Chrysene
- Formula: C18H12
- Molecular weight: 228.2879
- IUPAC Standard InChIKey: WDECIBYCCFPHNR-UHFFFAOYSA-N
- CAS Registry Number: 218-01-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Benzo[a]phenanthrene; 1,2-Benzophenanthrene; 1,2-Benzphenanthrene; Benz(a)phenanthrene; 1,2,5,6-Dibenzonaphthalene; Rcra waste number U050; Crysene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 64.2 ± 1.1 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are insufficient literature values to properly evaluate the data and insufficient information to construct thermochemical cycles or estimate values for comparison, and one must rely solely upon reported uncertainities and the quality of the measurements. In general, the evaluated uncertainty limits are on the order of (3 to 9) kJ/mol.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
11.72 | 50. | Dorofeeva O.V., 1988 | Recommended values were calculated statistically mechanically using force field approximation for polycyclic aromatic hydrocarbons to estimate the needed vibrational frequencies (see also [ Dorofeeva O.V., 1986, Moiseeva N.F., 1989]). These functions are reproduced in the reference book [ Frenkel M., 1994].; GT |
18.58 | 100. | ||
26.800 | 150. | ||
36.228 | 200. | ||
51.114 | 273.15 | ||
56.23 ± 0.36 | 298.15 | ||
56.604 | 300. | ||
75.746 | 400. | ||
91.711 | 500. | ||
104.48 | 600. | ||
114.67 | 700. | ||
122.93 | 800. | ||
129.70 | 900. | ||
135.33 | 1000. | ||
140.05 | 1100. | ||
144.04 | 1200. | ||
147.43 | 1300. | ||
150.33 | 1400. | ||
152.83 | 1500. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 721.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 531.4 | K | N/A | Casellato, Vecchi, et al., 1973 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 529.0 | K | N/A | Sangster and Irvine, 1956 | Uncertainty assigned by TRC = 2. K; TRC |
Tfus | 527.35 | K | N/A | Schuyer, Blom, et al., 1953 | Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 529.2 | K | N/A | Jones and Neuworth, 1944 | Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 527.9 | K | N/A | Baxter and Hale, 1936 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 25.38 | kcal/mol | CGC | Zhao, Unhannanant, et al., 2008 | AC |
ΔvapH° | 23.2 ± 0.33 | kcal/mol | GC | Haftka, Parsons, et al., 2006 | Based on data from 463. to 513. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 29.5 ± 1.0 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔsubH° | 31.3 ± 1. | kcal/mol | V | Kruif, 1980 | ALS |
ΔsubH° | 31.3 ± 1. | kcal/mol | TE,ME | Kruif, 1980 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
21.4 | 398. | GC | Lei, Chankalal, et al., 2002 | Based on data from 323. to 473. K.; AC |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
28.39 | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
28.1 ± 1. | 400. | ME | Wakayama and Inokuchi, 1967 | See also Cox and Pilcher, 1970.; AC |
29.02 | 385. | N/A | Hoyer and Peperle, 1958 | Based on data from 353. to 418. K.; AC |
28.4 | 353. | V | Hoyer and Peperle, 1958, 2 | ALS |
28.1 | 293. | V | Magnus, Hartmann, et al., 1951 | ALS |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
5.64 | 527. | DSC | Kestens, Auclair, et al., 2010 | AC |
6.250 | 531.4 | DSC | Casellato, Vecchi, et al., 1973, 2 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.50 | 512.2 | Casellato, Vecchi, et al., 1973 | CAL |
11.76 | 531.4 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C18H12+ + C18H12 = (C18H12+ • C18H12)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.2 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28. | cal/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.3 | 418. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
By formula: C18H13+ + C18H12 = (C18H13+ • C18H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.8 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28. | cal/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.6 | 418. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C18H12+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.60 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 201.0 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 193.6 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.320 ± 0.010 | LPES | Tschurl and Boesl, 2006 | B |
0.3970 ± 0.0080 | ECD | Becker and Chen, 1966 | B |
0.33 | ECD | Wentworth and Becker, 1962 | B |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
198.1 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kcal/mol) | Reference | Comment |
---|---|---|
192.3 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
7.60 ± 0.03 | PE | Shahbaz, Akiyama, et al., 1981 | LLK |
8.0 ± 0.2 | EI | Shushan and Boyd, 1980 | LLK |
7.59 ± 0.05 | EQ | Mautner(Meot-Ner), 1980 | LLK |
7.60 ± 0.01 | PE | Boschi, Murrell, et al., 1972 | LLK |
8.0 ± 0.3 | EI | Wacks, 1964 | RDSH |
7.82 | CTS | Kuroda, 1964 | RDSH |
7.83 | CTS | Briegleb, 1964 | RDSH |
7.68 | CTS | Kinoshita, 1962 | RDSH |
7.75 | CTS | Briegleb, Czekalla, et al., 1961 | RDSH |
7.80 | CTS | Birks and Stifkin, 1961 | RDSH |
7.78 | CTS | Briegleb and Czekalla, 1959 | RDSH |
7.72 | CTS | Matsen, 1956 | RDSH |
7.59 ± 0.02 | PE | Schmidt, 1977 | Vertical value; LLK |
7.59 | PE | Clar and Schmidt, 1976 | Vertical value; LLK |
7.61 | PE | Brogli and Heilbronner, 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C16H10+ | 16.6 ± 0.3 | C2H2 | EI | Shushan and Boyd, 1980 | LLK |
C18H11+ | 15.1 ± 0.3 | H | EI | Shushan and Boyd, 1980 | LLK |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Chemical Concepts |
NIST MS number | 149624 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Badger, Jamieson, et al., 1965 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 7488 |
Instrument | n.i.g. |
Melting point | 258.2 |
Boiling point | 448 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | CP Sil 5 CB | 240. | 2406. | Hanai and Hong, 1989 | 30. m/0.25 mm/0.25 μm |
Capillary | SE-30 | 240. | 2429. | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-30 | 240. | 2438. | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-30 | 240. | 2439. | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-30 | 240. | 2447. | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-30 | 260. | 2480. | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-30 | 260. | 2486. | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-30 | 260. | 2488. | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-30 | 260. | 2491. | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-52 | 240. | 2461.9 | Pozhidaev, Berezkin, et al., 1988 | He; Column length: 17.5 m; Column diameter: 0.21 mm |
Capillary | SE-30 | 220. | 2408. | Korhonen and Lind, 1985 | N2; Column length: 25. m; Column diameter: 0.33 mm |
Capillary | SE-30 | 240. | 2456. | Korhonen and Lind, 1985 | N2; Column length: 25. m; Column diameter: 0.33 mm |
Packed | OV-101 | 250. | 2489. | Rudenko, Bulychova, et al., 1984 | N2; Column length: 3. m |
Capillary | OV-101 | 270. | 2490. | Grimmer and Böhnke, 1972 | N2; Column length: 50. m; Column diameter: 0.50 mm |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 2472.3 | Song, Lai, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C |
Capillary | DB-5 | 2471.8 | Song, Lai, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 4. K/min; Tend: 310. C |
Capillary | DB-5 | 2434.2 | Song, Lai, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C |
Capillary | DB-5 | 2472.3 | Song, Lai, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C |
Capillary | DB-5 | 2494.9 | Song, Lai, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C |
Capillary | OV-1 | 2474.4 | Zhang, Shen, et al., 2000 | 25. m/0.2 mm/0.33 μm, 5. K/min; Tstart: 100. C; Tend: 180. C |
Capillary | Ultra-1 | 2442.66 | Richmond and Pombo-Villar, 1997 | 25. m/0.32 mm/0.52 μm, 15. K/min, 320. C @ 10. min; Tstart: 35. C |
Capillary | OV-1 | 2442.5 | Gautzsch and Zinn, 1996 | 8. K/min; Tstart: 35. C; Tend: 300. C |
Capillary | DB-5 | 2434.2 | Lai and Song, 1995 | 30. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C |
Capillary | DB-5 | 2472.3 | Lai and Song, 1995 | 30. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C |
Capillary | DB-5 | 2494.9 | Lai and Song, 1995 | 30. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C |
Capillary | DB-5 | 2412.3 | Lai and Song, 1995 | 30. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C |
Capillary | DB-5 | 2471.8 | Lai and Song, 1995 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 4. K/min; Tend: 310. C |
Capillary | SE-30 | 2463.1 | Pozhidaev, Berezkin, et al., 1988 | He, 2. K/min; Column length: 17.5 m; Column diameter: 0.21 mm; Tstart: 100. C; Tend: 280. C |
Capillary | SE-52 | 2432.2 | Pozhidaev, Berezkin, et al., 1988 | He, 2. K/min; Column length: 17.5 m; Column diameter: 0.21 mm; Tstart: 100. C; Tend: 280. C |
Capillary | SE-30 | 2465. | Korhonen and Lind, 1985 | N2, 10. K/min; Column length: 25. m; Column diameter: 0.33 mm; Tstart: 100. C; Tend: 320. C |
Capillary | SE-30 | 2454. | Korhonen and Lind, 1985 | N2, 6. K/min; Column length: 25. m; Column diameter: 0.33 mm; Tstart: 140. C; Tend: 320. C |
Capillary | SE-52 | 2400. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 33.3 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2400. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2400. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2400. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2400. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2413. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2413. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2413. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2413. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2422. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2422. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2424. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2431. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2434. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2437. | Beernaert, 1979 | He, 50. C @ 5. min, 6. K/min; Column length: 16.6 m; Column diameter: 0.50 mm; Tend: 320. C |
Capillary | SE-52 | 2397. | Cantuti, Cartoni, et al., 1965 | N2, 2.5 K/min; Column length: 50. m; Tstart: 100. C; Tend: 300. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-1 | 2409.82 | Dimitriou-Christidis, Harris, et al., 2003 | 30. m/0.25 mm/0.25 μm; Program: 60C => 7C/min => 225C => 15C/min => 300C(11.43min) |
Capillary | HP-5 | 2471.68 | Dimitriou-Christidis, Harris, et al., 2003 | 30. m/0.25 mm/0.25 μm; Program: 60C => 7C/min => 225C => 15C/min => 300C(11.43min) |
Capillary | DB-5 | 2486. | Havenga and Rohwer, 1999 | 30. m/0.25 mm/0.25 μm, He; Program: 60 0C 7 0C/min -> 130 0C 5 0C/min -> 200 0C 6 0C/min -> 260 0C 20 0C/min -> 320 0C (4 min) |
Capillary | OV-101 | 2443. | Yasuhara, Shiraishi, et al., 1997 | 15. m/0.25 mm/0.25 μm, He; Program: 50C(2min) => (20C/min) => 120C => (7C/min) => 310C(10min) |
Capillary | 5 % Phenyl methyl siloxane | 2441. | Yasuhara, Shiraishi, et al., 1997 | 25. m/0.31 mm/0.52 μm, He; Program: 50C(2min) => (20C/min) => 120C => (7C/min) => 310C(10min) |
Capillary | Methyl Silicone | 2401. | Oda, Ichikawa, et al., 1996 | Program: 50C (2min) => 20C/min => 160C => 5C/min => 210C => 10C/min => 300C |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5 | 2450. | Miao and Wu, 1999 | 30. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C |
Capillary | HP-5 | 2451. | Miao and Wu, 1999 | 30. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C |
Capillary | HP-5 | 2457. | Miao and Wu, 1999 | 30. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C |
Capillary | HP-5 | 2458. | Miao and Wu, 1999 | 30. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C |
Capillary | HP-5 | 2462. | Miao and Wu, 1999 | 30. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C |
Capillary | HP-5 | 2463. | Miao and Wu, 1999 | 30. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C |
Capillary | HP-5 | 2491. | Miao and Wu, 1999 | 30. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C |
Capillary | HP-5 | 2492. | Miao and Wu, 1999 | 30. m/0.32 mm/0.25 μm, 50. C @ 2. min, 5. K/min; Tend: 310. C |
Capillary | Ultra-1 | 2428. | Elizalde-González, Hutfliess, et al., 1996 | 50. m/0.2 mm/0.33 μm, H2, 3. K/min, 300. C @ 35. min; Tstart: 60. C |
Capillary | DB-5 | 2453. | Quilliam, Lant, et al., 1985 | 30. m/0.32 mm/0.1 μm, He, 10. K/min; Tstart: 60. C; Tend: 290. C |
Capillary | DB-5 | 2456. | Quilliam, Lant, et al., 1985 | 30. m/0.32 mm/0.1 μm, He, 10. K/min; Tstart: 60. C; Tend: 290. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 2411. | Oda, Yasuhara, et al., 1998 | 25. m/0.25 mm/0.25 μm, He; Program: 50 0C (2 min) 20 0C/min -> 160 0C 5 0C/min -> 210 0C 10 0C/min -> 300 0C |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 2465. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1986, 102, 59-66. [all data]
Moiseeva N.F., 1989
Moiseeva N.F.,
Development of Benson group additivity method for estimation of ideal gas thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1989, 153, 77-85. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Casellato, Vecchi, et al., 1973
Casellato, F.; Vecchi, C.; Girell, A.,
Differential calorimetric study of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1973, 6, 4, 361, https://doi.org/10.1016/0040-6031(73)87003-0
. [all data]
Sangster and Irvine, 1956
Sangster, R.C.; Irvine, J.W.,
Study of Organic Scintillators,
J. Chem. Phys., 1956, 24, 670. [all data]
Schuyer, Blom, et al., 1953
Schuyer, J.; Blom, L.; Van Krevelen, D.W.,
Molar refraction of condensed aromatic compounds.,
Trans. Faraday Soc., 1953, 49, 1391. [all data]
Jones and Neuworth, 1944
Jones, R.C.; Neuworth, M.B.,
The Ultraviolet Absorption Spectra of Hydrocarbon-Trinitrobenzene Complexes,
J. Am. Chem. Soc., 1944, 66, 1497. [all data]
Baxter and Hale, 1936
Baxter, G.P.; Hale, A.H.,
A Revision of the Atomic Weight of Carbon,
J. Am. Chem. Soc., 1936, 58, 510. [all data]
Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S.,
Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects,
J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s
. [all data]
Haftka, Parsons, et al., 2006
Haftka, Joris J.H.; Parsons, John R.; Govers, Harrie A.J.,
Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography,
Journal of Chromatography A, 2006, 1135, 1, 91-100, https://doi.org/10.1016/j.chroma.2006.09.050
. [all data]
Kruif, 1980
Kruif, C.G.,
Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons,
J. Chem. Thermodyn., 1980, 12, 243-248. [all data]
Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank,
Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons,
J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148
. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Wakayama and Inokuchi, 1967
Wakayama, Nobuko; Inokuchi, Hiroo,
Heats of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Molecular Packings,
Bull. Chem. Soc. Jpn., 1967, 40, 10, 2267-2271, https://doi.org/10.1246/bcsj.40.2267
. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Hoyer and Peperle, 1958, 2
Hoyer, H.; Peperle, W.,
Dampfdrunkmessungen an organischen substanzen und ihre sublimationswarmen,
Z. Electrochem., 1958, 62, 61-66. [all data]
Magnus, Hartmann, et al., 1951
Magnus, A.; Hartmann, H.; Becker, F.,
Verbrennungswarmen und resonanzenergien von mehrkernigen aromatischen kohlenwasserstoffen,
Z. Phys. Chem., 1951, 197, 75-91. [all data]
Kestens, Auclair, et al., 2010
Kestens, Vikram; Auclair, Guy; Drozdzewska, Katarzyna; Held, Andrea; Roebben, Gert; Linsinger, Thomas,
Thermodynamic property values of selected polycyclic aromatic hydrocarbons measured by differential scanning calorimetry,
J Therm Anal Calorim, 2010, 99, 1, 245-261, https://doi.org/10.1007/s10973-009-0440-6
. [all data]
Casellato, Vecchi, et al., 1973, 2
Casellato, F.; Vecchi, C.; Girelli, A.; Casu, B.,
Differential calorimetric study of polycyclic aromatic hydrocarbons,
Thermochimica Acta, 1973, 6, 4, 361-368, https://doi.org/10.1016/0040-6031(73)87003-0
. [all data]
Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M.,
Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization,
J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Tschurl and Boesl, 2006
Tschurl, M.; Boesl, U.,
Photodetachment-photoelectron spectroscopy of jet-cooled chrysene,
Int. J. Mass Spectrom., 2006, 249, 364-369, https://doi.org/10.1016/j.ijms.2005.11.024
. [all data]
Becker and Chen, 1966
Becker, R.S.; Chen, E.,
Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons,
J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954
. [all data]
Wentworth and Becker, 1962
Wentworth, W.E.; Becker, R.S.,
Potential Method for the Determination of Electron Affinities of Molecules: Application to Some Aromatic Hydrocarbons.,
J. Am. Chem. Soc., 1962, 84, 22, 4263, https://doi.org/10.1021/ja00881a014
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Shahbaz, Akiyama, et al., 1981
Shahbaz, M.; Akiyama, I.; LeBreton, P.,
Ultraviolet photoelectron studies of methyl substituted chrysenes,
Biochem. Biophys. Res. Commun., 1981, 103, 25. [all data]
Shushan and Boyd, 1980
Shushan, B.; Boyd, R.K.,
Unimolecular and collision induced fragmentations of molecular ions of polycyclic aromatic hydrocarbons,
Org. Mass Spectrom., 1980, 15, 445. [all data]
Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M.,
Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite,
J. Phys. Chem., 1980, 84, 2716. [all data]
Boschi, Murrell, et al., 1972
Boschi, R.; Murrell, J.N.; Schmidt, W.,
Photoelectron spectra of polycyclic aromatic hydrocarbons,
Faraday Discuss. Chem. Soc., 1972, 54, 116. [all data]
Wacks, 1964
Wacks, M.E.,
Electron-impact studies of aromatic hydrocarbons. II. Naphthacene, naphthaphene, chrysene, triphenylene, and pyrene,
J. Chem. Phys., 1964, 41, 1661. [all data]
Kuroda, 1964
Kuroda, H.,
Ionization potentials of polycyclic aromatic hydrocarbons,
Nature, 1964, 201, 1214. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Briegleb, Czekalla, et al., 1961
Briegleb, G.; Czekalla, J.; Reuss, G.,
Mesomeriemomente und Elektronenuberfuhrungsbanden von Elektronen-donator-akzeptor-komplexen des Chloranils und Tetracyanathylens mit aromatischen Kohlenwasserstoffen,
Z. Phys. Chem. (Neue Folge), 1961, 30, 333. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Matsen, 1956
Matsen, F.A.,
Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons,
J. Chem. Phys., 1956, 24, 602. [all data]
Schmidt, 1977
Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series,
J. Chem. Phys., 1977, 66, 828. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Brogli and Heilbronner, 1972
Brogli, F.; Heilbronner, E.,
The photoelectron spectra of benzenoid hydrocarbons C18H12,
Angew. Chem. Int. Ed. Engl., 1972, 11, 538. [all data]
Badger, Jamieson, et al., 1965
Badger, G.M.; Jamieson, N.C.; Lewis, G.E.,
Photochemical reactions of azo compounds. IV. Further photochemical cyclodehydrogenations,
Aust. J. Chem., 1965, 18, 190-198. [all data]
Hanai and Hong, 1989
Hanai, T.; Hong, C.,
Structure-retention correlation in CGC,
J. Hi. Res. Chromatogr., 1989, 12, 5, 327-332, https://doi.org/10.1002/jhrc.1240120517
. [all data]
Pozhidaev, Berezkin, et al., 1988
Pozhidaev, V.M.; Berezkin, V.G.; Korolev, A.A.; Popova, T.P.; Pozhidaeva, K.A.,
Retention indices of polycyclic aromatic hydrocarbons on quartz capillary columns with chemically immobilized stationary phases,
Zh. Anal. Khim., 1988, 43, 1082-1088. [all data]
Korhonen and Lind, 1985
Korhonen, I.O.O.; Lind, M.A.,
Gas-liquid chromatographic analyses. XXXIV. Separation and retention indices with retention increments of some nitrated polynuclear aromatic hydrocarbons on a low-polarity (SE-30) capillary column,
J. Chromatogr., 1985, 322, 71-81, https://doi.org/10.1016/S0021-9673(01)97660-5
. [all data]
Rudenko, Bulychova, et al., 1984
Rudenko, B.A.; Bulychova, Z.Yu.; Topunov, V.N.; Itsikson, L.B.,
Regularities in changes of retention indices for polycyclic aromatic hydrocarbons depending on their structure and polarity of stationary phase,
Zh. Anal. Khim., 1984, 39, 4, 700-706. [all data]
Grimmer and Böhnke, 1972
Grimmer, G.; Böhnke, H.,
Bestimmung des Gesamtgehaltes aller polycyclischen aromatischen Kohlenwasserstoffe in Luftstaub und Kraftfahrzeugabgas mit der Capillar-Gas-Chromatographie,
Z. Anal. Chem., 1972, 261, 4-5, 310-314, https://doi.org/10.1007/BF00786987
. [all data]
Song, Lai, et al., 2003
Song, C.; Lai, W.-C.; Madhusudan Reddy, K.; Wei, B.,
Chapter 7. Temperature-programmed retention indices for GC and GC-MS of hydrocarbon fuels and simulated distillation GC of heavy oils
in Analytical advances for hydrocarbon research, Hsu,C.S., ed(s)., Kluwer Academic/Plenum Publishers, New York, 2003, 147-193. [all data]
Zhang, Shen, et al., 2000
Zhang, M.-J.; Shen, S.-D.; Chen, S.-Y.; Sun, Y.-H.,
Analysis of heavy oil fractions in high-temperature coal tar by capillary gas chromatography/fourier transform infrared spectrometry,
Chin. J. Chromatogr., 2000, 18, 3, 241-246. [all data]
Richmond and Pombo-Villar, 1997
Richmond, R.; Pombo-Villar, E.,
Short communication. Gas chromatography-mass spectrometry coupled with pseudo-Sadtler retention indices, for the identification of components in the essential oil of Curcuma longa L.,
J. Chromatogr. A, 1997, 760, 2, 303-308, https://doi.org/10.1016/S0021-9673(96)00802-3
. [all data]
Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P.,
Use of incremental models to estimate the retention indexes of aromatic compounds,
Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946
. [all data]
Lai and Song, 1995
Lai, W.-C.; Song, C.,
Temperature-programmed retention indices for g.c. and g.c.-m.s. analysis of coal- and petroleum-derived liquid fuels,
Fuel, 1995, 74, 10, 1436-1451, https://doi.org/10.1016/0016-2361(95)00108-H
. [all data]
Beernaert, 1979
Beernaert, H.,
Gas Chromatographic Analysis of Polyclylic Aromatic Hydrocarbons,
J. Chromatogr., 1979, 173, 1, 109-118, https://doi.org/10.1016/S0021-9673(01)80450-7
. [all data]
Cantuti, Cartoni, et al., 1965
Cantuti, V.; Cartoni, G.P.; Liberti, A.; Torri, A.G.,
Improved evaluation of polynuclear hydrocarbons in atmospheric dust by gas chromatography,
J. Chromatogr., 1965, 17, 60-65, https://doi.org/10.1016/S0021-9673(00)99836-4
. [all data]
Dimitriou-Christidis, Harris, et al., 2003
Dimitriou-Christidis, P.; Harris, B.C.; McDonald, T.J.; Reese, E.; Autenrieth, R.L.,
Estimation of selected physicochemical properties for methylated naphthalene compounds,
Chemosphere, 2003, 52, 5, 869-881, https://doi.org/10.1016/S0045-6535(03)00288-1
. [all data]
Havenga and Rohwer, 1999
Havenga, W.J.; Rohwer, E.R.,
Chemical Characterization and Screening of Hydrocarbon Pollution in Industrial Soils by Headspace Solid-Phase Microextraction,
J. Chromatogr., 1999, 848, 1-2, 279-295, https://doi.org/10.1016/S0021-9673(99)00522-1
. [all data]
Yasuhara, Shiraishi, et al., 1997
Yasuhara, A.; Shiraishi, H.; Nishikawa, M.; Yamamoto, T.; Uehiro, T.; Nakasugi, O.; Okumura, T.; Kenmotsu, K.; Fukui, H.; Nagase, M.; Ono, Y.; Kawagoshi, Y.; Baba, K.; Noma, Y.,
Determination of organic components in leachates from hazardous waste disposal sites in Japan by gas chromatography-mass spectrometry,
J. Chromatogr. A, 1997, 774, 1-2, 321-332, https://doi.org/10.1016/S0021-9673(97)00078-2
. [all data]
Oda, Ichikawa, et al., 1996
Oda, J.; Ichikawa, S.; Mori, T.,
Analysis of polycyclic aromatic hydrocarbons in airborne particulates by capillary GC/MS method with programmed temperature relative retention index,
Bunseki Kagaku, 1996, 45, 9, 825-835, https://doi.org/10.2116/bunsekikagaku.45.825
. [all data]
Miao and Wu, 1999
Miao, X.; Wu, F.,
Study on retention behaviors of polycyclic aromatic hydrocarbons by gas chromatography in different operation models,
J. Instrumental Anal., 1999, 15, 4, 288-292. [all data]
Elizalde-González, Hutfliess, et al., 1996
Elizalde-González, M.P.; Hutfliess, M.; Hedden, K.,
Retention index system, adsorption characteristics, and sructure correlations of polycyclic aromatic hydrocarbons in fuels,
J. Hi. Res. Chromatogr., 1996, 19, 6, 345-352, https://doi.org/10.1002/jhrc.1240190608
. [all data]
Quilliam, Lant, et al., 1985
Quilliam, M.A.; Lant, M.S.; Kaiser-Farrell, C.; McCalla, D.R.; Sheldrake, C.P.; Kerr, A.A.; Lockington, J.N.; Gibson, E.S.,
Identification of polycyclic aromatic compounds in of poly-mutagenic emissions from steel casting,
Biomed. Mass Spectrom., 1985, 12, 4, 143-150, https://doi.org/10.1002/bms.1200120402
. [all data]
Oda, Yasuhara, et al., 1998
Oda, J.; Yasuhara, A.; Matsunaga, K.; Saito, Y.,
Identification of polycyclic aromatic hydrocarbons of the particulate accumulated in the tunnel duct of freeway and generation of their oxygenated derivatives,
Jpn. J. Toxicol. Environ. Health, 1998, 44, 5, 334-351, https://doi.org/10.1248/jhs1956.44.334
. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas EA Electron affinity IE (evaluated) Recommended ionization energy T Temperature Tboil Boiling point Tfus Fusion (melting) point ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.