Acetonitrile
- Formula: C2H3N
- Molecular weight: 41.0519
- IUPAC Standard InChIKey: WEVYAHXRMPXWCK-UHFFFAOYSA-N
- CAS Registry Number: 75-05-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Cyanomethane; Ethanenitrile; Ethyl nitrile; Methane, cyano-; Methanecarbonitrile; Methyl cyanide; CH3CN; Acetonitril; Cyanure de methyl; USAF EK-488; Methylkyanid; NA 1648; NCI-C60822; Rcra waste number U003; UN 1648; Ethanonitrile
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase ion energetics data
Go To: Top, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C2H3N+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 12.20 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 186.2 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 179. | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.01101 | EFD | Suess, Liu, et al., 2003 | B |
0.0030 ± 0.0072 | LPES | Bailey, Dessent, et al., 1996 | B |
0.01149 | EFD | Desfrancois, Abdoul-Carime, et al., 1994 | EA: 11.5 meV. Dipole-bound state.; B |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
188.2 ± 1.4 | Williams, Denault, et al., 2001 | T = T(eff) = 498-797 KK; propionitrile, butyronitrile, valeronitrile reference compounds; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
12.201 ± 0.002 | PE | Gochel-Dupuis, Delwiche, et al., 1992 | LL |
12.38 ± 0.04 | EI | Harland and McIntosh, 1985 | LBLHLM |
12.3 ± 0.25 | EI | Chess, Lapp, et al., 1982 | LBLHLM |
12.33 ± 0.08 | EI | Allam, Migahed, et al., 1982 | LBLHLM |
12.194 ± 0.005 | PI | Rider, Ray, et al., 1981 | LLK |
12.21 | PE | Kimura, Katsumata, et al., 1981 | LLK |
12.20 ± 0.01 | PE | Staley, Kleckner, et al., 1976 | LLK |
13.14 | PE | Lake and Thompson, 1970 | RDSH |
15.11 | PE | Lake and Thompson, 1970 | RDSH |
12.12 | PE | Frost, Herring, et al., 1970 | RDSH |
13.11 | PE | Frost, Herring, et al., 1970 | RDSH |
15.12 | PE | Frost, Herring, et al., 1970 | RDSH |
16.98 | PE | Frost, Herring, et al., 1970 | RDSH |
12.19 ± 0.01 | PI | Dibeler and Liston, 1968 | RDSH |
12.23 ± 0.05 | EI | Franklin, Wada, et al., 1966 | RDSH |
12.205 ± 0.004 | PI | Nicholson, 1965 | RDSH |
12.22 ± 0.01 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
12.46 | PE | Asbrink, Von Niessen, et al., 1980 | Vertical value; LLK |
12.20 | PE | Lake and Thompson, 1970 | Vertical value; RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C+ | 27.0 ± 0.3 | ? | EI | Reed and Snedden, 1956 | RDSH |
CH+ | 22.4 ± 0.2 | ? | EI | Reed and Snedden, 1956 | RDSH |
CH2+ | 15.7 | HCN | EI | Haney and Franklin, 1968 | RDSH |
CH2+ | 14.94 ± 0.02 | HCN | PI | Dibeler and Liston, 1968 | RDSH |
C2HN+ | 15.90 ± 0.08 | ? | EI | Harland and McIntosh, 1985 | LBLHLM |
C2HN+ | 15.1 ± 0.1 | H2 | PI | Dibeler and Liston, 1968 | RDSH |
C2H2N+ | 13.94 ± 0.02 | H | N/A | Holmes, Lossing, et al., 1993 | LL |
C2H2N+ | 14.38 ± 0.04 | H | EI | Harland and McIntosh, 1985 | LBLHLM |
C2H2N+ | 14.75 ± 0.08 | H | EI | Allam, Migahed, et al., 1982 | LBLHLM |
C2H2N+ | 14.01 ± 0.02 | H | PI | Dibeler and Liston, 1968 | RDSH |
C2H2N+ | 13.54 ± 0.08 | H | EI | Franklin, Wada, et al., 1966 | RDSH |
C2H2N+ | 14.28 ± 0.05 | H | EI | Pottie and Lossing, 1961 | RDSH |
C2N+ | 20.00 ± 0.08 | ? | EI | Harland and McIntosh, 1985 | LBLHLM |
De-protonation reactions
C2H2N- + =
By formula: C2H2N- + H+ = C2H3N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 372.9 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 369.0 ± 4.5 | kcal/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
ΔrH° | 373.3 ± 2.6 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
ΔrH° | 374.8 ± 2.0 | kcal/mol | D-EA | Zimmerman and Brauman, 1977 | gas phase; B |
ΔrH° | 366.6 ± 4.6 | kcal/mol | EIAE | Heni and Illenberger, 1986 | gas phase; From MeCN; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 365.2 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 365.6 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | 367.2 ± 2.1 | kcal/mol | H-TS | Zimmerman and Brauman, 1977 | gas phase; B |
Ion clustering data
Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Ag+ + C2H3N = (Ag+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38.7 | kcal/mol | CIDT | Shoieb, Aribi, et al., 2001 | RCD |
By formula: (Ag+ • C2H3N) + C2H3N = (Ag+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.7 | kcal/mol | CIDT | Shoieb, Aribi, et al., 2001 | RCD |
By formula: Br- + C2H3N = (Br- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.3 ± 1.0 | kcal/mol | TDAs | Li, Ross, et al., 1996 | gas phase; B |
ΔrH° | 12.10 ± 0.40 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 12.90 ± 0.40 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 12.9 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
ΔrH° | 12.9 | kcal/mol | HPMS | Caldwell, Masucci, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 12.2 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 16.5 | cal/mol*K | HPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.70 ± 0.20 | kcal/mol | TDAs | Li, Ross, et al., 1996 | gas phase; B |
ΔrG° | 8.8 ± 2.0 | kcal/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B |
ΔrG° | 9.20 ± 0.70 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 8.0 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (Br- • C2H3N) + C2H3N = (Br- • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.70 ± 0.40 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 11.50 ± 0.70 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 11.80 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.0 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 20.4 | cal/mol*K | HPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.6 ± 1.3 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 5.80 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (Br- • 2C2H3N) + C2H3N = (Br- • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.20 ± 0.40 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 10.40 ± 0.70 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 10.00 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 16.7 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 21.7 | cal/mol*K | HPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.2 ± 1.3 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 3.60 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (Br- • 3C2H3N) + C2H3N = (Br- • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.70 ± 0.30 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 8.50 ± 0.80 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 5.50 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.6 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 10.9 | cal/mol*K | HPMS | Yamdagni and Kebarle, 1972 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.8 ± 1.2 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 2.20 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (Br- • 4C2H3N) + C2H3N = (Br- • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.50 ± 0.30 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 5.80 ± 0.90 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.2 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.8 ± 1.3 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (Br- • 5C2H3N) + C2H3N = (Br- • 6C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.00 ± 0.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 5.5 ± 1.0 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.5 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.20 ± 0.90 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (Br- • 6C2H3N) + C2H3N = (Br- • 7C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.70 ± 0.30 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 3.0 ± 1.1 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.9 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.8 ± 1.3 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (Br- • 7C2H3N) + C2H3N = (Br- • 8C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.7 ± 1.2 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Br- • 8C2H3N) + C2H3N = (Br- • 9C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2.8 ± 1.4 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Br- • 9C2H3N) + C2H3N = (Br- • 10C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.5 ± 1.5 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Br- • 10C2H3N) + C2H3N = (Br- • 11C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1.2 ± 1.6 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Br- • 11C2H3N) + C2H3N = (Br- • 12C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1.2 ± 1.7 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Br- • 12C2H3N) + C2H3N = (Br- • 13C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.5 ± 1.8 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Br- • 13C2H3N) + C2H3N = (Br- • 14C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.7 ± 1.9 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: CH6N+ + C2H3N = (CH6N+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.2 | kcal/mol | PHPMS | Speller and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.7 | cal/mol*K | PHPMS | Speller and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: (CH6N+ • C2H3N) + C2H3N = (CH6N+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.6 | kcal/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.6 | cal/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
By formula: (CH6N+ • 2C2H3N) + C2H3N = (CH6N+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.4 | kcal/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.0 | cal/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
By formula: CN- + C2H3N = (CN- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.8 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
ΔrH° | 16.4 ± 3.5 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
ΔrH° | 15.70 | kcal/mol | TDAs | Hiraoka, Mizure, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.7 | cal/mol*K | PHPMS | Hiraoka, Mizure, et al., 1988 | gas phase; M |
ΔrS° | 14.2 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
ΔrS° | 24.3 | cal/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.5 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
ΔrG° | 9.1 ± 2.3 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
ΔrG° | 9.20 | kcal/mol | TDAs | Hiraoka, Mizure, et al., 1988 | gas phase; B |
By formula: C2H2N- + C2H3N = (C2H2N- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.8 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B,M |
ΔrH° | 15.70 | kcal/mol | TDAs | Hiraoka, Mizure, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.8 | cal/mol*K | PHPMS | Hiraoka, Mizure, et al., 1988 | gas phase; M |
ΔrS° | 13.4 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.8 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
ΔrG° | 8.90 | kcal/mol | TDAs | Hiraoka, Mizure, et al., 1988 | gas phase; B |
By formula: C2H3O2- + C2H3N = (C2H3O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.8 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.0 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.4 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: (C2H4N+ • CH4O) + C2H3N = (C2H4N+ • C2H3N • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.6 | kcal/mol | PHPMS | El-Shall, Olafsdottir, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.5 | cal/mol*K | PHPMS | El-Shall, Olafsdottir, et al., 1991 | gas phase; M |
By formula: C2H4N+ + C2H3N = (C2H4N+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.1 ± 2.3 | kcal/mol | CID | Honma, Sunderlin, et al., 1993 | gas phase; guided ion beam CID; M |
ΔrH° | 28.9 | kcal/mol | PHPMS | Allison, Cramer, et al., 1991 | gas phase; M |
ΔrH° | 29.8 | kcal/mol | PHPMS | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n; M |
ΔrH° | 29.8 | kcal/mol | PHPMS | Speller and Meot-Ner (Mautner), 1985 | gas phase; M |
ΔrH° | 30.2 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.2 | cal/mol*K | PHPMS | Allison, Cramer, et al., 1991 | gas phase; M |
ΔrS° | 24.8 | cal/mol*K | PHPMS | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n; M |
ΔrS° | 24.7 | cal/mol*K | PHPMS | Speller and Meot-Ner (Mautner), 1985 | gas phase; M |
ΔrS° | 29. | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1978 | gas phase; M |
(C2H4N+ • • ) + = (C2H4N+ • 2 • )
By formula: (C2H4N+ • C2H3N • CH4O) + C2H3N = (C2H4N+ • 2C2H3N • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.0 | kcal/mol | PHPMS | El-Shall, Olafsdottir, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 12.4 | cal/mol*K | PHPMS | El-Shall, Olafsdottir, et al., 1991 | gas phase; M |
(C2H4N+ • • 2) + = (C2H4N+ • 2 • 2)
By formula: (C2H4N+ • C2H3N • 2CH4O) + C2H3N = (C2H4N+ • 2C2H3N • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.6 | kcal/mol | PHPMS | El-Shall, Olafsdottir, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.6 | cal/mol*K | PHPMS | El-Shall, Olafsdottir, et al., 1991 | gas phase; M |
By formula: (C2H4N+ • C2H3N) + C2H3N = (C2H4N+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.3 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19. | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1978 | gas phase; M |
(C2H4N+ • • ) + = (C2H4N+ • 2 • )
By formula: (C2H4N+ • C2H3N • H2O) + C2H3N = (C2H4N+ • 2C2H3N • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.6 | kcal/mol | PHPMS | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.3 | cal/mol*K | PHPMS | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n; M |
(C2H4N+ • • 4) + = (C2H4N+ • 2 • 4)
By formula: (C2H4N+ • C2H3N • 4H2O) + C2H3N = (C2H4N+ • 2C2H3N • 4H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.4 | kcal/mol | PHPMS | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22. | cal/mol*K | N/A | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.4 | 318. | PHPMS | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n, Entropy change calculated or estimated; M |
By formula: (C2H4N+ • H2O) + C2H3N = (C2H4N+ • C2H3N • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.4 | kcal/mol | PHPMS | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.7 | cal/mol*K | PHPMS | Deakyne, Meot-Ner (Mautner), et al., 1986 | gas phase; n; M |
By formula: C2H6NO+ + C2H3N = (C2H6NO+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
16.2 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C2H7O+ + C2H3N = (C2H7O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
23.0 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O,; Grimsrud and Kebarle, 1973; M |
By formula: C3H5O+ + C2H3N = (C3H5O+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.3 | kcal/mol | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.9 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
9.4 | 295. | FA | Mackay, Rakshit, et al., 1982 | gas phase; M |
By formula: C3H5O- + C2H3N = (C3H5O- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.3 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.6 ± 2.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
By formula: C3H7O+ + C2H3N = (C3H7O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20.8 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C3H7O2+ + C2H3N = (C3H7O2+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
21.5 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C3H7O2+ + C2H3N = (C3H7O2+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20.1 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; n,switching reaction((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C3H9O+ + C2H3N = (C3H9O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
23.6 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C3H9Sn+ + C2H3N = (C3H9Sn+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37.5 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.4 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
21.0 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C4H2O3- + C2H3N = (C4H2O3- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.5 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: C4H4N- + C2H3N = (C4H4N- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.8 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.4 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.8 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
By formula: C4H6N+ + C2H3N = (C4H6N+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20.8 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C4H7O+ + C2H3N = (C4H7O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22.1 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C4H9O+ + C2H3N = (C4H9O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20.7 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973; M |
By formula: C4H9O2+ + C2H3N = (C4H9O2+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22.9 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C4H9O2+ + C2H3N = (C4H9O2+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18.9 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction((CH3)2O)H+)(CH3)2O; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C4H11O+ + C2H3N = (C4H11O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.6 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction(Me2O)2H+; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C5HFeO5+ + C2H3N = (C5HFeO5+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.8 | kcal/mol | PHPMS | Allison, Cramer, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.8 | cal/mol*K | PHPMS | Allison, Cramer, et al., 1991 | gas phase; M |
By formula: C5H5- + C2H3N = (C5H5- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.5 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.7 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
By formula: C5H9O+ + C2H3N = (C5H9O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20.1 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C5H9O+ + C2H3N = (C5H9O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17.5 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C5H9O2+ + C2H3N = (C5H9O2+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17.7 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C5H11O+ + C2H3N = (C5H11O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20.3 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C5H13O+ + C2H3N = (C5H13O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18.4 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C6F4O2- + C2H3N = (C6F4O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 3.4 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.4 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
C6H4ClNO2- + = (C6H4ClNO2- • )
By formula: C6H4ClNO2- + C2H3N = (C6H4ClNO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.7 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.7 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
C6H4ClNO2- + = (C6H4ClNO2- • )
By formula: C6H4ClNO2- + C2H3N = (C6H4ClNO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.1 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.1 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
C6H4ClNO2- + = (C6H4ClNO2- • )
By formula: C6H4ClNO2- + C2H3N = (C6H4ClNO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.9 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.9 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4FNO2- + C2H3N = (C6H4FNO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.1 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.1 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4FNO2- + C2H3N = (C6H4FNO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.3 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.3 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4FNO2- + C2H3N = (C6H4FNO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.0 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.0 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4NO3- + C2H3N = (C6H4NO3- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.7 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: C6H4NO3- + C2H3N = (C6H4NO3- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.4 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: C6H4N2O4- + C2H3N = (C6H4N2O4- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 3.2 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.2 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4N2O4- + C2H3N = (C6H4N2O4- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 4.8 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.8 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4N2O4- + C2H3N = (C6H4N2O4- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 4.3 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.3 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4O2- + C2H3N = (C6H4O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 4.8 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.8 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H5NO2- + C2H3N = (C6H5NO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.6 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.6 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H7N+ + C2H3N = (C6H7N+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.3 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.8 | cal/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C6H7O+ + C2H3N = (C6H7O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18.7 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C6H11O+ + C2H3N = (C6H11O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.4 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C6H13O+ + C2H3N = (C6H13O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18.2 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C6H13O+ + C2H3N = (C6H13O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18.1 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C6H15O+ + C2H3N = (C6H15O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18.7 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C6H15O+ + C2H3N = (C6H15O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17.9 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
C7H4F3NO2- + = (C7H4F3NO2- • )
By formula: C7H4F3NO2- + C2H3N = (C7H4F3NO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.3 ± 2.0 | kcal/mol | N/A | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.4 | cal/mol*K | PHPMS | Chowdhury, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.4 ± 2.0 | kcal/mol | TDAs | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: C7H4N2O2- + C2H3N = (C7H4N2O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.1 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.1 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H4N2O2- + C2H3N = (C7H4N2O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.3 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.3 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H4N2O2- + C2H3N = (C7H4N2O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.9 ± 2.0 | kcal/mol | N/A | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.6 | cal/mol*K | PHPMS | Chowdhury, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.1 ± 2.0 | kcal/mol | TDAs | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: C7H7NO2- + C2H3N = (C7H7NO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.7 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.7 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H7NO3- + C2H3N = (C7H7NO3- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.8 ± 2.0 | kcal/mol | N/A | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.7 | cal/mol*K | PHPMS | Chowdhury, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.6 ± 2.0 | kcal/mol | TDAs | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: C7H11O+ + C2H3N = (C7H11O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
14.3 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C7H15O+ + C2H3N = (C7H15O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
16.7 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C8H9O2+ + C2H3N = (C8H9O2+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
16.5 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
By formula: C9H11O+ + C2H3N = (C9H11O+ • C2H3N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15.5 | 320. | ICR | Bromilow, Abboud, et al., 1980 | gas phase; switching reaction,n((CH3)2OH+)(CH3)2O; Grimsrud and Kebarle, 1973; M |
C10H4Cl2O2- + = (C10H4Cl2O2- • )
By formula: C10H4Cl2O2- + C2H3N = (C10H4Cl2O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | <1.5 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
1.5 | 343. | PHPMS | Chowdhury, 1987 | gas phase; DG<; M |
By formula: C10H6O2- + C2H3N = (C10H6O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 4.2 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.2 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C10H10Fe+ + C2H3N = (C10H10Fe+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.4 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.9 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; M |
(C10H10Fe+ • ) + = (C10H10Fe+ • 2)
By formula: (C10H10Fe+ • C2H3N) + C2H3N = (C10H10Fe+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.1 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 16.0 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; M |
By formula: C10H11Fe+ + C2H3N = (C10H11Fe+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.9 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.4 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; M |
By formula: C11H10+ + C2H3N = (C11H10+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.3 | kcal/mol | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22. | cal/mol*K | N/A | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.6 | 303. | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
By formula: Cl- + C2H3N = (Cl- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 2. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 15.7 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 15.7 | cal/mol*K | PHPMS | Yamabe, Furumiya, et al., 1986 | gas phase; M |
ΔrS° | 14.3 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
ΔrS° | 14.3 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
ΔrS° | 21.4 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)CF3H, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.20 ± 0.20 | kcal/mol | TDAs | Li, Ross, et al., 1996 | gas phase; B |
ΔrG° | 9.2 ± 2.0 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 8.9 ± 2.6 | kcal/mol | TDAs | Yamabe, Furumiya, et al., 1986 | gas phase; B |
ΔrG° | 10.10 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
ΔrG° | 9.2 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (Cl- • C2H3N) + C2H3N = (Cl- • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.50 ± 0.40 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 12.00 ± 0.70 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 12.20 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 16.3 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 18.9 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.6 ± 1.2 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 6.60 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (Cl- • 2C2H3N) + C2H3N = (Cl- • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.20 ± 0.40 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 12.00 ± 0.70 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 10.60 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.6 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 20.1 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.3 ± 1.3 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 4.60 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (Cl- • 3C2H3N) + C2H3N = (Cl- • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.90 ± 0.30 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 9.00 ± 0.80 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 6.20 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.6 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 10.8 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.9 ± 1.2 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 3.00 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (Cl- • 4C2H3N) + C2H3N = (Cl- • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.80 ± 0.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 5.80 ± 0.90 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.1 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.70 ± 0.80 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (Cl- • 5C2H3N) + C2H3N = (Cl- • 6C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.50 ± 0.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 5.8 ± 1.0 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.1 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.80 ± 0.80 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (Cl- • 6C2H3N) + C2H3N = (Cl- • 7C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.40 ± 0.30 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 3.9 ± 1.1 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.7 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.2 ± 1.4 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (Cl- • 7C2H3N) + C2H3N = (Cl- • 8C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; Entropy estimated; B,M |
ΔrH° | 2.8 ± 1.2 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32. | cal/mol*K | N/A | Hiraoka, Mizuse, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -0.40 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; Entropy estimated; B |
By formula: (Cl- • 8C2H3N) + C2H3N = (Cl- • 9C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.4 ± 1.4 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Cl- • 9C2H3N) + C2H3N = (Cl- • 10C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2.1 ± 1.5 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Cl- • 10C2H3N) + C2H3N = (Cl- • 11C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1.8 ± 1.6 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Cl- • 11C2H3N) + C2H3N = (Cl- • 12C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.5 ± 1.7 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Cl- • 12C2H3N) + C2H3N = (Cl- • 13C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.9 ± 1.8 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (Cl- • 13C2H3N) + C2H3N = (Cl- • 14C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.5 ± 1.9 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: Cs+ + C2H3N = (Cs+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.2 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.6 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Cs+ • C2H3N) + C2H3N = (Cs+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.7 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.6 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Cs+ • 2C2H3N) + C2H3N = (Cs+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.3 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.0 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Cs+ • 3C2H3N) + C2H3N = (Cs+ • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.1 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.0 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Cs+ • 4C2H3N) + C2H3N = (Cs+ • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.9 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.9 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: Cu+ + C2H3N = (Cu+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 ± 0.7 | kcal/mol | CIDT | Vitale, 2001 | CH3CN is fifth ligand; RCD |
By formula: (Cu+ • C2H3N) + C2H3N = (Cu+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 ± 2.2 | kcal/mol | CIDT | Vitale, 2001 | RCD |
By formula: (Cu+ • 2C2H3N) + C2H3N = (Cu+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.1 ± 0.5 | kcal/mol | CIDT | Vitale, 2001 | RCD |
By formula: (Cu+ • 3C2H3N) + C2H3N = (Cu+ • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.0 ± 0.5 | kcal/mol | CIDT | Vitale, 2001 | RCD |
By formula: (Cu+ • 4C2H3N) + C2H3N = (Cu+ • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.3 ± 1.0 | kcal/mol | CIDT | Vitale, 2001 | RCD |
By formula: F- + C2H3N = (F- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.5 ± 2.0 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; Discrepancy with Yamdagni and Kebarle, 1972 "not resolved; B,M |
ΔrH° | 16.0 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.9 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 13.4 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 17.6 ± 3.3 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; Discrepancy with Yamdagni and Kebarle, 1972 "not resolved; B |
ΔrG° | 12.0 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (F- • C2H3N) + C2H3N = (F- • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.7 ± 1.5 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 12.90 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.9 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 14.8 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.8 ± 3.4 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 8.50 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (F- • 2C2H3N) + C2H3N = (F- • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.1 ± 1.0 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 11.70 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.4 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 17.9 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.4 ± 2.5 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 6.40 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (F- • 3C2H3N) + C2H3N = (F- • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.80 ± 0.50 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 10.40 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.3 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 19.6 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.9 ± 1.9 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 4.50 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (F- • 4C2H3N) + C2H3N = (F- • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.50 ± 0.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 5.30 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.6 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 7.4 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.60 ± 0.80 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 3.10 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (F- • 5C2H3N) + C2H3N = (F- • 6C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.70 ± 0.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.8 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.40 ± 0.90 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (F- • 6C2H3N) + C2H3N = (F- • 7C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.50 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; Entropy estimated; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28. | cal/mol*K | N/A | Hiraoka, Mizuse, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.10 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; Entropy estimated; B |
By formula: H4N+ + C2H3N = (H4N+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.6 | kcal/mol | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.2 | cal/mol*K | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
By formula: (H4N+ • C2H3N) + C2H3N = (H4N+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.2 | kcal/mol | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.4 | cal/mol*K | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
By formula: (H4N+ • 2C2H3N) + C2H3N = (H4N+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.2 | kcal/mol | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.5 | cal/mol*K | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
By formula: (H4N+ • 3C2H3N) + C2H3N = (H4N+ • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.7 | kcal/mol | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.2 | cal/mol*K | PHPMS | Liebman, Romm, et al., 1991 | gas phase; M |
By formula: I- + C2H3N = (I- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.9 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
ΔrH° | 11.10 ± 0.40 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 11.1 ± 1.1 | kcal/mol | LPES | Dessent, Bailey, et al., 1995 | gas phase; B |
ΔrH° | 11.00 ± 0.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 12. | kcal/mol | PHPMS | Caldwell, Masucci, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 13.8 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 18.2 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.4 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
ΔrG° | 6.6 ± 2.0 | kcal/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B |
ΔrG° | 6.90 ± 0.50 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (I- • C2H3N) + C2H3N = (I- • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.40 ± 0.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 11.10 ± 0.70 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 11.10 ± 0.40 | kcal/mol | N/A | Dessent, Bailey, et al., 1995 | gas phase; Vertical Detachment Energy: 2.25±0.08 eV.; B |
ΔrH° | 10.50 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.4 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 20.8 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.90 ± 0.80 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 4.30 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (I- • 2C2H3N) + C2H3N = (I- • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.20 ± 0.20 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 9.70 ± 0.70 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
ΔrH° | 9.30 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.9 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
ΔrS° | 22.1 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3.20 ± 0.80 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
ΔrG° | 2.70 | kcal/mol | TDAs | Yamdagni and Kebarle, 1972 | gas phase; B |
By formula: (I- • 3C2H3N) + C2H3N = (I- • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.80 ± 0.10 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 7.40 ± 0.80 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.3 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.00 ± 0.40 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (I- • 4C2H3N) + C2H3N = (I- • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.10 ± 0.30 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
ΔrH° | 10.60 ± 0.90 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.9 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.4 ± 1.4 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (I- • 5C2H3N) + C2H3N = (I- • 6C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.5 ± 1.0 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (I- • 6C2H3N) + C2H3N = (I- • 7C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.7 ± 1.1 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (I- • 7C2H3N) + C2H3N = (I- • 8C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.0 ± 1.2 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (I- • 8C2H3N) + C2H3N = (I- • 9C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2.5 ± 1.4 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (I- • 9C2H3N) + C2H3N = (I- • 10C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2.5 ± 1.5 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (I- • 10C2H3N) + C2H3N = (I- • 11C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2.1 ± 1.6 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (I- • 11C2H3N) + C2H3N = (I- • 12C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2.1 ± 1.7 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: (I- • 13C2H3N) + C2H3N = (I- • 14C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.9 ± 1.9 | kcal/mol | N/A | Markovich, Perera, et al., 1996 | gas phase; B |
By formula: K+ + C2H3N = (K+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.4 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.5 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (K+ • C2H3N) + C2H3N = (K+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.6 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.2 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (K+ • 2C2H3N) + C2H3N = (K+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.2 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.3 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (K+ • 3C2H3N) + C2H3N = (K+ • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.6 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.5 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (K+ • 4C2H3N) + C2H3N = (K+ • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.5 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 33.7 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: Li+ + C2H3N = (Li+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43. | kcal/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M |
By formula: NO2- + C2H3N = (NO2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.40 ± 0.10 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 15.3 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.80 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
By formula: Na+ + C2H3N = (Na+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.5 ± 1.1 | kcal/mol | CIDT | Valina, 2001 | RCD |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
23.6 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: (Na+ • C2H3N) + C2H3N = (Na+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.1 ± 1.9 | kcal/mol | CIDT | Valina, 2001 | RCD |
ΔrH° | 24.4 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.7 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Na+ • 2C2H3N) + C2H3N = (Na+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.2 ± 0.7 | kcal/mol | CIDT | Valina, 2001 | RCD |
ΔrH° | 20.6 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.5 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Na+ • 3C2H3N) + C2H3N = (Na+ • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.4 ± 0.6 | kcal/mol | CIDT | Valina, 2001 | RCD |
ΔrH° | 14.9 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.9 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Na+ • 4C2H3N) + C2H3N = (Na+ • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.6 ± 0.8 | kcal/mol | CIDT | Valina, 2001 | CH3CN is fifth ligand; RCD |
ΔrH° | 12.7 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 41.2 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; Entropy change is questionable; M |
By formula: O2- + C2H3N = (O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.40 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.4 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.20 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (O2- • C2H3N) + C2H3N = (O2- • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.20 ± 0.70 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.0 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.70 ± 0.40 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (O2- • 2C2H3N) + C2H3N = (O2- • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.90 ± 0.60 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.7 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.50 ± 0.20 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (O2- • 3C2H3N) + C2H3N = (O2- • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.50 ± 0.50 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.4 | cal/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.80 ± 0.10 | kcal/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: Rb+ + C2H3N = (Rb+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.7 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.1 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Rb+ • C2H3N) + C2H3N = (Rb+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.7 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20.9 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Rb+ • 2C2H3N) + C2H3N = (Rb+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.7 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.8 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Rb+ • 3C2H3N) + C2H3N = (Rb+ • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.5 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.7 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (Rb+ • 4C2H3N) + C2H3N = (Rb+ • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.1 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.5 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; Entropy change is questionable; M |
Mass spectrum (electron ionization)
Go To: Top, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW-4393 |
NIST MS number | 228221 |
UV/Visible spectrum
Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Becker, 1959 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 13536 |
Instrument | Bekman DK-1 |
Melting point | - 43.6 |
Boiling point | 81.6 |
Gas Chromatography
Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | HP-1 | 100. | 452.53 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 110. | 452.72 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 120. | 452.90 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 130. | 453.18 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 140. | 453.70 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 150. | 454.45 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 160. | 455.25 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 170. | 455.74 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 180. | 456.69 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 190. | 457.67 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 20. | 455.45 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 30. | 454.52 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 40. | 453.90 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 50. | 453.32 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 60. | 452.92 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 70. | 452.71 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 80. | 452.50 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | HP-1 | 90. | 452.35 | Görgényi and Héberger, 2003 | N2; Column length: 30. m; Phase thickness: 3. μm |
Capillary | CP Sil 5 CB | 20. | 456.9 | Do and Raulin, 1992 | 25. m/0.15 mm/2. μm, H2 |
Capillary | PoraPLOT Q | 100. | 432. | Do and Raulin, 1989 | 10. m/0.32 mm/10. μm, H2 |
Capillary | PoraPLOT Q | 160. | 442. | Do and Raulin, 1989 | 10. m/0.32 mm/10. μm, H2 |
Capillary | PoraPLOT Q | 200. | 450. | de Zeeuw, de Nijs, et al., 1988 | H2; Column length: 25. m; Column diameter: 0.53 mm |
Capillary | PoraPLOT Q | 200. | 460. | de Zeeuw, de Nijs, et al., 1988 | H2; Column length: 25. m; Column diameter: 0.53 mm |
Packed | SE-30 | 100. | 464. | Winskowski, 1983 | Gaschrom Q; Column length: 2. m |
Packed | Porapack Q | 200. | 425. | Goebel, 1982 | N2 |
Packed | Apiezon L | 150. | 440. | Brown, Chapman, et al., 1968 | N2, DCMS-treated Chromosorb W; Column length: 2.3 m |
Packed | DC-200 | 100. | 460. | Rohrschneider, 1966 | Column length: 4. m |
Packed | Apiezon L | 100. | 444. | Rohrschneider, 1966 | Column length: 5. m |
Packed | Apiezon L | 130. | 447. | Wehrli and Kováts, 1959 | Celite; Column length: 2.25 m |
Packed | Apiezon L | 70. | 439. | Wehrli and Kováts, 1959 | Celite; Column length: 2.25 m |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | Carbowax 20M | 75. | 1045. | Goebel, 1982 | N2, Kieselgur (60-100 mesh); Column length: 2. m |
Packed | Carbowax 20M | 100. | 1025. | Rohrschneider, 1966 | Column length: 2. m |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | FFAP | 1012. | Ott, Fay, et al., 1997 | 30. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | Synachrom | 150. | 439. | Dufka, Malinsky, et al., 1971 | Helium, Synachrom (60-80 mesh); Column length: 1.5 m |
Packed | Synachrom | 150. | 446. | Dufka, Malinsky, et al., 1971 | Helium, Synachrom (60-80 mesh); Column length: 1.5 m |
Packed | DC-400 | 150. | 500. | Anderson, 1968 | Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxane: CP-Sil 5 CB | 456. | Bramston-Cook, 2013 | 60. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min |
Capillary | BP-1 | 470. | Health Safety Executive, 2000 | 50. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 447. | N/A | Program: not specified |
Capillary | SPB-1 | 443. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | Polydimethyl siloxanes | 452. | Zenkevich and Chupalov, 1996 | Program: not specified |
Capillary | Methyl Silicone | 467. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | SPB-1 | 443. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 455. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | CP Sil 8 CB | 490. | Weller and Wolf, 1989 | 40. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 464. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | OV-1 | 455. | Ramsey and Flanagan, 1982 | Program: not specified |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1026. | Shimadzu, 2012 | 30. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C |
Capillary | Carbowax 20M | 1002. | de la Fuente, Martinez-Castro, et al., 2005 | 50. m/0.25 mm/0.25 μm, Helium, 40. C @ 2. min, 4. K/min, 190. C @ 30. min |
Capillary | DB-Wax | 1026. | Shimadzu Corporation, 2003 | 30. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C |
Capillary | Carbowax 20M | 1030. | Soria, Martinez-Castro, et al., 2003 | 50. m/0.25 mm/0.25 μm, He, 45. C @ 2. min, 4. K/min, 190. C @ 50. min |
Capillary | DB-Wax | 1003. | Umano, Hagi, et al., 1995 | He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SOLGel-Wax | 988. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min) |
Capillary | Supelcowax-10 | 1013. | Soria, Martinez-Castro, et al., 2009 | 50. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min) |
Capillary | Supelcowax 10 | 1013. | Soria, Martinez-Castro, et al., 2008 | 50. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min) |
Capillary | Polyethylene Glycol | 1002. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | Carbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc. | 1011. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | Carbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc. | 1045. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | Carbowax 20M | 1010. | Ramsey and Flanagan, 1982 | Program: not specified |
References
Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Suess, Liu, et al., 2003
Suess, L.; Liu, Y.; Parthasarathy, R.; Dunning, F.B.,
Dipole-bound negative ions: Collisional destruction and blackbody-radiation-induced photodetachment,
J. Chem. Phys., 2003, 119, 24, 12890-12894, https://doi.org/10.1063/1.1628215
. [all data]
Bailey, Dessent, et al., 1996
Bailey, C.G.; Dessent, C.E.H.; Johnson, M.A.; Bowen, K.A., Jr.,
Vibronic Effects in the Photon Energy Dependent Photoelectron Spectra of the CH3CN- Dipole-bound Anion,
J. Chem. Phys., 1996, 104, 18, 6976, https://doi.org/10.1063/1.471415
. [all data]
Desfrancois, Abdoul-Carime, et al., 1994
Desfrancois, C.; Abdoul-Carime, H.; Khelifa, N.; Schermann, J.P.,
Fork 1/r to 1/r2 Potentials: Electron Exchange between Rydberg Atoms and Polar Molecules,
Phys. Rev. Lett., 1994, 73, 18, 2436, https://doi.org/10.1103/PhysRevLett.73.2436
. [all data]
Williams, Denault, et al., 2001
Williams, T.I.; Denault, J.W.; Cooks, R.G.,
Proton Affinity of Deuterated Acetonitrile Estimated by the Kinetic Method with Full Entropy Analysis,
Int. J. Mass Spectrom., 2001, 210/211, 133. [all data]
Gochel-Dupuis, Delwiche, et al., 1992
Gochel-Dupuis, M.; Delwiche, J.; Hubin-Franskin, M.-J.; Collin, J.E.,
High-resolution HeI photoelectron spectrum of acetonitrile,
Chem. Phys. Lett., 1992, 193, 41. [all data]
Harland and McIntosh, 1985
Harland, P.W.; McIntosh, B.J.,
Enthalpies of formation for the isomeric ions HxCCN+ and HxCNC+ (x = 0-3) by monochromatic electron impact on C2N2, CH3CN and CH3NC.,
Int. J. Mass Spectrom. Ion Processes, 1985, 67, 29. [all data]
Chess, Lapp, et al., 1982
Chess, E.K.; Lapp, R.L.; Gross, M.L.,
The question of tautomerism of alkylnitrile and isonitrile radical cations,
Org. Mass Spectrom., 1982, 17, 475. [all data]
Allam, Migahed, et al., 1982
Allam, S.H.; Migahed, M.D.; El-Khodary, A.,
Electron impact ionization and dissociation of deuterated and non-deuterated methanol, methyl cyanide, nitromethane and nitrobenzene,
Egypt. J. Phys., 1982, 13, 167. [all data]
Rider, Ray, et al., 1981
Rider, D.M.; Ray, G.W.; Darland, E.J.; Leroi, G.E.,
A photoionization mass spectrometric investigation of CH3CN and CD3CN,
J. Chem. Phys., 1981, 74, 1652. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Staley, Kleckner, et al., 1976
Staley, R.H.; Kleckner, J.E.; Beauchamp, J.L.,
Relationship between orbital ionization energies and molecular properties. Proton affinities and photoelectron spectra of nitriles,
J. Am. Chem. Soc., 1976, 98, 2081. [all data]
Lake and Thompson, 1970
Lake, R.F.; Thompson, H.,
The photoelectron spectra of some molecules containing the C N group,
Proc. Roy. Soc. (London), 1970, A317, 187. [all data]
Frost, Herring, et al., 1970
Frost, D.C.; Herring, F.G.; McDowell, C.A.; Stenhouse, I.A.,
The ionization potentials of methyl cyanide and methyl acetylene by photoelectron spectroscopy and semi-rigorous LCAO SCF calculations,
Chem. Phys. Lett., 1970, 4, 533. [all data]
Dibeler and Liston, 1968
Dibeler, V.H.; Liston, S.K.,
Mass-spectrometric study of photoionization. IX. Hydrogen cyanide and acetonitrile,
J. Chem. Phys., 1968, 48, 4765. [all data]
Franklin, Wada, et al., 1966
Franklin, J.L.; Wada, Y.; Natalis, P.; Hierl, P.M.,
Ion-molecule reactions in acetonitrile and propionitrile,
J. Phys. Chem., 1966, 70, 2353. [all data]
Nicholson, 1965
Nicholson, A.J.C.,
Photoionization-efficiency curves. II. False and genuine structure,
J. Chem. Phys., 1965, 43, 1171. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Asbrink, Von Niessen, et al., 1980
Asbrink, L.; Von Niessen, W.; Bieri, G.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 21, 93. [all data]
Reed and Snedden, 1956
Reed, R.I.; Snedden, W.,
Studies in electron impact methods. Part 6.-The formation of the methine and carbon ions,
J. Chem. Soc. Faraday Trans., 1956, 55, 876. [all data]
Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L.,
Correlation of excess energies of electron-impact dissociations with the translational energies of the products,
J.Chem. Phys., 1968, 48, 4093. [all data]
Holmes, Lossing, et al., 1993
Holmes, J.L.; Lossing, F.P.; Mayer, P.M.,
The effects of methyl substitution on the structure and thermochemistry of the cyanomethyl radical and cation,
Chem. Phys. Lett., 1993, 212, 134. [all data]
Pottie and Lossing, 1961
Pottie, R.F.; Lossing, F.P.,
Free radicals by mass spectrometry. XXV. Ionization potentials of cyanoalkyl radicals,
J. Am. Chem. Soc., 1961, 83, 4737. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Zimmerman and Brauman, 1977
Zimmerman, A.H.; Brauman, J.I.,
Electron photodetachment from negative ions of C2v symmetry. Electron affinities of allyl and cyanomethyl radicals,
J. Am. Chem. Soc., 1977, 99, 3565. [all data]
Heni and Illenberger, 1986
Heni, M.; Illenberger, E.,
Electron attachment by saturated nitriles. Acrylonitrile (CH2H3CN), and benzonitrile (C6H5CN),
Int. J. Mass Spectrom. Ion Phys., 1986, 73, 127. [all data]
Shoieb, Aribi, et al., 2001
Shoieb, T.; Aribi, H.; Siu, K.W.M.; Hopkinson, A.C.,
A Study of Silver(I) Ion-Organometallic Complexes: Ion Structures, Binding Energies, and Substituent Effects,
J. Phys. Chem. A, 2001, 105, 4, 710, https://doi.org/10.1021/jp002676m
. [all data]
Li, Ross, et al., 1996
Li, C.; Ross, P.; Szulejko, J.; McMahon, T.B.,
High-Pressure Mass Spectrometric Investigations of the Potential Energy Surfaces of Gas-Phase Sn2 Reactions.,
J. Am. Chem. Soc., 1996, 118, 39, 9360, https://doi.org/10.1021/ja960565o
. [all data]
Markovich, Perera, et al., 1996
Markovich, G.; Perera, L.; Berkowitz, M.L.; Cheshnovsky, O.,
The Solvation of Cl-, Br-, and I- in Acetonitrile Cluster: Photoelectron Spectroscopy and Molecular Dynamics Simulations.,
J. Chem. Phys., 1996, 105, 7, 2675, https://doi.org/10.1063/1.472131
. [all data]
Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S.,
Solvation of Halide Ions with H2O and CH3CN in the Gas Phase,
J. Phys. Chem., 1988, 92, 13, 3943, https://doi.org/10.1021/j100324a051
. [all data]
Yamdagni and Kebarle, 1972
Yamdagni, R.; Kebarle, P.,
Solvation of negative ions by protic and aprotic solvents. Gas phase solvation of halide ions by acetonitrile and water molecules,
J. Am. Chem. Soc., 1972, 94, 2940. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M.,
Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR,
J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p
. [all data]
Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y.,
Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN,
Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8
. [all data]
Speller and Meot-Ner (Mautner), 1985
Speller, C.V.; Meot-Ner (Mautner), M.,
The Ionic Hydrogen Bond and Ion Solvation. 3. Bonds Involving Cyanides. Correlations with Proton Affinites,
J. Phys. Chem., 1985, 81, 24, 5217, https://doi.org/10.1021/j100270a020
. [all data]
Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W.,
The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters,
J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021
. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Meot-ner, 1988, 2
Meot-ner, M.,
The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules,
J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022
. [all data]
El-Shall, Olafsdottir, et al., 1991
El-Shall, M.S.; Olafsdottir, S.; Meot-ner (Mautner), M.; Sieck, L.W.,
Energy effects on cluster ion distributions: Beam expansion and thermochemical studies on mixed clusters of methanol and acetonitrile,
Chem. Phys. Lett., 1991, 185, 3-4, 193, https://doi.org/10.1016/S0009-2614(91)85046-Y
. [all data]
Honma, Sunderlin, et al., 1993
Honma, K.; Sunderlin, L.S.; Armentrout, P.B.,
Guided-Ion Beam Studies of the Reactions of Protonated Water Clusters, H(H2O)n+ (n = 1-4), with Acetonitrile,
J. Chem. Phys., 1993, 99, 3, 1623, https://doi.org/10.1063/1.465331
. [all data]
Allison, Cramer, et al., 1991
Allison, C.E.; Cramer, J.A.; Hop, C.E.C.A.; Szulejko, J.E.; McMahon, T.B.,
Strong Hydrogen Bonding in Gas - Phase Ions. A High - Pressure Mass Spectrometric Study of the Proton Affinity, Proton Transfer Kinetics, and Hydrogen - Bonding Capability of Iron Pentacarbonyl,
J. Am. Chem. Soc., 1991, 113, 12, 4469, https://doi.org/10.1021/ja00012a014
. [all data]
Deakyne, Meot-Ner (Mautner), et al., 1986
Deakyne, C.A.; Meot-Ner (Mautner), M.; Campbell, C.L.; Hughes, M.G.; Murphy, S.P.,
Multicomponent Cluster Ions. 1. The Acetonitrile - Water System,
J. Chem. Phys., 1986, 90, 4648. [all data]
Meot-Ner (Mautner), 1978
Meot-Ner (Mautner), M.,
Solvation of the Proton by HCN and CH3CN. Condensation of HCN with Ions in the Gas Phase.,
J. Am. Chem. Soc., 1978, 100, 15, 4694, https://doi.org/10.1021/ja00483a012
. [all data]
Bromilow, Abboud, et al., 1980
Bromilow, J.; Abboud, J.L.M.; Lebrilla, C.B.; Taft, R.W.; Scorrano, G.; Lucchini, V.,
Oxonium Ions. Solvation by Single Acetonitrile Molecules in the Gas Phase and by Bulk Solvents,
J. Am. Chem. Soc., 1980, 103, 18, 5448, https://doi.org/10.1021/ja00408a028
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Mackay, Rakshit, et al., 1982
Mackay, G.I.; Rakshit, A.B.; Bohme, D.K.,
An Experimental Study of the Reactivity and Relative Basicity of the Methoxide Anion in the Gas Phase at Room Temperature, and their Perturbation by Methanol Solvent,
Can. J. Chem., 1982, 60, 20, 2594, https://doi.org/10.1139/v82-373
. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P.,
Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules,
J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Chowdhury, 1987
Chowdhury, S. Grimsrud,
Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents,
J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Meot-Ner (Mautner), 1989
Meot-Ner (Mautner), M.,
Ion DChemistry of Ferrocene. Thermochemistry of Ionization and Protonation and Solvent Clustering. Slow and Entropy - Driven Proton - Transfer Kinetics,
J. Am. Chem. Soc., 1989, 111, 8, 2830, https://doi.org/10.1021/ja00190a014
. [all data]
El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M.,
Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors,
J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017
. [all data]
Yamabe, Furumiya, et al., 1986
Yamabe, S.; Furumiya, Y.; Hiraoka, K.; Morise, K.,
Theoretical Van't Hoff plots of gas phase ion equilibria of Cl- ion in water, methanol and acetonitrile,
Chem. Phys. Lett., 1986, 131, 261. [all data]
Sieck, 1985
Sieck, L.W.,
Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure.,
J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Ions by Acetonitrile,
J. Am. Chem. Soc., 1976, 98, 20, 6125, https://doi.org/10.1021/ja00436a010
. [all data]
Vitale, 2001
Vitale, G.,
Solvation of Copper Ions by Acetonitrile. Structures and Sequential Binding Energies of Cu+(CH3CN)x, x=1-5 From Collision-Induced Dissociation and Theoretical Studies,
J. Phys. Chem. A, 2001, 105, 50, 11351, https://doi.org/10.1021/jp0132432
. [all data]
Liebman, Romm, et al., 1991
Liebman, J.F.; Romm, M.J.; Meot-Ner (Mautner), M.; Cybulski, S.M.; Scheiner, S.,
Isotropy in ionic interactions. 2. How spherical is the ammonium ion? Comparison of the gas-phase clustering energies and condensed-phase thermochemistry of K+ and NH4+,
J. Phys. Chem., 1991, 95, 3, 1112, https://doi.org/10.1021/j100156a018
. [all data]
Dessent, Bailey, et al., 1995
Dessent, C.E.H.; Bailey, C.G.; Johnson, M.A.,
Dipole-bound excited states of the I-center dot CH3CN and I-center dot(CH3CN)2 ion-molecule complexes: Evidence for asymmetric solvation,
J. Chem. Phys., 1995, 103, 6, 2006, https://doi.org/10.1063/1.469727
. [all data]
Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P.,
Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements,
J. Am. Chem. Soc., 1984, 106, 967. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Valina, 2001
Valina, A.B.,
Collision-Induced Dissociation and Theoretical Studies of Na+-Acetonitrile Complexes,
J. Phys. Chem. A, 2001, 105, 49, 11057, https://doi.org/10.1021/jp0128123
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Yamdagni, Payzant, et al., 1973
Yamdagni, R.; Payzant, J.D.; Kebarle, P.,
Solvation of Cl- and O2- with H2O, CH3OH, and CH3CN in the gas phase,
Can. J. Chem., 1973, 51, 2507. [all data]
Becker, 1959
Becker, R.S.,
J. Mol. Spectroscopy, 1959, 3, 1. [all data]
Görgényi and Héberger, 2003
Görgényi, M.; Héberger, K.,
Minimum in the temperature dependence of the Kováts retention indices of nitroalkanes and alkanenitriles on an apolar phase,
J. Chromatogr. A, 2003, 985, 1-2, 11-19, https://doi.org/10.1016/S0021-9673(02)01842-3
. [all data]
Do and Raulin, 1992
Do, L.; Raulin, F.,
Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column,
J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R
. [all data]
Do and Raulin, 1989
Do, L.; Raulin, F.,
Gas chromatography of Titan's atmosphere. I. Analysis of low-molecular-weight hydrocarbons and nitriles with a PoraPLOT Q porous polymer coated open-tubular capillary column,
J. Chromatogr., 1989, 481, 45-54, https://doi.org/10.1016/S0021-9673(01)96751-2
. [all data]
de Zeeuw, de Nijs, et al., 1988
de Zeeuw, J.; de Nijs, R.C.M.; Buyten, J.C.; Peene, J.A.; Mohne, M.,
PoraPLOT Q: A porous layer open tubular column coated with styrene-divinylbenzene copolymer,
J. Hi. Res. Chromatogr. Chromatogr. Comm., 1988, 11, 2, 162-167, https://doi.org/10.1002/jhrc.1240110204
. [all data]
Winskowski, 1983
Winskowski, J.,
Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren,
Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041
. [all data]
Goebel, 1982
Goebel, K.-J.,
Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe,
J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5
. [all data]
Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J.,
Gas chromatography of polar solutes in electron acceptor stationary phases,
Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125
. [all data]
Rohrschneider, 1966
Rohrschneider, L.,
Eine methode zur charakterisierung von gaschromatographischen trennflüssigkeiten,
J. Chromatogr., 1966, 22, 6-22, https://doi.org/10.1016/S0021-9673(01)97064-5
. [all data]
Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E.,
Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen,
Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745
. [all data]
Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A.,
Determination and origin of the aroma impact compounds of yogurt flavor,
J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e
. [all data]
Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J.,
Sorpcni materialy pro plynovou chromatographii - III,
Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]
Anderson, 1968
Anderson, D.G.,
USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents,
J. Paint Technol., 1968, 40, 527, 549-557. [all data]
Bramston-Cook, 2013
Bramston-Cook, R.,
Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]
Health Safety Executive, 2000
Health Safety Executive,
MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography
in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A.,
New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments,
Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]
Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B.,
Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases,
J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Weller and Wolf, 1989
Weller, J.-P.; Wolf, M.,
Massenspektroskopie und Headspace-GC,
Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Shimadzu, 2012
Shimadzu, Pharmaceutical Related,
Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]
de la Fuente, Martinez-Castro, et al., 2005
de la Fuente, E.; Martinez-Castro, I.; Sanz, J.,
Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography-mass spectrometry,
J. Sep. Sci., 2005, 28, 9-10, 1093-1100, https://doi.org/10.1002/jssc.200500018
. [all data]
Shimadzu Corporation, 2003
Shimadzu Corporation,
Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]
Soria, Martinez-Castro, et al., 2003
Soria, A.C.; Martinez-Castro, I.; Sanz, J.,
Analysis of volatile composition of honey by solid phase microextraction and gas chromatographymass spectrometry,
J. Sep. Sci., 2003, 26, 9-10, 793-801, https://doi.org/10.1002/jssc.200301368
. [all data]
Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T.,
Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system,
J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046
. [all data]
Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F.,
Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS),
J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x
. [all data]
Soria, Martinez-Castro, et al., 2009
Soria, A.C.; Martinez-Castro, I.; Sanz, J.,
Study of the precision in the purge-and-trap-gas-chromatography-mass-spectrometry analysis of volatile compounds in honey,
J. Chromatogr. A., 2009, 1216, 15, 3300-3304, https://doi.org/10.1016/j.chroma.2009.01.065
. [all data]
Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J.,
Some aspects of dynamic headspace analysis of volatile components in honey,
Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010
. [all data]
Notes
Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.