxygen cation • Sulfur dioxide)

By formula: O2+ + O2S = (O2+ • O2S)

Quantity Value Units Method Reference Comment
Δr40.kJ/molFAAdams and Bohme, 1970gas phase; switching reaction(O2+)O2; Conway and Janik, 1970; M

O2S+ + Sulfur dioxide = (O2S+ • Sulfur dioxide)

By formula: O2S+ + O2S = (O2S+ • O2S)

Quantity Value Units Method Reference Comment
Δr63.6kJ/molPIErickson and Ng, 1981gas phase; M

O2S- + Sulfur dioxide = (O2S- • Sulfur dioxide)

By formula: O2S- + O2S = (O2S- • O2S)

Quantity Value Units Method Reference Comment
Δr100.4 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Δr89.1 ± 5.4kJ/molTDAsVacher, Leduc, et al., 1994gas phase; B
Δr77.40kJ/molN/ADresch, Kramer, et al., 1991gas phase; Both dissociation and electron detachment?; B
Δr76.57kJ/molN/ASnodgrass, Coe, et al., 1988gas phase; Appears to be dissociation + electron detachment; B
Quantity Value Units Method Reference Comment
Δr141.J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr58.2 ± 1.7kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B
Δr43.5 ± 9.2kJ/molTDAsVacher, Leduc, et al., 1994gas phase; B

(O2S- • 5Sulfur dioxide • 2Water) + Sulfur dioxide = (O2S- • 6Sulfur dioxide • 2Water)

By formula: (O2S- • 5O2S • 2H2O) + O2S = (O2S- • 6O2S • 2H2O)

Quantity Value Units Method Reference Comment
Δr15.9 ± 3.8kJ/molTDAsVacher, Leduc, et al., 1994gas phase; B
Quantity Value Units Method Reference Comment
Δr4.60 ± 0.84kJ/molTDAsVacher, Leduc, et al., 1994gas phase; B

(O2S- • 6Sulfur dioxide • Water) + Sulfur dioxide = (O2S- • 7Sulfur dioxide • Water)

By formula: (O2S- • 6O2S • H2O) + O2S = (O2S- • 7O2S • H2O)

Quantity Value Units Method Reference Comment
Δr13.4 ± 2.5kJ/molTDAsVacher, Leduc, et al., 1994gas phase; B
Quantity Value Units Method Reference Comment
Δr2.9 ± 0.84kJ/molTDAsVacher, Leduc, et al., 1994gas phase; B

(O2S- • 6Sulfur dioxide • 2Water) + Sulfur dioxide = (O2S- • 7Sulfur dioxide • 2Water)

By formula: (O2S- • 6O2S • 2H2O) + O2S = (O2S- • 7O2S • 2H2O)

Quantity Value Units Method Reference Comment
Δr15.5 ± 2.9kJ/molTDAsVacher, Leduc, et al., 1994gas phase; B
Quantity Value Units Method Reference Comment
Δr2.5 ± 0.84kJ/molTDAsVacher, Leduc, et al., 1994gas phase; B

(O2S- • Sulfur dioxide) + Sulfur dioxide = (O2S- • 2Sulfur dioxide)

By formula: (O2S- • O2S) + O2S = (O2S- • 2O2S)

Quantity Value Units Method Reference Comment
Δr33.9 ± 1.3kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Δr35.kJ/molHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr66.9J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr16.3 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 2Sulfur dioxide) + Sulfur dioxide = (O2S- • 3Sulfur dioxide)

By formula: (O2S- • 2O2S) + O2S = (O2S- • 3O2S)

Quantity Value Units Method Reference Comment
Δr26.8 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr12.6 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 3Sulfur dioxide) + Sulfur dioxide = (O2S- • 4Sulfur dioxide)

By formula: (O2S- • 3O2S) + O2S = (O2S- • 4O2S)

Quantity Value Units Method Reference Comment
Δr22.6 ± 1.3kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr9.20 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 4Sulfur dioxide) + Sulfur dioxide = (O2S- • 5Sulfur dioxide)

By formula: (O2S- • 4O2S) + O2S = (O2S- • 5O2S)

Quantity Value Units Method Reference Comment
Δr17.6 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr5.02 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 5Sulfur dioxide) + Sulfur dioxide = (O2S- • 6Sulfur dioxide)

By formula: (O2S- • 5O2S) + O2S = (O2S- • 6O2S)

Quantity Value Units Method Reference Comment
Δr15.1 ± 1.3kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr3.8 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 6Sulfur dioxide) + Sulfur dioxide = (O2S- • 7Sulfur dioxide)

By formula: (O2S- • 6O2S) + O2S = (O2S- • 7O2S)

Quantity Value Units Method Reference Comment
Δr14.2 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr2.1 ± 0.84kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 7Sulfur dioxide) + Sulfur dioxide = (O2S- • 8Sulfur dioxide)

By formula: (O2S- • 7O2S) + O2S = (O2S- • 8O2S)

Quantity Value Units Method Reference Comment
Δr14.2 ± 1.3kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr1. ± 5.0kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 8Sulfur dioxide) + Sulfur dioxide = (O2S- • 9Sulfur dioxide)

By formula: (O2S- • 8O2S) + O2S = (O2S- • 9O2S)

Quantity Value Units Method Reference Comment
Δr12.6 ± 1.7kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr1. ± 6.3kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 9Sulfur dioxide) + Sulfur dioxide = (O2S- • 10Sulfur dioxide)

By formula: (O2S- • 9O2S) + O2S = (O2S- • 10O2S)

Quantity Value Units Method Reference Comment
Δr12.6 ± 2.5kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr0.4 ± 9.6kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • Sulfur dioxide • Oxygen) + Sulfur dioxide = (O2S- • 2Sulfur dioxide • Oxygen)

By formula: (O2S- • O2S • O2) + O2S = (O2S- • 2O2S • O2)

Quantity Value Units Method Reference Comment
Δr19.2 ± 1.7kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr10. ± 8.4kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • 2Sulfur dioxide • Oxygen) + Sulfur dioxide = (O2S- • 3Sulfur dioxide • Oxygen)

By formula: (O2S- • 2O2S • O2) + O2S = (O2S- • 3O2S • O2)

Quantity Value Units Method Reference Comment
Δr15.1 ± 1.7kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr6. ± 13.kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • Oxygen) + Sulfur dioxide = (O2S- • Sulfur dioxide • Oxygen)

By formula: (O2S- • O2) + O2S = (O2S- • O2S • O2)

Quantity Value Units Method Reference Comment
Δr46.0 ± 4.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr26. ± 9.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

O3S- + Sulfur dioxide = (O3S- • Sulfur dioxide)

By formula: O3S- + O2S = (O3S- • O2S)

Quantity Value Units Method Reference Comment
Δr55.65 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B
Quantity Value Units Method Reference Comment
Δr31.8 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(O3S- • Sulfur dioxide • Oxygen) + Sulfur dioxide = (O3S- • 2Sulfur dioxide • Oxygen)

By formula: (O3S- • O2S • O2) + O2S = (O3S- • 2O2S • O2)

Quantity Value Units Method Reference Comment
Δr23.8 ± 2.5kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr15. ± 8.8kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O3S- • Oxygen) + Sulfur dioxide = (O3S- • Sulfur dioxide • Oxygen)

By formula: (O3S- • O2) + O2S = (O3S- • O2S • O2)

Quantity Value Units Method Reference Comment
Δr27.2 ± 3.3kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr18. ± 9.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

O4S- + Sulfur dioxide = (O4S- • Sulfur dioxide)

By formula: O4S- + O2S = (O4S- • O2S)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
28.296.FAFehsenfeld and Ferguson, 1974gas phase; switching reaction(SO4-)H2O; M

Mass spectrum (electron ionization)

Go To: Top, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 191

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Wax 52CB856.Mahadevan and Farmer, 200660. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax882.Chyau and Mau, 199960. m/0.25 mm/0.25 μm, N2, 3. K/min; Tstart: 40. C; Tend: 210. C

References

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Nimlos and Ellison, 1986
Nimlos, M.R.; Ellison, G.B., Photoelectron spectroscopy of SO2-, S3-, and S2O-, J. Phys. Chem., 1986, 90, 2574. [all data]

Celotta, Bennett, et al., 1974
Celotta, R.S.; Bennett, R.A.; Hall, J.L., Laser Photodetachment Determination of the Electron Affinities of OH, NH2, NH, SO2, and S2, J. Chem. Phys., 1974, 60, 5, 1740, https://doi.org/10.1063/1.1681268 . [all data]

Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P., Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-, J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Grabowski, VanDoren, et al., 1984
Grabowski, J.J.; VanDoren, J.M.; DePuy, C.H.; Bierbaum, V.M., Flowing Afterglow Studies of the Electron Affinity of SO2, J. Chem. Phys., 1984, 80, 1, 575, https://doi.org/10.1063/1.446412 . [all data]

Refaey and Franklin, 1976
Refaey, K.M.A.; Franklin, J.L., Endoergic ion-molecule-collision processes of negative ions. I. Collision of I- on SO2, J. Chem. Phys., 1976, 65, 1994. [all data]

Hughes, Lifschitz, et al., 1973
Hughes, B.M.; Lifschitz, C.; Tiernan, T.O., Electron affinities from endothermic negative-ion charge-transfer reactions. III. NO, NO2, S2, CS2, Cl2, Br2, I2, and C2H, J. Chem. Phys., 1973, 59, 3162. [all data]

Feldman, 1970
Feldman, D., Photoablosung von Elektronen bei einigen Stabilen Negativen Ionen, Z. Naturfor., 1970, 25A, 621. [all data]

Kraus, Muller-Duysing, et al., 1961
Kraus, K.; Muller-Duysing, W.; Neuert, H., Uber Stosse Langsamer Negativer Ionen mit Ladungsubertragung, Z. Naturfor., 1961, 16A, 1385. [all data]

Rothe, Tang, et al., 1975
Rothe, E.W.; Tang, S.Y.; Reck, G.P., Measurement of electron affinities of O3, SO2, and SO3 by collisional ionization, J. Chem. Phys., 1975, 62, 3829. [all data]

Milligan, Fairley, et al., 1998
Milligan, D.B.; Fairley, D.A.; Meot-Ner (Mautner), M.; McEwan, M.J., Proton affinity of cyanogen and association reactions of C2N2H+ and C2N2CH3+, Int. J. Mass Spectrom., 1998, 180, 285. [all data]

Snow and Thomas, 1990
Snow, K.B.; Thomas, T.F., Mass spectrum, ionization potential, and appearance potentials for fragment ions of sulfuric acid vapor, Int. J. Mass Spectrom. Ion Processes, 1990, 96, 49. [all data]

Wang, Lee, et al., 1987
Wang, L.; Lee, Y.T.; Shirley, D.A., Molecular beam photoelectron spectroscopy of SO2: Geometry, spectroscopy, and dynamics of SO2, J. Chem. Phys., 1987, 87, 2489. [all data]

Orient and Srivastava, 1984
Orient, O.J.; Srivastava, S.K., Mass spectrometric determination of partial and total electron impact ionization cross sections of SO2 from threshold up to 200 eV, J. Chem. Phys., 1984, 80, 140. [all data]

Smith and Stevenson, 1981
Smith, O.I.; Stevenson, J.S., Determination of cross sections for formation of parent and fragment ions by electron impact from SO2 and SO3, J. Chem. Phys., 1981, 74, 6777. [all data]

Lloyd and Roberts, 1973
Lloyd, D.R.; Roberts, P.J., The assignment of the photoelectron spectrum of sulphur dioxide, Mol. Phys., 1973, 26, 225. [all data]

Bock, Solouki, et al., 1973
Bock, H.; Solouki, B.; Rosmus, P.; Steudel, R., Photoelectron spectra and molecular properties: SSO and OSO, Angew. Chem. Int. Ed. Engl., 1973, 12, 933. [all data]

Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J., Photoelectron spectra and ionic structure of carbon dioxide, carbon disulphide and sulphur dioxide, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 111. [all data]

Dibeler and Liston, 1968
Dibeler, V.H.; Liston, S.K., Mass-spectrometric study of photoionization. XI.Hydrogen sulfide and sulfur dioxide, J. Chem. Phys., 1968, 49, 482. [all data]

Golomb, Watanabe, et al., 1962
Golomb, D.; Watanabe, K.; Marmo, F.F., Absorption coefficients of sulfur dioxide in the vacuum ultraviolet, J. Chem. Phys., 1962, 36, 958. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Kroner, Strack, et al., 1973
Kroner, J.; Strack, W.; Holsboer, F.; Kosbahn, W., Zur elektronenstruktur der thiokumulene, Z. Naturforsch. B:, 1973, 28, 188. [all data]

Chadwick, Frost, et al., 1973
Chadwick, D.; Frost, D.C.; Herring, F.G.; Katrib, A.; McDowell, C.A.; McLean, R.A.N., Photoelectron spectra of sulfuryl and thionyl halides, Can. J. Chem., 1973, 51, 1893. [all data]

Reese, Dibeter, et al., 1958
Reese, R.M.; Dibeter, V.H.; Franklin, J.L., Electron impact studies of sulfur dioxide and sulfuryl fluoride, J. Chem. Phys., 1958, 29, 880. [all data]

Weiss, Hsieh, et al., 1979
Weiss, M.J.; Hsieh, T.-C.; Meisels, G.G., Fragmentation of SO2+ prepared in state selected vibrational levels, J. Chem. Phys., 1979, 71, 567. [all data]

Caldwell and Kebarle, 1985
Caldwell, G.; Kebarle, P., The hydrogen bond energies of the bihalide ions XHX- and YHX-, Can. J. Chem., 1985, 63, 1399. [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Keesee, Lee, et al., 1980
Keesee, R.G.; Lee, N.; Castleman, A.W., Jr., Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions, J. Chem. Phys., 1980, 73, 2195. [all data]

Fehsenfeld and Ferguson, 1974
Fehsenfeld, F.C.; Ferguson, E.E., Laboratory studies of negative ion reactions with atmospheric trace constituents, J. Chem. Phys., 1974, 61, 3181. [all data]

Grover, Walters, et al., 1985
Grover, J.R.; Walters, E.A.; Newman, J.K.; White, M.G., Measurement of the Dissociation Energies of Gas - Phase Neutral Dimers by a Photoionization Technique: Values for trans - 2 - Butene/Sulfur Dioxide , (trans - 2 - Butene)2, and Benzene/Sulfur Dioxide, J. Am. Chem. Soc., 1985, 107, 25, 7329, https://doi.org/10.1021/ja00311a020 . [all data]

Upschulte, Schelling, et al., 1984
Upschulte, B.L.; Schelling, F.J.; Keesee, R.G.; Castleman, A.W., Thermochemical Properties of Gas Phase Mixed Clusters: Water and Sulfur Dioxide with Na+ and Cl-, Chem. Phys. Lett., 1984, 111, 4-5, 389, https://doi.org/10.1016/0009-2614(84)85526-8 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Bohringer, Fahey, et al., 1984
Bohringer, H.; Fahey, D.W.; Fehsenfeld, F.C.; Ferguson, E.E., Bond energies of the molecules H2O, SO2, H2O2, and HCl to various atmospheric negative ions, J. Chem. Phys., 1984, 81, 2805. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Keesee and Castleman, 1980
Keesee, R.G.; Castleman, A.W., Jr., Gas phase studies of hydration complexes of Cl- and I- and comparison to electrostatic calculations in the gas phase, Chem. Phys. Lett., 1980, 74, 139. [all data]

Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V., Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions, J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543 . [all data]

McKnight and Sawina, 1972
McKnight, L.G.; Sawina, J.M., Drift Velocities and Interactions of Cs+ Ions with Atmospheric Gases, J. Chem. Phys., 1972, 57, 12, 5156, https://doi.org/10.1063/1.1678205 . [all data]

Lobring, Check, et al., 2003
Lobring, K.C.; Check, C.E.; Sunderlin, L.S., The fluoride affinity of SO2, Int. J. Mass Spectrom., 2003, 222, 1-3, 221-227, https://doi.org/10.1016/S1387-3806(02)00950-8 . [all data]

Squires, 1992
Squires, R.R., Gas Phase Thermochemical Properties of the Bicarbonate and Bisulfate Ions, Int. J. Mass Spectrom. Ion Proc., 1992, 117, 565, https://doi.org/10.1016/0168-1176(92)80114-G . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Robbiani and Franklin, 1979
Robbiani, R.; Franklin, J.L., Negative ion-molecule reaction in sulfuryl halides, J. Am. Chem. Soc., 1979, 101, 3709. [all data]

Sheldon, Currie, et al., 1985
Sheldon, J.C.; Currie, G.J.; Lahnstein, J.; Hayes, R.N.; Bowie, J.H., Gas Phase Ion Chemistry of Ambident Nucleophiles. Reactions of Alkoxide and Thiomethoxide Negative Ions with Hydrogen Free Molecules., Nouv. J. Chem., 1985, 9, 205. [all data]

Hierl and Paulson, 1984
Hierl, P.M.; Paulson, J.F., Translational energy dependence of cross sections for reactions of OH- (H2O)n with CO2 and SO2, J. Chem. Phys., 1984, 80, 4890. [all data]

Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B., personal communication, 1992. [all data]

McMahon and Kebarle, 1986
McMahon, T.B.; Kebarle, P., Strong hydrogen bonding in gas-phase ions: A high pressure mass spectrometric study of formation and energetics of methyl fluoride proton bound dimer, J. Am. Chem. Soc., 1986, 108, 6502. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Vanderhoff and Heimerl, 1977
Vanderhoff, J.A.; Heimerl, J.M., The Equilibrium Constant for NO+(NO) ---> NO+(SO2) and the Rate Coefficient of SO2 Clustering to NO+, at 296 K, J. Chem. Phys., 1977, 66, 8, 3838, https://doi.org/10.1063/1.434380 . [all data]

Puckett and Teague, 1971
Puckett, L.J.; Teague, M.W., Ion-Molecule Reactions in NO - NH3 Gas Mixtures, J. Chem. Phys., 1971, 54, 11, 4860, https://doi.org/10.1063/1.1674763 . [all data]

Lee, Keesee, et al., 1980
Lee, N.; Keesee, R.G.; Castleman, A.W., Jr., The properties of clusters in the gas phase. IV. Complexes of H2O and HNOx clustering on NOx-, J. Chem. Phys., 1980, 72, 1089. [all data]

Wlodek, Luczynski, et al., 1983
Wlodek, S.; Luczynski, Z.; Wincel, H., Gas phase complexes of NO2- and NO3- with SO2, Int. J. Mass Spectrom. Ion Processes, 1983, 49, 301. [all data]

Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., Laboratory Measurements of Stratospheric Sodium Ion Measurements, Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693 . [all data]

Castleman, Peterson, et al., 1983
Castleman, A.W.; Peterson, K.I.; Upschulte, B.L.; Schelling, F.J., Energetics and Structure of Na+ Cluster Ions, Int. J. Mass Spectrom. Ion Phys., 1983, 47, 203, https://doi.org/10.1016/0020-7381(83)87171-X . [all data]

Hiller and Vestal, 1980
Hiller, J.F.; Vestal, M.L., Tandem quadrupole study of laser photodissociation of CO3-, J. Chem. Phys., 1980, 72, 4713. [all data]

Erickson and Ng, 1981
Erickson, J.; Ng, C.Y., Molecular Beam Photoionization Study of SO2 and (SO2)2, J. Chem. Phys., 1981, 75, 4, 1650, https://doi.org/10.1063/1.442242 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Conway and Janik, 1970
Conway, D.C.; Janik, G.S., Determination of the Bond Energies for the Series O2 - O2+ through O2 - O10+, J. Chem. Phys., 1970, 53, 5, 1859, https://doi.org/10.1063/1.1674262 . [all data]

Vacher, Leduc, et al., 1994
Vacher, J.R.; Leduc, E.; Fitaire, M., Stabilities of Anionic Mixed Clusters of Sulfur Dioxide and Water, Int. J. Mass Spectrom. Ion Proc., 1994, 135, 2-3, 139, https://doi.org/10.1016/0168-1176(94)03985-2 . [all data]

Dresch, Kramer, et al., 1991
Dresch, T.; Kramer, H.; Thurner, Y.; Weber, R., Photoelectrons from Negative Dimers and Clusters of Sulfur Dioxide, Chem. Phys. Lett., 1991, 177, 4-5, 383, https://doi.org/10.1016/0009-2614(91)85070-D . [all data]

Snodgrass, Coe, et al., 1988
Snodgrass, J.T.; Coe, J.V.; Friedhoff, C.B.; McHugh, K.M.; Bowen, K.H., On the Photodissociation of (SO2)2-, J. Chem. Phys., 1988, 88, 12, 8014, https://doi.org/10.1063/1.454261 . [all data]

Vacher, Jorda, et al., 1992
Vacher, J.R.; Jorda, M.; Leduc, E.; Fitaire, M., A Determination of the Stabilities of Negative Ion Clusters in SO2 and SO2-O2 Mixtures, Int. J. Mass Spectrom. Ion Proc., 1992, 114, 3, 149, https://doi.org/10.1016/0168-1176(92)80033-W . [all data]

Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L., Key Odor Impact Compounds in Three Yeast Extract Pastes, J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x . [all data]

Chyau and Mau, 1999
Chyau, C.-C.; Mau, J.-L., Release of volatile compounds from microwave heating of garlic juice with 2,4-decadienals, Food Chem., 1999, 64, 4, 531-535, https://doi.org/10.1016/S0308-8146(98)00162-9 . [all data]


Notes

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References