Nitrous oxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase ion energetics data

Go To: Top, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
B - John E. Bartmess

View reactions leading to N2O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)12.889 ± 0.004eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)549.8kJ/molN/AHunter and Lias, 1998at N; HL
Proton affinity (review)575.2kJ/molN/AHunter and Lias, 1998at O; HL
Quantity Value Units Method Reference Comment
Gas basicity523.3kJ/molN/AHunter and Lias, 1998at N; HL
Gas basicity548.7kJ/molN/AHunter and Lias, 1998at O; HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.22 ± 0.10CIDTTiernan and Wu, 1978B
>-0.15 ± 0.10NBIENalley, Compton, et al., 1973B
0.27 ± 0.17ECDWentworth, Chen, et al., 1971B
<0.76 ± 0.10LPESCoe, Snodgrass, et al., 1986Vertical Detachment Energy: ca. 1.5 eV. Anion bent, with little Franck-Condon overlap; B

Ionization energy determinations

IE (eV) Method Reference Comment
12.89PEKimura, Katsumata, et al., 1981LLK
12. ± 1.PIHitchcock, Brion, et al., 1980LLK
12.91 ± 0.03EISahini, Constantin, et al., 1978LLK
12.886 ± 0.002PEBerkowitz and Eland, 1977LLK
12.88 ± 0.005PICoppens, Smets, et al., 1974LLK
12.89 ± 0.005PICoppens, Smets, et al., 1974LLK
12.90PEEland, 1973LLK
12.891 ± 0.008PECollin and Natalis, 1969RDSH
12.893 ± 0.005PEBrundle and Turner, 1969RDSH
12.89PICook, Metzger, et al., 1968RDSH
12.888 ± 0.007PIDibeler and Walker, 1967RDSH
12.8 ± 0.05EICarette, 1967RDSH
12.882 ± 0.008PINicholson, 1965RDSH
12.894STanaka, Jursa, et al., 1960RDSH
12.89PEPotts and Williams, 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
N+20. ± 1.NOPIHitchcock, Brion, et al., 1980LLK
N+19.494NOPEBerkowitz and Eland, 1977LLK
N+20.06NOPEDibeler, Walker, et al., 1967RDSH
NO+15.3 ± 0.1NEIOlivier, Locht, et al., 1982LBLHLM
NO+16. ± 1.NPIHitchcock, Brion, et al., 1980LLK
NO+16.53 ± 0.01NPICoppens, Smets, et al., 1974LLK
NO+15.01NPICoppens, Smets, et al., 1974LLK
NO+17.73 ± 0.01NPICoppens, Smets, et al., 1974LLK
NO+14.3 ± 0.3N(4Sø)EIColeman, Delderfield, et al., 1969RDSH
NO+17.74N(2Pø)?PIDibeler and Walker, 1967RDSH
NO+16.53N(2Dø)?PIDibeler and Walker, 1967RDSH
NO+15.01N(4Sø)PIDibeler and Walker, 1967RDSH
NO+13.75 ± 0.10N(4Sø)EICurran and Fox, 1961RDSH
N2+17.3 ± 0.2OEIOlivier, Locht, et al., 1982LBLHLM
N2+18. ± 1.OPIHitchcock, Brion, et al., 1980LLK
N2+17.29OPIDibeler, 1967RDSH
O+15. ± 1.N2PIHitchcock, Brion, et al., 1980LLK
O+15.31N2PIDibeler, Walker, et al., 1967RDSH

Ion clustering data

Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Nitrous oxide = (Bromine anion • Nitrous oxide)

By formula: Br- + N2O = (Br- • N2O)

Quantity Value Units Method Reference Comment
Δr23. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr75.7J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Bromine anion • Nitrous oxide) + Nitrous oxide = (Bromine anion • 2Nitrous oxide)

By formula: (Br- • N2O) + N2O = (Br- • 2N2O)

Quantity Value Units Method Reference Comment
Δr23. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Bromine anion • 2Nitrous oxide) + Nitrous oxide = (Bromine anion • 3Nitrous oxide)

By formula: (Br- • 2N2O) + N2O = (Br- • 3N2O)

Quantity Value Units Method Reference Comment
Δr21. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

Methyl cation + Nitrous oxide = (Methyl cation • Nitrous oxide)

By formula: CH3+ + N2O = (CH3+ • N2O)

Quantity Value Units Method Reference Comment
Δr221.kJ/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M

Chlorine anion + Nitrous oxide = (Chlorine anion • Nitrous oxide)

By formula: Cl- + N2O = (Cl- • N2O)

Quantity Value Units Method Reference Comment
Δr24. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Chlorine anion • Nitrous oxide) + Nitrous oxide = (Chlorine anion • 2Nitrous oxide)

By formula: (Cl- • N2O) + N2O = (Cl- • 2N2O)

Quantity Value Units Method Reference Comment
Δr24. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Chlorine anion • 2Nitrous oxide) + Nitrous oxide = (Chlorine anion • 3Nitrous oxide)

By formula: (Cl- • 2N2O) + N2O = (Cl- • 3N2O)

Quantity Value Units Method Reference Comment
Δr21. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Chlorine anion • 3Nitrous oxide) + Nitrous oxide = (Chlorine anion • 4Nitrous oxide)

By formula: (Cl- • 3N2O) + N2O = (Cl- • 4N2O)

Quantity Value Units Method Reference Comment
Δr20. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Chlorine anion • 4Nitrous oxide) + Nitrous oxide = (Chlorine anion • 5Nitrous oxide)

By formula: (Cl- • 4N2O) + N2O = (Cl- • 5N2O)

Quantity Value Units Method Reference Comment
Δr20.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M

Fluorine anion + Nitrous oxide = (Fluorine anion • Nitrous oxide)

By formula: F- + N2O = (F- • N2O)

Quantity Value Units Method Reference Comment
Δr41. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Fluorine anion • Nitrous oxide) + Nitrous oxide = (Fluorine anion • 2Nitrous oxide)

By formula: (F- • N2O) + N2O = (F- • 2N2O)

Quantity Value Units Method Reference Comment
Δr39. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr95.0J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Fluorine anion • 2Nitrous oxide) + Nitrous oxide = (Fluorine anion • 3Nitrous oxide)

By formula: (F- • 2N2O) + N2O = (F- • 3N2O)

Quantity Value Units Method Reference Comment
Δr35. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr98.7J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Fluorine anion • 3Nitrous oxide) + Nitrous oxide = (Fluorine anion • 4Nitrous oxide)

By formula: (F- • 3N2O) + N2O = (F- • 4N2O)

Quantity Value Units Method Reference Comment
Δr31. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Fluorine anion • 4Nitrous oxide) + Nitrous oxide = (Fluorine anion • 5Nitrous oxide)

By formula: (F- • 4N2O) + N2O = (F- • 5N2O)

Quantity Value Units Method Reference Comment
Δr26. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Fluorine anion • 5Nitrous oxide) + Nitrous oxide = (Fluorine anion • 6Nitrous oxide)

By formula: (F- • 5N2O) + N2O = (F- • 6N2O)

Quantity Value Units Method Reference Comment
Δr25. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Fluorine anion • 6Nitrous oxide) + Nitrous oxide = (Fluorine anion • 7Nitrous oxide)

By formula: (F- • 6N2O) + N2O = (F- • 7N2O)

Quantity Value Units Method Reference Comment
Δr14.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M

(H- • 4294967295Nitrous oxide) + Nitrous oxide = H-

By formula: (H- • 4294967295N2O) + N2O = H-

Quantity Value Units Method Reference Comment
Δr248. ± 17.kJ/molTherSheldon, Ohair, et al., 1995gas phase; Acidity between PhCOMe, HCONHMe, near CF3CH2OH. Acid: H2N-NO; B

HN2O+ + Nitrous oxide = (HN2O+ • Nitrous oxide)

By formula: HN2O+ + N2O = (HN2O+ • N2O)

Quantity Value Units Method Reference Comment
Δr69.9kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr86.2kJ/molPHPMSSzulejko and McMahon, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr132.J/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M

(HN2O+ • Nitrous oxide) + Nitrous oxide = (HN2O+ • 2Nitrous oxide)

By formula: (HN2O+ • N2O) + N2O = (HN2O+ • 2N2O)

Quantity Value Units Method Reference Comment
Δr27.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(HN2O+ • 2Nitrous oxide) + Nitrous oxide = (HN2O+ • 3Nitrous oxide)

By formula: (HN2O+ • 2N2O) + N2O = (HN2O+ • 3N2O)

Quantity Value Units Method Reference Comment
Δr24.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(HN2O+ • 3Nitrous oxide) + Nitrous oxide = (HN2O+ • 4Nitrous oxide)

By formula: (HN2O+ • 3N2O) + N2O = (HN2O+ • 4N2O)

Quantity Value Units Method Reference Comment
Δr23.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(HN2O+ • 4Nitrous oxide) + Nitrous oxide = (HN2O+ • 5Nitrous oxide)

By formula: (HN2O+ • 4N2O) + N2O = (HN2O+ • 5N2O)

Quantity Value Units Method Reference Comment
Δr21.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(HN2O+ • 5Nitrous oxide) + Nitrous oxide = (HN2O+ • 6Nitrous oxide)

By formula: (HN2O+ • 5N2O) + N2O = (HN2O+ • 6N2O)

Quantity Value Units Method Reference Comment
Δr20.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M

(HO- • Nitrous oxide) + Nitrous oxide = (HO- • 2Nitrous oxide)

By formula: (HO- • N2O) + N2O = (HO- • 2N2O)

Quantity Value Units Method Reference Comment
Δr32.6kJ/molN/AKim, Wenthold, et al., 1998gas phase; Vertical Detachment Energy: 2.485 eV. Affinity is EA difference with next lower +0.08 eV f; B

(HO- • 2Nitrous oxide) + Nitrous oxide = (HO- • 3Nitrous oxide)

By formula: (HO- • 2N2O) + N2O = (HO- • 3N2O)

Quantity Value Units Method Reference Comment
Δr28.9kJ/molN/AKim, Wenthold, et al., 1998gas phase; Vertical Detachment Energy: 2.761 eV. Affinity is EA difference with next lower +0.08 eV f; B

(HO- • 3Nitrous oxide) + Nitrous oxide = (HO- • 4Nitrous oxide)

By formula: (HO- • 3N2O) + N2O = (HO- • 4N2O)

Quantity Value Units Method Reference Comment
Δr>30. ± 140.kJ/molN/AKim, Wenthold, et al., 1998gas phase; Vertical Detachment Energy: 2.981 eV. Affinity is EA difference with next lower +0.08 eV f; B

(HO- • 4Nitrous oxide) + Nitrous oxide = (HO- • 5Nitrous oxide)

By formula: (HO- • 4N2O) + N2O = (HO- • 5N2O)

Quantity Value Units Method Reference Comment
Δr>20. ± 230.kJ/molN/AKim, Wenthold, et al., 1998gas phase; Vertical Detachment Energy: 3.146 eV. Affinity is EA difference with next lower +0.08 eV f; B

Hydronium cation + Nitrous oxide = (Hydronium cation • Nitrous oxide)

By formula: H3O+ + N2O = (H3O+ • N2O)

Quantity Value Units Method Reference Comment
Δr70.7kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Hydronium cation • Nitrous oxide) + Nitrous oxide = (Hydronium cation • 2Nitrous oxide)

By formula: (H3O+ • N2O) + N2O = (H3O+ • 2N2O)

Quantity Value Units Method Reference Comment
Δr50.6kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Hydronium cation • 2Nitrous oxide) + Nitrous oxide = (Hydronium cation • 3Nitrous oxide)

By formula: (H3O+ • 2N2O) + N2O = (H3O+ • 3N2O)

Quantity Value Units Method Reference Comment
Δr42.7kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Hydronium cation • 3Nitrous oxide) + Nitrous oxide = (Hydronium cation • 4Nitrous oxide)

By formula: (H3O+ • 3N2O) + N2O = (H3O+ • 4N2O)

Quantity Value Units Method Reference Comment
Δr22.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr88.J/mol*KN/AHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M

Iodide + Nitrous oxide = (Iodide • Nitrous oxide)

By formula: I- + N2O = (I- • N2O)

Quantity Value Units Method Reference Comment
Δr11. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr16. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr59.0J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Iodide • Nitrous oxide) + Nitrous oxide = (Iodide • 2Nitrous oxide)

By formula: (I- • N2O) + N2O = (I- • 2N2O)

Quantity Value Units Method Reference Comment
Δr12. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr14. ± 1.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr59.4J/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Iodide • 2Nitrous oxide) + Nitrous oxide = (Iodide • 3Nitrous oxide)

By formula: (I- • 2N2O) + N2O = (I- • 3N2O)

Quantity Value Units Method Reference Comment
Δr11. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr13.kJ/molPHPMSHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr63.J/mol*KN/AHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M

(Iodide • 3Nitrous oxide) + Nitrous oxide = (Iodide • 4Nitrous oxide)

By formula: (I- • 3N2O) + N2O = (I- • 4N2O)

Quantity Value Units Method Reference Comment
Δr12. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 4Nitrous oxide) + Nitrous oxide = (Iodide • 5Nitrous oxide)

By formula: (I- • 4N2O) + N2O = (I- • 5N2O)

Quantity Value Units Method Reference Comment
Δr11. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 5Nitrous oxide) + Nitrous oxide = (Iodide • 6Nitrous oxide)

By formula: (I- • 5N2O) + N2O = (I- • 6N2O)

Quantity Value Units Method Reference Comment
Δr9.6 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 6Nitrous oxide) + Nitrous oxide = (Iodide • 7Nitrous oxide)

By formula: (I- • 6N2O) + N2O = (I- • 7N2O)

Quantity Value Units Method Reference Comment
Δr9.2 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 7Nitrous oxide) + Nitrous oxide = (Iodide • 8Nitrous oxide)

By formula: (I- • 7N2O) + N2O = (I- • 8N2O)

Quantity Value Units Method Reference Comment
Δr8.8 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 8Nitrous oxide) + Nitrous oxide = (Iodide • 9Nitrous oxide)

By formula: (I- • 8N2O) + N2O = (I- • 9N2O)

Quantity Value Units Method Reference Comment
Δr10. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 9Nitrous oxide) + Nitrous oxide = (Iodide • 10Nitrous oxide)

By formula: (I- • 9N2O) + N2O = (I- • 10N2O)

Quantity Value Units Method Reference Comment
Δr7.5 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 10Nitrous oxide) + Nitrous oxide = (Iodide • 11Nitrous oxide)

By formula: (I- • 10N2O) + N2O = (I- • 11N2O)

Quantity Value Units Method Reference Comment
Δr4.2 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 11Nitrous oxide) + Nitrous oxide = (Iodide • 12Nitrous oxide)

By formula: (I- • 11N2O) + N2O = (I- • 12N2O)

Quantity Value Units Method Reference Comment
Δr5.4 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

Nitric oxide anion + Nitrous oxide = (Nitric oxide anion • Nitrous oxide)

By formula: NO- + N2O = (NO- • N2O)

Quantity Value Units Method Reference Comment
Δr60. ± 100.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr75.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr62.3J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=32.2 kJ/mol; M

(Nitric oxide anion • Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 2Nitrous oxide)

By formula: (NO- • N2O) + N2O = (NO- • 2N2O)

Quantity Value Units Method Reference Comment
Δr24.7 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.2kJ/molN/ACoe, Snodgrass, et al., 1987gas phase; B
Δr23.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr30.kJ/molPESCoe, Snodgrass, et al., 1986gas phase; D(N2O)2 not accounted for; M
Quantity Value Units Method Reference Comment
Δr-4.2 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 2Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 3Nitrous oxide)

By formula: (NO- • 2N2O) + N2O = (NO- • 3N2O)

Quantity Value Units Method Reference Comment
Δr21.8 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr21.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr88.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.0 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 3Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 4Nitrous oxide)

By formula: (NO- • 3N2O) + N2O = (NO- • 4N2O)

Quantity Value Units Method Reference Comment
Δr20.9 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.0 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 4Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 5Nitrous oxide)

By formula: (NO- • 4N2O) + N2O = (NO- • 5N2O)

Quantity Value Units Method Reference Comment
Δr17.6 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-6.3 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 5Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 6Nitrous oxide)

By formula: (NO- • 5N2O) + N2O = (NO- • 6N2O)

Quantity Value Units Method Reference Comment
Δr18.4 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M,M
Quantity Value Units Method Reference Comment
Δr-7.9 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 6Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 7Nitrous oxide)

By formula: (NO- • 6N2O) + N2O = (NO- • 7N2O)

Quantity Value Units Method Reference Comment
Δr17.6 ± 1.3kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M,M
Quantity Value Units Method Reference Comment
Δr-11. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

NO2+ + Nitrous oxide = (NO2+ • Nitrous oxide)

By formula: NO2+ + N2O = (NO2+ • N2O)

Quantity Value Units Method Reference Comment
Δr59.0kJ/molEICameron, Aitken, et al., 1994gas phase; M
Δr72.8kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr55. ± 3.kJ/molDTIllies, 1988gas phase; ΔrH(0 K)=55.7 kJ/mol; M
Δr54.8kJ/molPILinn and Ng, 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr51.9J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=55.7 kJ/mol; M

(NO2+ • Nitrous oxide) + Nitrous oxide = (NO2+ • 2Nitrous oxide)

By formula: (NO2+ • N2O) + N2O = (NO2+ • 2N2O)

Quantity Value Units Method Reference Comment
Δr21.kJ/molEICameron, Aitken, et al., 1994gas phase; M
Δr24.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr75.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(NO2+ • 2Nitrous oxide) + Nitrous oxide = (NO2+ • 3Nitrous oxide)

By formula: (NO2+ • 2N2O) + N2O = (NO2+ • 3N2O)

Quantity Value Units Method Reference Comment
Δr12.kJ/molEICameron, Aitken, et al., 1994gas phase; M
Δr23.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(NO2+ • 3Nitrous oxide) + Nitrous oxide = (NO2+ • 4Nitrous oxide)

By formula: (NO2+ • 3N2O) + N2O = (NO2+ • 4N2O)

Quantity Value Units Method Reference Comment
Δr18.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr88.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(NO2+ • 4Nitrous oxide) + Nitrous oxide = (NO2+ • 5Nitrous oxide)

By formula: (NO2+ • 4N2O) + N2O = (NO2+ • 5N2O)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(NO2+ • 5Nitrous oxide) + Nitrous oxide = (NO2+ • 6Nitrous oxide)

By formula: (NO2+ • 5N2O) + N2O = (NO2+ • 6N2O)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M

(N2O2- • 4294967295Nitrous oxide) + Nitrous oxide = N2O2-

By formula: (N2O2- • 4294967295N2O) + N2O = N2O2-

Quantity Value Units Method Reference Comment
Δr96.7 ± 5.0kJ/molN/ALi and Continetti, 2002gas phase; B
Δr135.1 ± 2.9kJ/molLPDOsboen, Leahy, et al., 1996gas phase; Affinity at 0 K; B

(O- • Nitrous oxide) + Nitrous oxide = (O- • 2Nitrous oxide)

By formula: (O- • N2O) + N2O = (O- • 2N2O)

Quantity Value Units Method Reference Comment
Δr22.6 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-1. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 2Nitrous oxide) + Nitrous oxide = (O- • 3Nitrous oxide)

By formula: (O- • 2N2O) + N2O = (O- • 3N2O)

Quantity Value Units Method Reference Comment
Δr22.6 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr88.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-4. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 3Nitrous oxide) + Nitrous oxide = (O- • 4Nitrous oxide)

By formula: (O- • 3N2O) + N2O = (O- • 4N2O)

Quantity Value Units Method Reference Comment
Δr21.8 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-8.4 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 4Nitrous oxide) + Nitrous oxide = (O- • 5Nitrous oxide)

By formula: (O- • 4N2O) + N2O = (O- • 5N2O)

Quantity Value Units Method Reference Comment
Δr21.8 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-9.6 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 5Nitrous oxide) + Nitrous oxide = (O- • 6Nitrous oxide)

By formula: (O- • 5N2O) + N2O = (O- • 6N2O)

Quantity Value Units Method Reference Comment
Δr21.3 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-11. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 6Nitrous oxide) + Nitrous oxide = (O- • 7Nitrous oxide)

By formula: (O- • 6N2O) + N2O = (O- • 7N2O)

Quantity Value Units Method Reference Comment
Δr21.3 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-14. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

Oxygen cation + Nitrous oxide = (Oxygen cation • Nitrous oxide)

By formula: O2+ + N2O = (O2+ • N2O)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr45. ± 2.kJ/molDTIllies, 1988gas phase; ΔrH(0 K)=45.2 kJ/mol; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr64.0J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=45.2 kJ/mol; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
37.200.FAAdams and Bohme, 1970gas phase; switching reaction(O2+)O2; M

(Oxygen cation • Nitrous oxide) + Nitrous oxide = (Oxygen cation • 2Nitrous oxide)

By formula: (O2+ • N2O) + N2O = (O2+ • 2N2O)

Quantity Value Units Method Reference Comment
Δr31.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Oxygen cation • 2Nitrous oxide) + Nitrous oxide = (Oxygen cation • 3Nitrous oxide)

By formula: (O2+ • 2N2O) + N2O = (O2+ • 3N2O)

Quantity Value Units Method Reference Comment
Δr25.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr79.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Oxygen cation • 3Nitrous oxide) + Nitrous oxide = (Oxygen cation • 4Nitrous oxide)

By formula: (O2+ • 3N2O) + N2O = (O2+ • 4N2O)

Quantity Value Units Method Reference Comment
Δr22.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Oxygen cation • 4Nitrous oxide) + Nitrous oxide = (Oxygen cation • 5Nitrous oxide)

By formula: (O2+ • 4N2O) + N2O = (O2+ • 5N2O)

Quantity Value Units Method Reference Comment
Δr20.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Oxygen cation • 5Nitrous oxide) + Nitrous oxide = (Oxygen cation • 6Nitrous oxide)

By formula: (O2+ • 5N2O) + N2O = (O2+ • 6N2O)

Quantity Value Units Method Reference Comment
Δr18.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Oxygen cation • 6Nitrous oxide) + Nitrous oxide = (Oxygen cation • 7Nitrous oxide)

By formula: (O2+ • 6N2O) + N2O = (O2+ • 7N2O)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

Oxygen anion + Nitrous oxide = (Oxygen anion • Nitrous oxide)

By formula: O2- + N2O = (O2- • N2O)

Quantity Value Units Method Reference Comment
Δr<56.90kJ/molIMRBAdams and Bohme, 1970gas phase; N2O..O2- + O2 -> O4- + N2O; B
Δr37.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M

(Oxygen anion • Nitrous oxide) + Nitrous oxide = (Oxygen anion • 2Nitrous oxide)

By formula: (O2- • N2O) + N2O = (O2- • 2N2O)

Quantity Value Units Method Reference Comment
Δr36.4 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr3. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Oxygen anion • 2Nitrous oxide) + Nitrous oxide = (Oxygen anion • 3Nitrous oxide)

By formula: (O2- • 2N2O) + N2O = (O2- • 3N2O)

Quantity Value Units Method Reference Comment
Δr26.8 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-3. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Oxygen anion • 3Nitrous oxide) + Nitrous oxide = (Oxygen anion • 4Nitrous oxide)

By formula: (O2- • 3N2O) + N2O = (O2- • 4N2O)

Quantity Value Units Method Reference Comment
Δr23.8 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-6.3 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Oxygen anion • 4Nitrous oxide) + Nitrous oxide = (Oxygen anion • 5Nitrous oxide)

By formula: (O2- • 4N2O) + N2O = (O2- • 5N2O)

Quantity Value Units Method Reference Comment
Δr22.2 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-7.9 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Oxygen anion • 5Nitrous oxide) + Nitrous oxide = (Oxygen anion • 6Nitrous oxide)

By formula: (O2- • 5N2O) + N2O = (O2- • 6N2O)

Quantity Value Units Method Reference Comment
Δr20.9 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-9.2 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 70

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-1182.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1182.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C

References

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Tiernan and Wu, 1978
Tiernan, T.O.; Wu, R.L.C., Thermochemical Data for Molecular Negative Ions from Collisional Dissociation Thresholds, Adv. Mass Spectrom., 1978, 7A, 136. [all data]

Nalley, Compton, et al., 1973
Nalley, S.J.; Compton, R.N.; Schweinler, H.C.; Anderson, V.E., Molecular electron affinities from collisional ionization of cesium. I. NO, NO2, and N2O, J. Chem. Phys., 1973, 59, 4125. [all data]

Wentworth, Chen, et al., 1971
Wentworth, W.E.; Chen, E.; Freeman, R., Thermal electron attachment to N2O, J. Chem. Phys., 1971, 55, 2075. [all data]

Coe, Snodgrass, et al., 1986
Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H., Negative ion photoelectron spectroscopy of N2O- and (N2O)2-, Chem. Phys. Lett., 1986, 124, 274. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Hitchcock, Brion, et al., 1980
Hitchcock, A.P.; Brion, C.E.; Van der Wiel, M.J., Absolute oscillator strengths for valence-shell ionic photofragmentation of N2O and CO2(8-75 eV), Chem. Phys., 1980, 45, 461. [all data]

Sahini, Constantin, et al., 1978
Sahini, V.E.; Constantin, V.; Serban, I., Determination of ionization potentials using a MI-1305 mass spectrometer, Rev. Roum. Chim., 1978, 23, 479. [all data]

Berkowitz and Eland, 1977
Berkowitz, J.; Eland, J.H.D., Photoionization of N2O: Mechanisms of photoionization and ion dissociation, J. Chem. Phys., 1977, 67, 2740. [all data]

Coppens, Smets, et al., 1974
Coppens, P.; Smets, J.; Fishel, M.G.; Drowart, J., Mass spectrometric study of the photoionization of nitrous oxide in the wavelength interval 1000-600 A, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 57. [all data]

Eland, 1973
Eland, J.H.D., Predissociation of N2O+ and COS+ ions studied by photoelectronphotoion coincidence spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1973, 12, 389. [all data]

Collin and Natalis, 1969
Collin, J.E.; Natalis, P., Determination des etats electroniques et des niveaux de vibration des ions moleculaires par spectroscopie de photoelectrons, Bull. Classe Sci. Acad. Roy. Belg., 1969, 55, 352. [all data]

Brundle and Turner, 1969
Brundle, C.R.; Turner, D.W., Studies on the photoionisation of the linear triatomic molecules: N2O, COS, CS2 and CO2 using high-resolution photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 195. [all data]

Cook, Metzger, et al., 1968
Cook, G.R.; Metzger, P.H.; Ogawa, M., Photoionization and absorption coefficients of N2O, J. Opt. Soc. Am., 1968, 58, 129. [all data]

Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A., Mass spectrometric study of the photoionization of small polyatomic molecules, Advan. Mass Spectrom., 1967, 4, 767. [all data]

Carette, 1967
Carette, J.-D., Ionisation par impact electronique de CO2 et N2O, Can. J. Phys., 1967, 45, 2931. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Tanaka, Jursa, et al., 1960
Tanaka, Y.; Jursa, A.S.; LeBlanc, F.J., Higher ionization potentials of linear triatomic molecules. II. CS2, COS, and N2O, J. Chem. Phys., 1960, 32, 1205. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Dibeler, Walker, et al., 1967
Dibeler, V.H.; Walker, J.A.; Liston, S.K., Mass spectrometric study of photoionization. VII.Nitrogen dioxide and nitrous oxide, J.Res. NBS, 1967, 71A, 371. [all data]

Olivier, Locht, et al., 1982
Olivier, J.L.; Locht, R.; Momigny, J., A dissociative electroionization study of nitrous oxide. The No and N2 dissociation channels, Chem. Phys., 1982, 68, 201. [all data]

Coleman, Delderfield, et al., 1969
Coleman, R.J.; Delderfield, J.S.; Reuben, B.G., The gas-phase decomposition of the nitrous oxide ion, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 25. [all data]

Curran and Fox, 1961
Curran, R.K.; Fox, R.E., Mass spectrometer investigation of ionization of N2O by electron impact, J. Chem. Phys., 1961, 34, 1590. [all data]

Dibeler, 1967
Dibeler, V.H., N2O bond dissociation energy by photon impact, J. Chem. Phys., 1967, 47, 2191. [all data]

Hiraoka, Aruga, et al., 1993
Hiraoka, K.; Aruga, K.; Fujimaki, S.; Yamabe, S., Comparative Study of the Gas Phase Bond Strengths of CO2 and N2O with the Halide Ions, J. Am. Soc. Mass Spectrom., 1993, 4, 1, 58, https://doi.org/10.1016/1044-0305(93)85043-W . [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Sheldon, Ohair, et al., 1995
Sheldon, J.C.; Ohair, R.A.J.; Downard, K.M.; Gronert, S.; Krempp, M.; Depuy, C.H.; Bowie, J.H., A potential surface map of the H-/N2O system. The gas phase ion chemistry of HN2O-, Aust. J. Chem., 1995, 48, 155. [all data]

Hiraoka, Fujimaki, et al., 1994
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Sato, T.; Yamabe, S., Gas-Phase Solavtion of NO+, O2+, N2O+, and H3O+ with N2O, J. Chem. Phys., 1994, 101, 5, 4073, https://doi.org/10.1063/1.467524 . [all data]

Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B., personal communication, 1992. [all data]

Kim, Wenthold, et al., 1998
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C., Photoelectron spectroscopy of OH-(N2O)(n=1-5), J. Chem. Phys., 1998, 108, 3, 830-837, https://doi.org/10.1063/1.475447 . [all data]

Arnold, Bradforth, et al., 1995
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M., Study of I-(CO2)n, Br-(CO2)n, and I-(N2O)n clusters by anion photoelectron spectroscopy, J. Chem. Phys., 1995, 102, 9, 3510, https://doi.org/10.1063/1.468576 . [all data]

Illies, 1988
Illies, A.J., Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures, J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037 . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Coe, Snodgrass, et al., 1987
Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H., Photoelectron spectroscopy of the negative cluster ions, NO-(N2O)n=1,2, J. Chem. Phys., 1987, 87, 4302. [all data]

Hiraoka, Fujimaki, et al., 1994, 2
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Gas-phase clustering reactions of O2(-), NO-, and O- with N2O: Isomeric structures for (NO-N2O)(-), J. Phys. Chem., 1994, 98, 34, 8295, https://doi.org/10.1021/j100085a006 . [all data]

Cameron, Aitken, et al., 1994
Cameron, B.R.; Aitken, C.G.; Harland, P.W., Appearence Energies of Small Cluster Ions and their Fragments, J. Chem. Soc. Faraday Trans., 1994, 90, 7, 935, https://doi.org/10.1039/ft9949000935 . [all data]

Linn and Ng, 1981
Linn, S.H.; Ng, C.Y., Photoionization Study of CO2, N2O Dimers and Clusters, J. Chem. Phys., 1981, 75, 10, 4921, https://doi.org/10.1063/1.441931 . [all data]

Li and Continetti, 2002
Li, R.J.; Continetti, R.E., Studies of the excited state dynamics of N2O2 by dissociative photodetachment of N2O2-, J. Phys. Chem. A, 2002, 106, 7, 1183-1189, https://doi.org/10.1021/jp013330u . [all data]

Osboen, Leahy, et al., 1996
Osboen, D.L.; Leahy, D.J.; Cyr, D.R.; Neumark, D.M., Photodissociation Spectroscopy and Dynamics of the N2O2- Anion, J. Chem. Phys., 1996, 104, 13, 5026, https://doi.org/10.1063/1.471132 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]


Notes

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References