Benzoic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
24.730298.15Stull D.R., 1969These values were calculated from preliminary assignment of vibrational frequencies. Statistical calculation [ Ali N., 1983] seems to be erroneous.
24.859300.
33.069400.
40.760500.
47.020600.
52.060700.
56.140800.
59.500900.
62.2991000.

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil522.2KN/AWeast and Grasselli, 1989BS
Tboil522.KN/ABuckingham and Donaghy, 1982BS
Tboil523.18KN/ABurriel, 1931Uncertainty assigned by TRC = 0.2 K; TRC
Tboil523.59KN/ABurriel, 1931Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tfus395.2 ± 0.7KAVGN/AAverage of 18 out of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple395.52KN/AMarsh, 1987Uncertainty assigned by TRC = 0.005 K; recommended as calibration standard; TRC
Ttriple395.520KN/AAndon and Connett, 1980Uncertainty assigned by TRC = 0.01 K; TRC
Ttriple395.52KN/AGinnings and Furukawa, 1953Uncertainty assigned by TRC = 0.01 K; TRC
Ttriple395.52KN/AFurukawa, McCoskey, et al., 1951Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Δvap18.9kcal/molCGCChickos, Hosseini, et al., 1995Based on data from 353. to 393. K.; AC
Quantity Value Units Method Reference Comment
Δsub21.4 ± 0.9kcal/molAVGN/AAverage of 13 values; Individual data points

Reduced pressure boiling point

Tboil (K) Pressure (atm) Reference Comment
406.20.013Weast and Grasselli, 1989BS
406.0.013Buckingham and Donaghy, 1982BS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
20.901335.N/ATorres-Gomez, Barreiro-Rodriguez, et al., 1988DH
15.1 ± 0.1401. to 416.N/APena, Ribet, et al., 2003AC
15.8420.AStephenson and Malanowski, 1987Based on data from 405. to 523. K.; AC
16.2368. to 428.GSMatsubara and Kuwamoto, 1985AC
15.6428.ICramer, 1943AC
16.2416.MM,AKlosky, Woo, et al., 1927Based on data from 401. to 520. K.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
62.38335.Torres-Gomez, Barreiro-Rodriguez, et al., 1988DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
369. to 522.44.472631771.357-127.484Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
21.326298.15N/ATorres-Gomez, Barreiro-Rodriguez, et al., 1988DH
21.7 ± 0.48340. to 410.TG-TSSelvakumar, Raghunathan, et al., 2009AC
21.5 ± 0.1307.MERibeiro da Silva, Monte, et al., 2006Based on data from 299. to 317. K.; AC
22.1 ± 1.294. to 331.MEGinkel, Kruif, et al., 2001AC
21.6 ± 0.07323. to 394.GSZielenkiewicz, Perlovich, et al., 1999AC
20.7313. to 343.TGAElder, 1997AC
21.2 ± 0.2311.MEDa Silva and Monte, 1990Based on data from 307. to 314. K.; AC
20.9 ± 0.07335.CTorres-Gomez, Barreiro-Rodriguez, et al., 1988AC
21.7 ± 0.1306.QRGlukhova, Arkhangelova, et al., 1985Based on data from 293. to 319. K.; AC
22.7 ± 0.43294.N/AKaisersberger, Hädrich, et al., 1985AC
21.0368. to 428.GSMatsubara and Kuwamoto, 1985AC
21.7 ± 0.5293. to 313.MEColomina, Jimenez, et al., 1982AC
21.4 ± 0.01353.DMde Kruif and Blok, 1982Based on data from 316. to 391. K.; AC
21.3 ± 0.05320. to 370.CMurata, Sakiyama, et al., 1982AC
20. ± 0.5369.SGSachinidis and Hill, 1980Based on data from 344. to 395. K.; AC
21.1 ± 0.69281. to 323.LENowak, Szczepaniak, et al., 1978AC
21.2 ± 0.38293. to 318.TEDeKruif, van Ginkel, et al., 1975AC
22.2 ± 0.05296.MEArshadi, 1974Based on data from 273. to 318. K.; AC
21.1 ± 0.05293. to 311.TCMde Kruif and Oonk, 1973AC
21.3 ± 0.1338. to 383.MEMalaspina, 1973AC
21.3 ± 0.1338. to 383.CMalaspina, 1973AC
22. ± 0.07293. to 308.MEColomina, Monzon, et al., 1972AC
20.7 ± 0.31290. to 315.ME,CWiedemann, 1972AC
21.3314.N/AAshcroft, 1971Based on data from 299. to 329. K.; AC
21.6 ± 0.2367.HSAMelia and Merrifield, 1970Based on data from 324. to 392. K.; AC
20.7 ± 0.41303.MEWiedemann and Waughna, 1970Based on data from 290. to 315. K. See also Zielenkiewicz, Perlovich, et al., 1999.; AC
21.2 ± 0.1363.GSMertl, 1968Based on data from 348. to 378. K.; AC
21.7299.MEDavies and Kybett, 1965Based on data from 291. to 307. K.; AC
20.1 ± 0.2318.TEWolf and Weghofer, 1938AC
20.1 ± 0.2318.VWolf and Weghofer, 1938, 2ALS
20.5383.THirsbrunner, 1934Based on data from 333. to 389. K.; AC
20.2 ± 0.1364.IKlosky, Woo, et al., 1927Based on data from 377. to 394. K.; AC

Entropy of sublimation

ΔsubS (cal/mol*K) Temperature (K) Reference Comment
71.53298.15Torres-Gomez, Barreiro-Rodriguez, et al., 1988DH

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
4.3035395.52N/AGinnings and Furukawa, 1953, 2DH
4.3021395.52N/AFurukawa, McCoskey, et al., 1951, 2DH
4.061396.9DSCBrittain, 2009AC
4.13394.4DSCSharma, Kant, et al., 2003See also Sharma, Jamwal, et al., 2004.; AC
4.09395.4DSCRoy, Riga, et al., 2002AC
4.300395.5N/APitzer, Peiper, et al., 1984AC
3.8791395.N/APacor, 1967DH
4.1396395.0N/AAndrews, Lynn, et al., 1926DH
4.1587395.N/ADavid, 1964Temperature not measured.; DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
10.88395.52Ginnings and Furukawa, 1953, 2DH
10.88395.52Furukawa, McCoskey, et al., 1951, 2DH
9.82395.Pacor, 1967DH
10.5395.0Andrews, Lynn, et al., 1926DH
11.395.David, 1964Temperature; DH

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
4.3169395.527crystaline, IliquidAndon and Connett, 1980, 2DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
10.92395.527crystaline, IliquidAndon and Connett, 1980, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

benzoate anion + Hydrogen cation = Benzoic acid

By formula: C7H5O2- + H+ = C7H6O2

Quantity Value Units Method Reference Comment
Δr340.1 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr340.0 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder; B
Δr340.2 ± 2.2kcal/molG+TSCaldwell, Renneboog, et al., 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr333.0 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr332.9 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder; B
Δr333.1 ± 2.0kcal/molIMRECaldwell, Renneboog, et al., 1989gas phase; B

Bromine anion + Benzoic acid = (Bromine anion • Benzoic acid)

By formula: Br- + C7H6O2 = (Br- • C7H6O2)

Quantity Value Units Method Reference Comment
Δr18.3 ± 1.8kcal/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B,M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr9.8 ± 1.0kcal/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
9.8423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

Water + Benzoyl chloride = Benzoic acid + Hydrogen chloride

By formula: H2O + C7H5ClO = C7H6O2 + HCl

Quantity Value Units Method Reference Comment
Δr-8.136 ± 0.050kcal/molCmMoselhy and Pritchard, 1975liquid phase; solvent: Diphenyl-ether; see Carson, Pritchard, et al., 1950 and Davies, Dunning, et al., 1972; ALS
Δr-24.35kcal/molCmCarson, Pritchard, et al., 1950liquid phase; Heat of hydrolysis; ALS

Benzaldehyde + perbenzoic acid = 2Benzoic acid

By formula: C7H6O + C7H6O3 = 2C7H6O2

Quantity Value Units Method Reference Comment
Δr-75.6 ± 3.0kcal/molCmBriner and Chastonay, 1954liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -75.7 ± 3.0 kcal/mol; ALS

Benzoyl bromide + Water = Hydrogen bromide + Benzoic acid

By formula: C7H5BrO + H2O = HBr + C7H6O2

Quantity Value Units Method Reference Comment
Δr-27.04kcal/molCmCarson, Pritchard, et al., 1950liquid phase; Heat of hydrolysis; ALS

Benzoyl iodide + Water = Hydrogen iodide + Benzoic acid

By formula: C7H5IO + H2O = HI + C7H6O2

Quantity Value Units Method Reference Comment
Δr-24.47kcal/molCmCarson, Pritchard, et al., 1950liquid phase; Heat of hydrolysis; ALS

Water + Benzoic acid, methyl ester = Benzoic acid + Methyl Alcohol

By formula: H2O + C8H8O2 = C7H6O2 + CH4O

Quantity Value Units Method Reference Comment
Δr-17.44 ± 0.45kcal/molEqkGuthrie and Cullimore, 1980liquid phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)196.2kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity188.8kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.3PEKlasinc, Kovac, et al., 1983LBLHLM
9.6PEMeeks, Wahlborg, et al., 1981LLK
9.8 ± 0.2EIBenoit, 1973LLK
9.75EIBenoit, 1973, 2LLK
9.73 ± 0.09EIFoffani, Pignataro, et al., 1964RDSH
9.47PEKlasinc, Kovac, et al., 1983Vertical value; LBLHLM

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C6H5+14.3 ± 0.07?EITajima, Azami, et al., 1977LLK
C6H5+15.1 ± 0.2CO+OHEIBenoit, 1973LLK
C6H5+15.08CO+OHEIBenoit, 1973, 2LLK
C7H5O+11.5 ± 0.07OHEITajima, Azami, et al., 1977LLK
C7H5O+12.1 ± 0.2OHEIBenoit, 1973LLK
C7H5O+12.11OHEIBenoit, 1973, 2LLK

De-protonation reactions

benzoate anion + Hydrogen cation = Benzoic acid

By formula: C7H5O2- + H+ = C7H6O2

Quantity Value Units Method Reference Comment
Δr340.1 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr340.0 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder; B
Δr340.2 ± 2.2kcal/molG+TSCaldwell, Renneboog, et al., 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr333.0 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr332.9 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder; B
Δr333.1 ± 2.0kcal/molIMRECaldwell, Renneboog, et al., 1989gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 290514

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Newman and Deno, 1951
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 221
Instrument Beckman spectrophotometer
Melting point 122.4
Boiling point 249.2

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5MS1193.Alissandrakis E., Tarantilis P.A., et al., 200730. m/0.25 mm/0.25 μm, He; Program: 40C(3min) => 3C/min => 160C => 10C/min => 200C
CapillaryBP-11159.Khan, Verma, et al., 200630. m/0.32 mm/0.25 μm, N2; Program: 60C => 5C/min => 220C (5min) => 3C/min => 245C(5min)

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-11160.Osorio, Alarcon, et al., 200625. m/0.2 mm/0.33 μm, 4. K/min; Tstart: 50. C; Tend: 300. C
CapillaryDB-51170.Alves, Pinto, et al., 200530. m/0.25 mm/0.25 μm, H2, 5. K/min, 270. C @ 20. min; Tstart: 35. C
CapillaryHP-5MS1159.Lalel, Singh, et al., 200360. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min, 310. C @ 20. min
CapillaryHP-5MS1178.Papandreou, Magiatis, et al., 200230. m/0.25 mm/0.25 μm, 60. C @ 5. min, 3. K/min; Tend: 280. C
CapillaryOV-11174.Valero, Sanz, et al., 199920. m/0.32 mm/0.3 μm, He, 45. C @ 5. min, 10. K/min, 220. C @ 10. min
CapillaryDB-51191.Sakho, Chassagne, et al., 1997H2, 60. C @ 3. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 220. C
CapillaryDB-11191.Adedeji, Hartman, et al., 199260. m/0.32 mm/0.25 μm, He, 40. C @ 3. min, 2. K/min, 280. C @ 10. min
CapillarySE-541188.8Shapi and Hesso, 199025. m/0.32 mm/0.15 μm, He, 40. C @ 1. min, 5. K/min, 280. C @ 15. min
PackedSE-301168.Peng, Ding, et al., 1988He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryBPX-51185.Elmore, Erbahadir, et al., 199750. m/0.32 mm/0.5 μm, He; Program: 0C (5min) => 40C/min => 40C (2min) => 10C/min => 280C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax2433.Pozo-Bayon M.A., Ruiz-Rodriguez A., et al., 200730. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 4. K/min, 250. C @ 15. min
CapillaryDB-Wax2412.Osorio, Alarcon, et al., 200630. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min
CapillarySupelcowax-102387.Chung, Fung, et al., 200560. m/0.25 mm/0.25 μm, 35. C @ 5. min, 6. K/min, 195. C @ 60. min
CapillaryStabilwax2446.Fang and Qian, 200530. m/0.32 mm/1. μm, N2, 40. C @ 2. min, 4. K/min, 230. C @ 10. min
CapillaryCarbowax 20M2380.Verzera, Campisi, et al., 200560. m/0.25 mm/0.25 μm, He, 45. C @ 0.17 min, 2. K/min; Tend: 250. C
CapillarySupelcowax-102444.Moreira, Trugo, et al., 200230. m/0.25 mm/0.25 μm, He, 3. K/min, 230. C @ 30. min; Tstart: 50. C
CapillaryCP-Wax 52CB2380.Verzera, Campisi, et al., 200160. m/0.25 mm/0.25 μm, He, 45. C @ 0.17 min, 2. K/min; Tend: 250. C
CapillaryDB-Wax2420.Moio, Piombino, et al., 200030. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax2423.Moio, Piombino, et al., 200030. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax2405.Chassagne, Boulanger, et al., 199930. m/0.25 mm/0.25 μm, H2, 60. C @ 3. min, 2. K/min; Tend: 220. C
CapillaryDB-Wax2420.Moio and Addeo, 199830. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax2423.Moio and Addeo, 199830. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax2420.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax2436.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax2387.Humpf and Schreier, 199130. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 220. C @ 20. min
CapillaryDB-Wax2420.Krammer, Winterhalter, et al., 199130. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryCP-Wax 58CB2400.Pabst, Barron, et al., 199130. m/0.25 mm/0.22 μm, He, 3. K/min; Tstart: 40. C; Tend: 220. C
CapillaryDB-Wax2391.Suárez, Duque, et al., 199130. m/0.259 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryDB-Wax2408.Suárez, Duque, et al., 199130. m/0.259 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryDB-Wax2392.Suárez, Duque, et al., 199130. m/0.259 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryDB-Wax2408.Suárez, Duque, et al., 199130. m/0.259 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryCarbowax 20M2401.Schwab, Mahr, et al., 198930. m/0.25 mm/0.25 μm, He, 40. C @ 3. min, 4. K/min; Tend: 240. C

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Wax 52CB2433.Romeo, Ziino, et al., 200760. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C
CapillaryDB-FFAP2428.Huynh-Ba, Matthey-Doret, et al., 200330. m/0.32 mm/0.25 μm; Program: 35C(2min) => 6C/min => 180C => 10C/min => 240C (10min)
CapillaryDB-Wax2399.Cantergiani, Brevard, et al., 200130. m/0.25 mm/0.25 μm; Program: 20C(30s) => fast => 60C => 4C/min => 220C (20min)

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS1162.Jerkovic, Hegic, et al., 201030. m/0.25 mm/0.25 μm, Helium, 70. C @ 2. min, 3. K/min, 200. C @ 18. min
CapillaryHP-5 MS1162.Jerkovic and Marijanovic, 201030. m/0.25 mm/0.25 μm, Helium, 70. C @ 2. min, 3. K/min, 200. C @ 18. min
CapillaryHP-5 MS1162.Jerkovic, Tuberso, et al., 201030. m/0.25 mm/0.25 μm, Helium, 70. C @ 2. min, 3. K/min, 200. C @ 18. min
CapillaryHP-5 MS1163.Radulovic, Blagojevic, et al., 200930. m/0.25 mm/0.25 μm, Helium, 5. K/min, 290. C @ 10. min; Tstart: 70. C
CapillaryHP-11131.Castel, Fernandez, et al., 200650. m/0.2 mm/0.33 μm, He, 60. C @ 4. min, 2. K/min, 250. C @ 30. min
CapillaryHP-11164.Castel, Fernandez, et al., 200650. m/0.2 mm/0.33 μm, He, 60. C @ 4. min, 2. K/min, 250. C @ 30. min
CapillaryHP-11131.Castel, Fernandez, et al., 200650. m/0.2 mm/0.33 μm, He, 60. C @ 4. min, 2. K/min, 250. C @ 30. min
CapillaryHP-11200.Castel, Fernandez, et al., 2006, 250. m/0.2 mm/0.5 μm, He, 2. K/min, 250. C @ 120. min; Tstart: 60. C
CapillaryHP-11148.Castel, Fernandez, et al., 2006, 250. m/0.2 mm/0.33 μm, He, 60. C @ 4. min, 2. K/min, 250. C @ 30. min
CapillaryPolymethylsiloxane, (PMS-20000)1214.Dohou, Yamni, et al., 2005He, 50. C @ 3. min, 3. K/min; Column length: 25. m; Column diameter: 0.20 mm; Tend: 250. C
CapillaryMDN-51172.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryDB-11161.Nyegue, Belinga-Ndoye, et al., 200530. m/0.25 mm/0.25 μm, N2, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryHP-11138.Fernandez, Lizzani-Cuvelier, et al., 200350. m/0.2 mm/0.5 μm, He, 2. K/min, 220. C @ 45. min; Tstart: 60. C
CapillaryDB-11197.Rapior, Konska, et al., 200025. m/0.25 mm/0.13 μm, He, 60. C @ 2. min, 4. K/min; Tend: 200. C
CapillaryOptima 11210.Fons, Rapior, et al., 199825. m/0.20 mm/0.25 μm, Helium, 3. K/min; Tstart: 50. C; Tend: 200. C
CapillaryHP-11170.Ong, Acree, et al., 19984. K/min; Column length: 25. m; Column diameter: 0.32 mm; Tstart: 35. C; Tend: 250. C
CapillaryDB-11143.Buttery, Stern, et al., 1994He, 30. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryUltra-11149.Okumura, 199125. m/0.32 mm/0.25 μm, He, 3. K/min; Tstart: 80. C; Tend: 260. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySLB-5 MS1150.Mondello, 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillarySLB-5 MS1167.Mondello, 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
Capillary 1164.Brandi, Bar, et al., 2011Program: not specified
CapillaryCP-Sil 8 CB1184.de Freitas, Garruti, et al., 201130. m/0.25 mm/0.25 μm, Hydrogen; Program: 30 0C 3 0C/min -> 150 0C 20 0C/min -> 220 0C
CapillaryZB-51164.de Simon, Estruelas, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 45 0C 3 0C/min -> 230 0C (10 min) 10 0C/min -> 270 0C (21 min)
CapillaryCB-11165.Kannaste, Vongvanich, et al., 200830. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 4 0C/min -> 180 0C 20 0C/min -> 220 0C (1 min)
CapillaryCB-11160.Kannaste, Vongvanich, et al., 200830. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-51159.Zhao, Li, et al., 200830. m/0.25 mm/0.25 μm; Program: 40 0C (2 min) 5 0C/min -> 80 0C 7 oC/min -> 160 0C 9 0C/min -> 200 0C 20 0C/min -> 280 0C (10 min)
CapillaryHP-51162.Zhao, Li, et al., 200830. m/0.25 mm/0.25 μm; Program: not specified
CapillaryHP-5MS1163.Chokeprasert P., Charles A.L., et al., 200730. m/0.25 mm/0.25 μm, He; Program: 40C => 3C/min => 100C => 5C/min => 230C(2min)
CapillaryDB-51199.Pellicer, 200730. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-5MS1197.Alissandrakis, Kibaris, et al., 200530. m/0.25 mm/0.25 μm, He; Program: 40C(3min) => 2C/min => 180C => 10C/min => 250C(5min)
CapillarySE-301152.Vinogradov, 2004Program: not specified
CapillarySPB-51156.Begnaud, Pérès, et al., 200360. m/0.32 mm/1. μm; Program: not specified
CapillaryBPX-51171.Machiels, van Ruth, et al., 200360. m/0.32 mm/1. μm, He; Program: 40C (4min) => 2C/min => 90C => 4C/min => 130C => 8C/min => 250 C (10min)
CapillaryDB-51196.Rapior, Breheret, et al., 200230. m/0.20 mm/1.0 μm; Program: not specified
CapillaryDB-51210.Rapior, Breheret, et al., 200230. m/0.20 mm/1.0 μm; Program: not specified
CapillaryCP Sil 5 CB1155.Guyot, Scheirman, et al., 1999He; Column length: 50. m; Column diameter: 0.32 mm; Program: 30C => 55C/min => 85C => 1C/min => 145C => 3C/min => 250C
CapillaryCP Sil 5 CB1135.Guyot, Bouseta, et al., 199850. m/0.32 mm/1.2 μm, He; Program: 30C => 55C/min => 85C => 1C/min => 145C => 3C/min => 250C
CapillaryHP-11167.Ong, Acree, et al., 1998Column length: 25. m; Column diameter: 0.32 mm; Program: not specified
CapillaryHP-51180.Timón, Ventanas, et al., 199850. m/0.32 mm/0.52 μm, He; Program: 35 0C 10 0C/min -> 200 0C (20 min) 5 0C/min -> 230 0C (50 min)
CapillaryDB-11163.Hathcock and Bertsch, 1993100. m/0.25 mm/0.5 μm; Program: not specified
OtherMethyl Silicone1180.Ardrey and Moffat, 1981Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP Wax 52 CB2438.Birtic, Ginies, et al., 200930. m/0.32 mm/0.50 μm, Helium, 40. C @ 2. min, 4. K/min, 230. C @ 15. min
CapillaryHP-Innowax2448.Soria, Sanz, et al., 200850. m/0.20 mm/0.20 μm, Helium, 45. C @ 2. min, 4. K/min, 190. C @ 50. min
CapillaryRTX-Wax2417.Prososki, Etzel, et al., 200730. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 10. K/min, 220. C @ 10. min
CapillaryDB-Wax2449.Fan and Qian, 200630. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 230. C @ 15. min
CapillaryDB-Wax Etr2451.Ibarz, Ferreira, et al., 200660. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 230. C @ 100. min
CapillaryCarbowax 20M2425.de la Fuente, Martinez-Castro, et al., 200550. m/0.25 mm/0.25 μm, Helium, 40. C @ 2. min, 4. K/min, 190. C @ 30. min
CapillaryTC-FFAP2449.Kurose and Yatagai, 200560. m/0.25 mm/0.4 μm, He, 3. K/min, 220. C @ 30. min; Tstart: 60. C
CapillaryDB-Wax2457.López, Ezpeleta, et al., 200460. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 220. C
CapillaryDB-Wax2408.Osorio, Duque, et al., 200230. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min
CapillaryDB-Wax2416.Osorio, Duque, et al., 200230. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min
CapillaryDB-Wax2410.Wei, Mura, et al., 200160. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 200. C
CapillaryDB-Wax2405.Morales, Duque, et al., 200025. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax2409.Morales, Duque, et al., 200025. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax2390.Parada, Duque, et al., 200030. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax2407.Parada, Duque, et al., 200030. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax2390.Parada and Duque, 199830. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax2410.Parada and Duque, 199830. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryPEG-20M2385.Awano, Honda, et al., 1997He, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 210. C
CapillaryDB-Wax2410.Morales, Albarracín, et al., 199630. m/0.25 mm/0.25 μm, He, 20. C @ 4. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax2409.Morales, Albarracín, et al., 199630. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax2400.Andersen J.F., Mikolajczak K.L., et al., 1987Helium, 40. C @ 1. min, 6. K/min; Column length: 30. m; Column diameter: 0.32 mm; Tend: 200. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax2432.Kaprasob, Laohankunjit, et al., 2011Program: 55 0C (2 min) 5 0C/min -> 180 0C (5 min) 8 0C/min -> 230 0C (10 min)
CapillaryStabilwax2455.Chinnici, Guerrero, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 35 0C 3 0C/min -> 100 0C 5 0C/min -> 240 0C (10 min)
CapillarySupelcowax-102389.de Simon, Estruelas, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 45 0C 3 0C/min -> 230 0C (10 min) 10 0C/min -> 270 0C (21 min)
CapillaryDB-Wax2404.Tao, Wenlai, et al., 200830. m/0.32 mm/0.25 μm, Helium; Program: 50 0C 20 0C/min -> 80 0C 3 0C/min -> 230 0C
CapillaryDB-Wax2428.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C
CapillaryDB-Wax2399.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: not specified
CapillaryDB-Wax2435.Tian, Zhang, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 50 0C (2 min) 6 0C/min -> 150 0C 8 0C/min -> 230 0C (15 min)
CapillaryDB-Wax2432.Krings, Zelena, et al., 200630. m/0.32 mm/0.25 μm, He; Program: 45C(5min) => 5C/min => 150C => 10C/min => 240C (10min)
CapillaryCarbowax 20M2380.Editorial paper, 2005Program: not specified
CapillaryCarbowax 20M2426.Vinogradov, 2004Program: not specified
CapillaryDB-Wax2417.Mayorga, Knapp, et al., 200130. m/0.25 mm/0.25 μm; Program: 50C(4min) => 4C/min => 130C => 1C/min => 190C => 4C/min => 220C(20min)
CapillaryDB-Wax2419.Mayorga, Knapp, et al., 200130. m/0.25 mm/0.25 μm; Program: 50C(4min) => 4C/min => 130C => 1C/min => 190C => 4C/min => 220C(20min)

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5199.20Pedersen, Durant, et al., 200530. m/0.25 mm/0.25 μm, Helium, 50. C @ 1.5 min, 6. K/min, 310. C @ 10. min
CapillaryDB-5196.5Donnelly, Abdel-Hamid, et al., 199330. m/0.32 mm/0.25 μm, He, 40. C @ 3. min, 8. K/min, 285. C @ 29.5 min

Lee's RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5195.8Fuentes, Font, et al., 2007Column length: 60. m; Program: not specified
CapillaryDB-5MS193.9Aracil, Font, et al., 2005Column length: 60. m; Column diameter: 0.25 mm; Program: not specified
CapillaryPolydimethyl siloxanes196.52Eckel and Kind, 2003Program: not specified
CapillaryMethyl Silicone200.65Eckel, Ross, et al., 1993Program: not specified
CapillaryMethyl Silicone202.69Eckel, Ross, et al., 1993Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Ali N., 1983
Ali N., Thermodynamic functions of the benzoic acid, phthalic acid and salicylic acid, Indian J. Phys., 1983, B57, 413-419. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M., Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]

Burriel, 1931
Burriel, F., Physico-Chemical Study of Some Solid Organic Compounds at Ordinary Temperatures, and Their COrrelationo with Temperature, An. R. Soc. Esp. Fis. Quim., 1931, 29, 89. [all data]

Marsh, 1987
Marsh, K.N., Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Sci. Pub., Oxford, 1987. [all data]

Andon and Connett, 1980
Andon, R.J.L.; Connett, J.E., Calibrants for thermal analysis. measurement of their enthalpies of fusion by adiabatic calorimetry., Thermochim. Acta, 1980, 42, 241. [all data]

Ginnings and Furukawa, 1953
Ginnings, D.C.; Furukawa, G.T., Heat Capacity Standards for the Range 14 to 1200 K, J. Am. Chem. Soc., 1953, 75, 522-7. [all data]

Furukawa, McCoskey, et al., 1951
Furukawa, G.T.; McCoskey, R.E.; King, G.J., Calorimetric properties of benzoic acid from 0 to 410 K, J. Res. Natl. Bur. Stand. (U. S.), 1951, 47, 256. [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Torres-Gomez, Barreiro-Rodriguez, et al., 1988
Torres-Gomez, L.A.; Barreiro-Rodriguez, G.; Galarza-Mondragon, A., A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry, Thermochim. Acta, 1988, 124, 229-233. [all data]

Pena, Ribet, et al., 2003
Pena, R.; Ribet, J.P.; Maurel, J.L.; Valat, L.; Lacoulonche, F.; Chauvet, A., Sublimation and vaporisation processes of S(-) efaroxan hydrochloride, Thermochimica Acta, 2003, 408, 1-2, 85-96, https://doi.org/10.1016/S0040-6031(03)00321-6 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Matsubara and Kuwamoto, 1985
Matsubara, Norio; Kuwamoto, Tooru, Vapor pressure measurements in carrier gas containing ligand vapor using the transpiration technique, Thermochimica Acta, 1985, 83, 2, 193-202, https://doi.org/10.1016/0040-6031(85)87003-9 . [all data]

Cramer, 1943
Cramer, K.S.N., Chem. Zentr. II, 1943, 2234. [all data]

Klosky, Woo, et al., 1927
Klosky, Simon; Woo, Leo P.L.; Flanigan, Robert J., THE VAPOR-PRESSURE CURVE OF BENZOIC ACID, J. Am. Chem. Soc., 1927, 49, 5, 1280-1284, https://doi.org/10.1021/ja01404a017 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Selvakumar, Raghunathan, et al., 2009
Selvakumar, Jayapragasam; Raghunathan, Vinjamoor Seshadri; Nagaraja, Karachalacheruvu Seetharamaiah, Vapor Pressure Measurements of Sc(tmhd) 3 and Synthesis of Stabilized Zirconia Thin Films by Hybrid CVD Technique Using Sc(tmhd) 3 , Zr(tmhd) 4 , and Al(acac) 3 [tmhd, 2,2,6,6-tetramethyl-3,5-heptanedione; acac, 2,4-pentanedione] as Precursors, J. Phys. Chem. C, 2009, 113, 44, 19011-19020, https://doi.org/10.1021/jp906204c . [all data]

Ribeiro da Silva, Monte, et al., 2006
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Santos, Luís M.N.B.F., The design, construction, and testing of a new Knudsen effusion apparatus, The Journal of Chemical Thermodynamics, 2006, 38, 6, 778-787, https://doi.org/10.1016/j.jct.2005.08.013 . [all data]

Ginkel, Kruif, et al., 2001
Ginkel, C.H.D. van; Kruif, C.G. de; Waal, F.E.B. de, The need for temperature control in effusion experiments (and application to heat of sublimation determination), J. Phys. E: Sci. Instrum., 2001, 8, 6, 490-492, https://doi.org/10.1088/0022-3735/8/6/018 . [all data]

Zielenkiewicz, Perlovich, et al., 1999
Zielenkiewicz, X.; Perlovich, G.L.; Wszelaka-Rylik, M., Journal of Thermal Analysis and Calorimetry, 1999, 57, 1, 225-234, https://doi.org/10.1023/A:1010179814511 . [all data]

Elder, 1997
Elder, J.P., Sublimation measurements of pharmaceutical compounds by isothermal thermogravivletry, Journal of Thermal Analysis, 1997, 49, 2, 897-905, https://doi.org/10.1007/BF01996775 . [all data]

Da Silva and Monte, 1990
Da Silva, Manuel A.V. Ribeiro; Monte, Manuel J.S., The construction, testing and use of a new knudsen effusion apparatus, Thermochimica Acta, 1990, 171, 169-183, https://doi.org/10.1016/0040-6031(90)87017-7 . [all data]

Glukhova, Arkhangelova, et al., 1985
Glukhova, O.T.; Arkhangelova, N.M.; Teplitsky, A.B.; Sukhodub, L.F.; Yanson, I.K.; Kaminski, Miron, The low-temperature quartz resonator method for determination of the enthalpy of sublimation, Thermochimica Acta, 1985, 95, 1, 133-138, https://doi.org/10.1016/0040-6031(85)80041-1 . [all data]

Kaisersberger, Hädrich, et al., 1985
Kaisersberger, E.; Hädrich, W.; Emmerich, W.-D., Measurement of low vapour pressures according to the Knudsen effusion method, Thermochimica Acta, 1985, 95, 2, 331-336, https://doi.org/10.1016/0040-6031(85)85294-1 . [all data]

Colomina, Jimenez, et al., 1982
Colomina, M.; Jimenez, P.; Turrion, C., Vapour pressures and enthalpies of sublimation of naphthalene and benzoic acid, J. Chem. Thermodyn., 1982, 14, 779-784. [all data]

de Kruif and Blok, 1982
de Kruif, C.G.; Blok, J.G., The vapour pressure of benzoic acid, The Journal of Chemical Thermodynamics, 1982, 14, 3, 201-206, https://doi.org/10.1016/0021-9614(82)90011-8 . [all data]

Murata, Sakiyama, et al., 1982
Murata, S.; Sakiyama, M.; Seki, S., Construction and testing of a sublimation calorimetric system using a Calvet microcalorimeter, The Journal of Chemical Thermodynamics, 1982, 14, 8, 707-721, https://doi.org/10.1016/0021-9614(82)90167-7 . [all data]

Sachinidis and Hill, 1980
Sachinidis, J.; Hill, J.O., A re-evaluation of the enthalpy of sublimation of some metal acetylacetonate complexes, Thermochimica Acta, 1980, 35, 1, 59-66, https://doi.org/10.1016/0040-6031(80)85021-0 . [all data]

Nowak, Szczepaniak, et al., 1978
Nowak, M.J.; Szczepaniak, K.; Barski, A.; Shugar, D.Z., Z. Naturforsch. C, 1978, 33C, 876. [all data]

DeKruif, van Ginkel, et al., 1975
DeKruif, C.G.; van Ginkel, C.H.D.; Voogd, J., Torsion-effusion vapour pressure measurements of organic compounds, Conf. Int. Thermodyn. Chim. C. R. 4th, 1975, 8, 11-18. [all data]

Arshadi, 1974
Arshadi, Mohammed R., Determination of heats of sublimation of organic compounds by a mass spectrometric--knudsen effusion method, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 0, 1569, https://doi.org/10.1039/f19747001569 . [all data]

de Kruif and Oonk, 1973
de Kruif, C.G.; Oonk, H.A.J., The determination of enthalpies of sublimation by means of thermal conductivity manometers, Chemie Ing. Techn., 1973, 45, 7, 455-461, https://doi.org/10.1002/cite.330450705 . [all data]

Malaspina, 1973
Malaspina, L., Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene, J. Chem. Phys., 1973, 59, 1, 387, https://doi.org/10.1063/1.1679817 . [all data]

Colomina, Monzon, et al., 1972
Colomina, M.; Monzon, C.; Turrion, C.; Laynez, J., , Fifth Experimental Thermodynamics Conference, Lancaster, 1972. [all data]

Wiedemann, 1972
Wiedemann, H.G., Applications of thermogravimetry for vapor pressure determination, Thermochim. Acta, 1972, 355-366. [all data]

Ashcroft, 1971
Ashcroft, S.J., The measurement of enthalpies of sublimation by thermogravimetry, Thermochimica Acta, 1971, 2, 6, 512-514, https://doi.org/10.1016/0040-6031(71)80021-7 . [all data]

Melia and Merrifield, 1970
Melia, T.P.; Merrifield, R., Vapour pressures of the tris(acetylacetonato) complexes of scandium(III), vanadium(III) and chromium(III), Journal of Inorganic and Nuclear Chemistry, 1970, 32, 5, 1489-1493, https://doi.org/10.1016/0022-1902(70)80636-4 . [all data]

Wiedemann and Waughna, 1970
Wiedemann, A.G.; Waughna, H.P., , Proceedings of the Third Toronto Symposium on Thermal Analysis, Toronto, 1970, 233. [all data]

Mertl, 1968
Mertl, I., Chem. Listy, 1968, 62, 5, 584. [all data]

Davies and Kybett, 1965
Davies, M.; Kybett, B., Sublimation and vaporization heats of long-chain alcohols, Trans. Faraday Soc., 1965, 61, 1608. [all data]

Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z., Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]

Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H., Uber sublimationswarmen, Z. Phys. Chem., 1938, 39, 194-208. [all data]

Hirsbrunner, 1934
Hirsbrunner, H., Uber das gleichgewicht der thermischen dissoziation der salicylsaure, Helv. Chim. Acta, 1934, 17, 477-504. [all data]

Ginnings and Furukawa, 1953, 2
Ginnings, D.C.; Furukawa, G.T., Heat capacity standards for the range 14 to 1200°K, J. Am. Chem. Soc., 1953, 75, 522-527. [all data]

Furukawa, McCoskey, et al., 1951, 2
Furukawa, G.T.; McCoskey, R.E.; King, G.J., Calorimetric properties of benzoic acid from 0 to 410K, J. Res., 1951, NBS 47, 256-261. [all data]

Brittain, 2009
Brittain, Harry G., Vibrational Spectroscopic Studies of Cocrystals and Salts. 2. The Benzylamine-Benzoic Acid System, Crystal Growth & Design, 2009, 9, 8, 3497-3503, https://doi.org/10.1021/cg9001972 . [all data]

Sharma, Kant, et al., 2003
Sharma, B.L.; Kant, Rajesh; Sharma, Ritu; Tandon, Sonika, Deviations of binary organic eutectic melt systems, Materials Chemistry and Physics, 2003, 82, 1, 216-224, https://doi.org/10.1016/S0254-0584(03)00199-8 . [all data]

Sharma, Jamwal, et al., 2004
Sharma, B.L.; Jamwal, R.; Kant, R., Thermodynamic and lamella models relationship for the eutectic system benzoic acid-- cinnamic acid, Cryst. Res. Technol., 2004, 39, 5, 454-464, https://doi.org/10.1002/crat.200310210 . [all data]

Roy, Riga, et al., 2002
Roy, S.; Riga, A.T.; Alexander, K.S., Experimental design aids the development of a differential scanning calorimetry standard test procedure for pharmaceuticals, Thermochimica Acta, 2002, 392-393, 399-404, https://doi.org/10.1016/S0040-6031(02)00317-9 . [all data]

Pitzer, Peiper, et al., 1984
Pitzer, Kenneth S.; Peiper, J. Christopher; Busey, R.H., Thermodynamic Properties of Aqueous Sodium Chloride Solutions, J. Phys. Chem. Ref. Data, 1984, 13, 1, 1, https://doi.org/10.1063/1.555709 . [all data]

Pacor, 1967
Pacor, P., Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis, Anal. Chim. Acta, 1967, 37, 200-208. [all data]

Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J., The heat capacities and heat of crystallization of some isomeric aromatic compounds, J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]

David, 1964
David, D.J., Determination of specific heat and heat of fusion by differential thermal analysis. Study of theory and operating parameters, Anal. Chem., 1964, 36, 2162-2166. [all data]

Andon and Connett, 1980, 2
Andon, R.J.L.; Connett, J.E., Calibrants for thermal analysis. Measurement of their enthalpies of fusion by adiabatic calorimetry, Thermochim. Acta, 1980, 42, 241-247. [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Moselhy and Pritchard, 1975
Moselhy, G.M.; Pritchard, H.O., The thermochemistry of the chloro-benzoyl chlorides, J. Chem. Thermodyn., 1975, 7, 977-982. [all data]

Carson, Pritchard, et al., 1950
Carson, A.S.; Pritchard, H.O.; Skinner, H.A., The heats of hydrolysis of the benzoyl halides, J. Chem. Soc., 1950, 656-659. [all data]

Davies, Dunning, et al., 1972
Davies, J.V.; Dunning, B.K.; Pritchard, H.O., The enthalpy of formation of benzoyl chloride, J. Chem. Thermodyn., 1972, 4, 731-737. [all data]

Briner and Chastonay, 1954
Briner, E.; Chastonay, P., Etude thermochemique de l'autoxydation de Valdehyde benzoique, Helv. Chim. Acta, 1954, 238, 539-541. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Guthrie and Cullimore, 1980
Guthrie, J.P.; Cullimore, P.A., Effect of the acyl substituent on the equilibrium constant for hydration of esters, Can. J. Chem., 1980, 58, 1281-1294. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Meeks, Wahlborg, et al., 1981
Meeks, J.; Wahlborg, A.; McGlynn, S.P., Photoelectron spectroscopy of carbonyls: Benzoic acid and its derivatives, J. Electron Spectrosc. Relat. Phenom., 1981, 22, 43. [all data]

Benoit, 1973
Benoit, F., Substituent effects in mass spectrometry. III. Substituent effects in the dissociation of the molecular ions of para and meta subtituted benzoic acids, Org. Mass Spectrom., 1973, 7, 295. [all data]

Benoit, 1973, 2
Benoit, F., The benzoyl cation: The participation of isolated electronic excited states in the dissociation of molecular ions of the form [C6H5COX]+, Org. Mass Spectrom., 1973, 7, 1407. [all data]

Foffani, Pignataro, et al., 1964
Foffani, A.; Pignataro, S.; Cantone, B.; Grasso, F., Ionization potentials and substituent effects for aromatic carbonyl compounds, Z. Physik. Chem. (Frankfurt), 1964, 42, 221. [all data]

Tajima, Azami, et al., 1977
Tajima, S.; Azami, T.; Tsuchiya, T., An investigation of the decomposition of the common intermediate ions produced by electron impact, Org. Mass Spectrom., 1977, 12, 24. [all data]

Newman and Deno, 1951
Newman, M.S.; Deno, N.C., Behavior of organic compounds in 100% sulfuric acid, J. Am. Chem. Soc., 1951, 73, 3651-3653. [all data]

Alissandrakis E., Tarantilis P.A., et al., 2007
Alissandrakis E.; Tarantilis P.A.; Harizanis P.C.; Polissiou M., Comparison of the volatile composition in thyme honeys from several origins in Greece, J. Agric. Food Chem., 2007, 55, 20, 8152-8157, https://doi.org/10.1021/jf071442y . [all data]

Khan, Verma, et al., 2006
Khan, M.; Verma, S.C.; Srivastava, S.K.; Shawl, A.S.; Syamsundar, K.V.; Khanuja, S.P.S.; Kumar, T., Essential oil composition of Taxus wallichiana Zucc. from the Northern Himalayan region of India, Flavour Fragr. J., 2006, 21, 5, 772-775, https://doi.org/10.1002/ffj.1682 . [all data]

Osorio, Alarcon, et al., 2006
Osorio, C.; Alarcon, M.; Moreno, C.; Bonilla, A.; Barrios, J.; Garzon, C.; Duque, C., Characterization of Odor-Active Volatiles in Champa ( Campomanesia lineatifolia R. P.), J. Agric. Food Chem., 2006, 54, 2, 509-516, https://doi.org/10.1021/jf052098c . [all data]

Alves, Pinto, et al., 2005
Alves, R.J.V.; Pinto, A.C.; da Costa, A.V.M.; Rezende, C.M., Zizyphus mauritiana Lam. (Rhamnaceae) and the chemical composition of its floral fecal odor, J. Braz. Chem. Soc., 2005, 16, 3B, 654-656, https://doi.org/10.1590/S0103-50532005000400027 . [all data]

Lalel, Singh, et al., 2003
Lalel, H.J.D.; Singh, Z.; Chye Tan, S., Glycosidically-bound aroma volatile compounds in the skin and pulp of 'Kensington Pride' mango fruit at different stages of maturity, Postharvest Biol. Technol., 2003, 29, 2, 205-218, https://doi.org/10.1016/S0925-5214(02)00250-8 . [all data]

Papandreou, Magiatis, et al., 2002
Papandreou, V.; Magiatis, P.; Chinou, I.; Kalpoutzakis, E.; Skaltsounis, A.-L.; Tsarbopoulos, A., Volatiles with antimicrobial activity from the roots of Greek Paeonia taxa, J. Ethnopharmacol., 2002, 81, 1, 101-104, https://doi.org/10.1016/S0378-8741(02)00056-9 . [all data]

Valero, Sanz, et al., 1999
Valero, E.; Sanz, J.; Martinez-Castro, I., Volatile components in microwave- and conventionally-heated milk, Food Chem., 1999, 66, 3, 333-338, https://doi.org/10.1016/S0308-8146(99)00069-2 . [all data]

Sakho, Chassagne, et al., 1997
Sakho, M.; Chassagne, D.; Crouzet, J., African mango glycosidically bound volatile compounds, J. Agric. Food Chem., 1997, 45, 3, 883-888, https://doi.org/10.1021/jf960277b . [all data]

Adedeji, Hartman, et al., 1992
Adedeji, J.; Hartman, T.G.; Lech, J.; Ho, C.-T., Characterization of glycosidically bound aroma compounds in the African Mango (Mangifera indica L.), J. Agric. Food Chem., 1992, 40, 4, 659-661, https://doi.org/10.1021/jf00016a028 . [all data]

Shapi and Hesso, 1990
Shapi, M.M.; Hesso, A., Thermal decomposition of polystyrene volatile compounds from large-scale pyrolysis, J. Anal. Appl. Pyrolysis, 1990, 18, 2, 143-161, https://doi.org/10.1016/0165-2370(90)80004-8 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Elmore, Erbahadir, et al., 1997
Elmore, J.S.; Erbahadir, M.A.; Mottram, D.S., Comparison of dynamic headspace concentration on Tenax with solid phase microextraction for the analysis of aroma volatiles, J. Agric. Food Chem., 1997, 45, 7, 2638-2641, https://doi.org/10.1021/jf960835m . [all data]

Pozo-Bayon M.A., Ruiz-Rodriguez A., et al., 2007
Pozo-Bayon M.A.; Ruiz-Rodriguez A.; Pernin K.; Cayot N., Influence of eggs on the aroma composition of a sponge cake and on the aroma release in model studies on flavored sponge cakes, J. Agric. Food Chem., 2007, 55, 4, 1418-1426, https://doi.org/10.1021/jf062203y . [all data]

Chung, Fung, et al., 2005
Chung, H.Y.; Fung, P.K.; Kim, J.-S., Aroma impact components in commercial plain sufu, J. Agric. Food Chem., 2005, 53, 5, 1684-1691, https://doi.org/10.1021/jf048617d . [all data]

Fang and Qian, 2005
Fang, Y.; Qian, M., Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA), Flavour Fragr. J., 2005, 20, 1, 22-29, https://doi.org/10.1002/ffj.1551 . [all data]

Verzera, Campisi, et al., 2005
Verzera, A.; Campisi, S.; Zappalá, M., SUPELCO. Using SPME-GC-MS to characterize volatile components of honey as indicators of botanical origin, 2005, retrieved from http://www.sigmaaldrich.com/Brands/SupelcoHome/TheReporter.html. [all data]

Moreira, Trugo, et al., 2002
Moreira, R.F.A.; Trugo, L.C.; Pietroluongo, M.; de Maria, C.A.B., Flavor composition of cashew (Anacardium occidentale) and marmeleiro (Croton species) honeys, J. Agric. Food Chem., 2002, 50, 26, 7616-7621, https://doi.org/10.1021/jf020464b . [all data]

Verzera, Campisi, et al., 2001
Verzera, A.; Campisi, S.; Zappalá, M.; Bonaccorsi, I., SPME-GC-MS analysis of honey volatile components for the characterization of different floral origin, Am. Lab. Fairfield Conn., 2001, 33, 15, 18-21. [all data]

Moio, Piombino, et al., 2000
Moio, L.; Piombino, P.; Addeo, F., Odour-impact compounds of Gorgonzola cheese, J. Dairy Res., 2000, 67, 2, 273-285, https://doi.org/10.1017/S0022029900004106 . [all data]

Chassagne, Boulanger, et al., 1999
Chassagne, D.; Boulanger, R.; Crouzet, J., Enzymatic hydrolysis of edible Passiflora fruit glycosides, Food Chem., 1999, 66, 3, 281-288, https://doi.org/10.1016/S0308-8146(99)00044-8 . [all data]

Moio and Addeo, 1998
Moio, L.; Addeo, F., Grana Padano cheese aroma, J. Dairy Res., 1998, 65, 2, 317-333, https://doi.org/10.1017/S0022029997002768 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Humpf and Schreier, 1991
Humpf, H.-U.; Schreier, P., Bound aroma compounds from the fruit and the leaves of blackberry (Rubus laciniata L.), J. Agric. Food Chem., 1991, 39, 10, 1830-1832, https://doi.org/10.1021/jf00010a028 . [all data]

Krammer, Winterhalter, et al., 1991
Krammer, G.; Winterhalter, P.; Schwab, M.; Schreier, P., Glycosidically bound aroma compounds in the fruits of Prunus species: Apricot (P. armeniaca, L.) peach (P. persica, L.) yellow plum (P. domestica, L. ssp. Syriaca), J. Agric. Food Chem., 1991, 39, 4, 778-781, https://doi.org/10.1021/jf00004a032 . [all data]

Pabst, Barron, et al., 1991
Pabst, A.; Barron, D.; Etiévant, P.; Schreier, P., Studies on the enzymatic hydrolysis of bound aroma constituents from raspberry fruit pulp, J. Agric. Food Chem., 1991, 39, 1, 173-175, https://doi.org/10.1021/jf00001a034 . [all data]

Suárez, Duque, et al., 1991
Suárez, M.; Duque, C.; Wintoch, H.; Schreier, P., Glycosidically bound aroma compounds from the pulp and the peelings of lulo fruit (Solanum vestissimum D.), J. Agric. Food Chem., 1991, 39, 9, 1643-1645, https://doi.org/10.1021/jf00009a022 . [all data]

Schwab, Mahr, et al., 1989
Schwab, W.; Mahr, C.; Schreier, P., Studies on the enzymic hydrolysis of bound aroma components from Carica papaya fruit, J. Agric. Food Chem., 1989, 37, 4, 1009-1012, https://doi.org/10.1021/jf00088a042 . [all data]

Romeo, Ziino, et al., 2007
Romeo, V.; Ziino, M.; Giuffrrida, D.; Condurso, C.; Verzera, A., Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC?MS, Food Chem., 2007, 101, 3, 1272-1278, https://doi.org/10.1016/j.foodchem.2005.12.029 . [all data]

Huynh-Ba, Matthey-Doret, et al., 2003
Huynh-Ba, T.; Matthey-Doret, W.; Fay, L.B.; Rhlid, R.B., Generation of thiols by biotransformation of cysteine-aldehyde conjugates with Baker's yeast, J. Agric. Food Chem., 2003, 51, 12, 3629-3635, https://doi.org/10.1021/jf026198j . [all data]

Cantergiani, Brevard, et al., 2001
Cantergiani, E.; Brevard, H.; Krebs, Y.; Feria-Morales, A.; Amadò, R.; Yeretzian, C., Characterisation of the aroma of green Mexican coffee and identification of mouldy/earthy defect, Eur. Food Res. Technol., 2001, 212, 6, 648-657, https://doi.org/10.1007/s002170100305 . [all data]

Jerkovic, Hegic, et al., 2010
Jerkovic, I.; Hegic, G.; Marijanovic, Z.; Bubalo, D., Organic extractives from Mentha spp. honey and the bee-stomach: methyl syringate, vomifoliol, terpenediol I, hotrienol, and other compounds, Molecules, 2010, 15, 4, 2911-2924, https://doi.org/10.3390/molecules15042911 . [all data]

Jerkovic and Marijanovic, 2010
Jerkovic, I.; Marijanovic, Z., Oak (Quercus frainetto Ten.) honeydaw honey - approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP assay), Molecules, 2010, 15, 5, 3744-3756, https://doi.org/10.3390/molecules15053744 . [all data]

Jerkovic, Tuberso, et al., 2010
Jerkovic, I.; Tuberso, C.I.G.; Gugic, M.; Bubalo, D., Composition of Sulla (Hedysarum coronarium L.) honey solvent extractives determined by GC/MS: norisoprenoids and other volatile organic compounds, Molecules, 2010, 15, 9, 6375-6385, https://doi.org/10.3390/molecules15096375 . [all data]

Radulovic, Blagojevic, et al., 2009
Radulovic, N.S.; Blagojevic, P.D.; Palic, R.M.; Zlatkovic, B.K.; Stevanovic, B.M., Volatiles from vegetative organs of the paleoendemic resurrection plants Ramonda serbica Panc. and Ramonda nathaliae Panc. at Petrov, J. Serb. Chem. Soc., 2009, 74, 1, 35-44, https://doi.org/10.2298/JSC0901035R . [all data]

Castel, Fernandez, et al., 2006
Castel, C.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.-M.; Perichet, C.; Delbecque, C.; Arnaudo, J.-F., Volatile constituents of benzoin gums: Siam and Sumatra, part 2. Study of headspace sampling methods, Flavour Fragr. J., 2006, 21, 1, 59-67, https://doi.org/10.1002/ffj.1502 . [all data]

Castel, Fernandez, et al., 2006, 2
Castel, C.; Fernandez, X.; Lizzani-Cuvelier, L.; Perichet, C.; Lavoine, S., Characterization of the Chemical Composition of a Byproduct from Siam Benzoin Gum, J. Agric. Food Chem., 2006, 54, 23, 8848-8854, https://doi.org/10.1021/jf061193y . [all data]

Dohou, Yamni, et al., 2005
Dohou, N.; Yamni, K.; Badoc, A.; Tahrouch, S.; Idrissi Hassani, L.M.; Bessière, J.-M., Composés volatils de Thymelaea lythroides, endémique, ibéro-marocaine, Bull. Soc. Pharm. Bordeaux, 2005, 144, 63-70. [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

Nyegue, Belinga-Ndoye, et al., 2005
Nyegue, M.A.; Belinga-Ndoye, C.F.; Amvam Zollo, P.H.; Agnaniet, H.; Menut, C.; Bessière, J.M., Aromatic plants of tropical central Africa. Part L. Volatile components of Clerodendrum buchholzii Gürke from Cameroon, Flavour Fragr. J., 2005, 20, 3, 321-323, https://doi.org/10.1002/ffj.1424 . [all data]

Fernandez, Lizzani-Cuvelier, et al., 2003
Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.-M.; Périchet, C.; Delbecque, C., Volatile constituents of benzoin gums: Siam and Sumatra. Part 1., Flavour Fragr. J., 2003, 18, 4, 328-333, https://doi.org/10.1002/ffj.1230 . [all data]

Rapior, Konska, et al., 2000
Rapior, S.; Konska, G.; Guillot, J.; Andary, C.; Bessiere, J.-M., Volatile composition of Laetiporus sulphureus, Cryptogamie, Mycol., 2000, 21, 1, 67-72, https://doi.org/10.1016/S0181-1584(00)00109-3 . [all data]

Fons, Rapior, et al., 1998
Fons, F.; Rapior, S.; Gargadennec, A.; Andary, C.; Bessiere, J.-M., Volatile components of Plantago lanceolata (Plantaginaceae), Acta bot. Gallica, 1998, 145, 4, 265-269, https://doi.org/10.1080/12538078.1998.10516306 . [all data]

Ong, Acree, et al., 1998
Ong, P.K.C.; Acree, T.E.; Lavin, E.H., Characterization of volatiles in rambutan fruit (Nephelium lappaceum L.), J. Agric. Food Chem., 1998, 46, 2, 611-615, https://doi.org/10.1021/jf970665t . [all data]

Buttery, Stern, et al., 1994
Buttery, R.G.; Stern, D.J.; Ling, L.C., Studies on flavor volatiles of some sweet corn products, J. Agric. Food Chem., 1994, 42, 3, 791-795, https://doi.org/10.1021/jf00039a038 . [all data]

Okumura, 1991
Okumura, T., retention indices of environmental chemicals on methyl silicone capillary column, Journal of Environmental Chemistry (Japan), 1991, 1, 2, 333-358, https://doi.org/10.5985/jec.1.333 . [all data]

Mondello, 2012
Mondello, L., HS-SPME-GCxGC-MS analysis of Yerba Mate (Ilex paraguariensis) in Shimadzu GC-GC application compendium of comprehensive 2D GC, Vol. 1-5, Shimadzu Corp., 2012, 1-29. [all data]

Brandi, Bar, et al., 2011
Brandi, F.; Bar, E.; Mourgues, F.; Horvath, G.; Turcsi, E.; Giuliano, G.; Liverani, A.; Tartarini, S.; Lewinsohn, E.; Rosati, C., Study of Redhaven peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism, BMC Plant Biol., 2011, 11, 24, 1-14. [all data]

de Freitas, Garruti, et al., 2011
de Freitas, V.M.; Garruti, D. dosS.; Souza Neto, M.A.; Facundo, H.V. daV.; Correia, J.M., Stability of volatile profile and sensory properties of passion fruit during storage in glass bottles, Ciencia e Tecnologia de Alimentos, Campinas, 2011, 31, 2, 349-354, https://doi.org/10.1590/S0101-20612011000200011 . [all data]

de Simon, Estruelas, et al., 2009
de Simon, B.F.; Estruelas, E.; Munoz, A.M.; Cadahia, E.; Sanz, M., Volatile compounds in acacia, chestnut, cherry, ash, and oak woods, with a view to their use in cooperage, J. Agric. Food Chem., 2009, 57, 8, 3217-3227, https://doi.org/10.1021/jf803463h . [all data]

Kannaste, Vongvanich, et al., 2008
Kannaste, A.; Vongvanich, N.; Borg-Karlson, A.-K., Infestation by a Nalepella species induces emissions of alpha- and beta-farnesenes, (-)-linalool and aromatic compounds in Norway spruce clones of different susceptibility to the large pine weevil, Anthropod-Plant Interactions, 2008, 2, 1, 31-41, https://doi.org/10.1007/s11829-008-9029-4 . [all data]

Zhao, Li, et al., 2008
Zhao, Y.; Li, J.; Xu, Y.; Duan, H.; Fan, W.; Zhao, G., EXtraction, preparation and identification of volatile compounds in Changyu XO brandy, Chinese J. Chromatogr., 2008, 26, 2, 212-222, https://doi.org/10.1016/S1872-2059(08)60014-0 . [all data]

Chokeprasert P., Charles A.L., et al., 2007
Chokeprasert P.; Charles A.L.; Sue K.H.; Huang T.C., Volatile components of the leaves, fruits and seeds of wampee [Clausena lansium (Lour.) Skeels], J. Food Comp. Anal., 2007, 20, 1, 52-56, https://doi.org/10.1016/j.jfca.2006.07.002 . [all data]

Pellicer, 2007
Pellicer, L.V., Comparison of Sensory Characteristics, and Instrumental flavor Compounds Analysis of Milk Produced by Three Proction Methods. A Thesis presented to the Faculty of the Graduate School University of Missouri-Columbia, 2007, retrieved from http://edit.missouri,edu/Winter2007/Theses/ValverdePellicerL-053107-T6722/research.pdf. [all data]

Alissandrakis, Kibaris, et al., 2005
Alissandrakis, E.; Kibaris, A.C.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M., Flavour compounds of Greek cotton honey, J. Sci. Food Agric., 2005, 85, 9, 1444-1452, https://doi.org/10.1002/jsfa.2124 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Begnaud, Pérès, et al., 2003
Begnaud, F.; Pérès, C.; Berdagué, J.-L., Characterization of volatile effluents of livestock buildings by solid-phase microextraction, Int. J. Environ. Anal. Chem., 2003, 83, 10, 837-849, https://doi.org/10.1080/03067310310001603349 . [all data]

Machiels, van Ruth, et al., 2003
Machiels, D.; van Ruth, S.M.; Posthumus, M.A.; Istasse, L., Gas chromatography-olfactometry analysis of the volatile compounds of two commercial Irish beef meats, Talanta, 2003, 60, 4, 755-764, https://doi.org/10.1016/S0039-9140(03)00133-4 . [all data]

Rapior, Breheret, et al., 2002
Rapior, S.; Breheret, S.; Talou T.; Pelissier, Y.; Bessiere, J.-M., The anise-like odor of Clitocybe odora, Lentinellus cochleatus and Agaricus essettei, Mycologia, 2002, 94, 3, 373-376, https://doi.org/10.2307/3761770 . [all data]

Guyot, Scheirman, et al., 1999
Guyot, C.; Scheirman, V.; Collin, S., Floral origin markers of heather honeys: Calluna vulgaris and Erica arborea, Food Chem., 1999, 64, 1, 3-11, https://doi.org/10.1016/S0308-8146(98)00122-8 . [all data]

Guyot, Bouseta, et al., 1998
Guyot, C.; Bouseta, A.; Scheirman, V.; Collin, S., Floral origin markers of chestnut and lime tree honeys, J. Agric. Food Chem., 1998, 46, 2, 625-633, https://doi.org/10.1021/jf970510l . [all data]

Timón, Ventanas, et al., 1998
Timón, M.L.; Ventanas, J.; Martín, L.; Tejeda, J.F.; García, C., Volatile compounds in supercritical carbon dioxide extracts of Iberian ham, J. Agric. Food Chem., 1998, 46, 12, 5143-5150, https://doi.org/10.1021/jf980652v . [all data]

Hathcock and Bertsch, 1993
Hathcock, S.; Bertsch, W., Analysis of volatiles associated with industrial scale processing of expanded polystyrene. Part II: Identification and quantitation, J. Hi. Res. Chromatogr., 1993, 16, 11, 651-659, https://doi.org/10.1002/jhrc.1240161106 . [all data]

Ardrey and Moffat, 1981
Ardrey, R.E.; Moffat, A.C., Gas-liquid chromatographic retention indices of 1318 substances of toxicological interest on SE-30 or OV-1 stationary phase, J. Chromatogr., 1981, 220, 3, 195-252, https://doi.org/10.1016/S0021-9673(00)81925-1 . [all data]

Birtic, Ginies, et al., 2009
Birtic, S.; Ginies, C.; Causse, M.; Renard, C.M.G.C.; Page, D., Changes in volatiles and glycosides during fruit maturartion of two contrasted tomato (Solanum lycopersicum) lines, J. Agric. Food Chem., 2009, 57, 2, 591-598, https://doi.org/10.1021/jf8023062 . [all data]

Soria, Sanz, et al., 2008
Soria, A.C.; Sanz, J.; Martinez-Castro, I., SPME followed by GC-MS: a powerful technique for qualitative analysis of honey volatiles, Eur. Food Res. Technol., 2008, 1-12. [all data]

Prososki, Etzel, et al., 2007
Prososki, R.A.; Etzel, M.R.; Rankin, S.A., Solvent type affects the number, distribution, and relative quantities of volatile compounds found in sweet whey powder, J. Dairy Sci., 2007, 90, 2, 523-531, https://doi.org/10.3168/jds.S0022-0302(07)71535-7 . [all data]

Fan and Qian, 2006
Fan, W.; Qian, M.C., Characterization of Aroma Compounds of Chinese Wuliangye and Jiannanchun Liquors by Aroma Extract Dilution Analysis, J. Agric. Food Chem., 2006, 54, 7, 2695-2704, https://doi.org/10.1021/jf052635t . [all data]

Ibarz, Ferreira, et al., 2006
Ibarz, M.J.; Ferreira, V.; Hernández-Orte, P.; Loscos, N.; Cacho, J., Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavor precursors extracted from grapes, J. Chromatogr. A, 2006, 1116, 1-2, 217-229, https://doi.org/10.1016/j.chroma.2006.03.020 . [all data]

de la Fuente, Martinez-Castro, et al., 2005
de la Fuente, E.; Martinez-Castro, I.; Sanz, J., Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography-mass spectrometry, J. Sep. Sci., 2005, 28, 9-10, 1093-1100, https://doi.org/10.1002/jssc.200500018 . [all data]

Kurose and Yatagai, 2005
Kurose, K.; Yatagai, M., Components of the essential oils of Azadirachta indica A. Juss, Azadirachta siamensis Velton, and Azadirachta excelsa (Jack) Jacobs and their comparison, J. Wood Sci., 2005, 51, 2, 185-188, https://doi.org/10.1007/s10086-004-0640-4 . [all data]

López, Ezpeleta, et al., 2004
López, R.; Ezpeleta, E.; Sánchez, I.; Cacho, J.; Ferreira, V., Analysis of the aroma intensities of volatile compounds released from mild acid hydrolysates of odourless precursors extracted from Tempranillo and Grenache grapes using gas chromatography-olfactometry, Food Chem., 2004, 88, 1, 95-103, https://doi.org/10.1016/j.foodchem.2004.01.025 . [all data]

Osorio, Duque, et al., 2002
Osorio, C.; Duque, C.; Suarez, M.; Salamanca, L.E.; Uruena, F., Free, glycosidically bound, and phosphate bound flavor constituents of badea (Passiflora quadrangularis) fruit pulp, J. Sep. Sci., 2002, 25, 3, 147-154, https://doi.org/10.1002/1615-9314(20020201)25:3<147::AID-JSSC147>3.0.CO;2-G . [all data]

Wei, Mura, et al., 2001
Wei, A.; Mura, K.; Shibamoto, T., Antioxidative activity of volatile chemicals extracted from beer, J. Agric. Food Chem., 2001, 49, 8, 4097-4101, https://doi.org/10.1021/jf010325e . [all data]

Morales, Duque, et al., 2000
Morales, A.L.; Duque, C.; Bautista, E., Identification of free and glycosidically bound volatiles and glycosides by capillary GC and capillary GC-MS in Lulo del Chocó (Solanum topiro), J. Hi. Res. Chromatogr., 2000, 23, 5, 379-385, https://doi.org/10.1002/(SICI)1521-4168(20000501)23:5<379::AID-JHRC379>3.0.CO;2-B . [all data]

Parada, Duque, et al., 2000
Parada, F.; Duque, C.; Fujimoto, Y., Free and bound volatile composition and characterization of some glucoconjugates as aroma precursors in Melón de olor fruit pulp (Sicana odorifera), J. Agric. Food Chem., 2000, 48, 12, 6200-6204, https://doi.org/10.1021/jf0007232 . [all data]

Parada and Duque, 1998
Parada, F.; Duque, C., Studies on the aroma of piñuela fruit pulp (Bromelia plumieri): Free and bound volatile composition and characterization of some glucoconjugates as aroma precursors, J. Hi. Res. Chromatogr., 1998, 21, 10, 577-581, https://doi.org/10.1002/(SICI)1521-4168(19981001)21:10<577::AID-JHRC577>3.0.CO;2-V . [all data]

Awano, Honda, et al., 1997
Awano, K.; Honda, T.; Ogawa, T.; Suzuki, S.; Matsunaga, Y., Volatile components of Phalaenopsis schilleriana Rehb. f., Flavour Fragr. J., 1997, 12, 5, 341-344, https://doi.org/10.1002/(SICI)1099-1026(199709/10)12:5<341::AID-FFJ657>3.0.CO;2-L . [all data]

Morales, Albarracín, et al., 1996
Morales, A.L.; Albarracín, D.; Rodríguez, J.; Duque, C.; Riaño, L.E.; Espitia, J., Volatile constituents from Andes berry (Rubus glaucus Benth), J. Hi. Res. Chromatogr., 1996, 19, 10, 585-587, https://doi.org/10.1002/jhrc.1240191011 . [all data]

Andersen J.F., Mikolajczak K.L., et al., 1987
Andersen J.F.; Mikolajczak K.L.; Reed D.K., Analysis of peach bark volatiles and their electroantennogram activity with lesser pechtree borer, Synanthedon pictipes (Grote and Robinson), J. Chem. Ecol., 1987, 13, 11, 2103-2114, https://doi.org/10.1007/BF01012874 . [all data]

Kaprasob, Laohankunjit, et al., 2011
Kaprasob, R.; Laohankunjit, N.; Kerdchoechuen, O., Volatile compounds and bionutrient of sesame meal protein hydrolysate by flavourzyme, Agricultural Sci; J., 2011, 42, 2, 421-424. [all data]

Chinnici, Guerrero, et al., 2009
Chinnici, F.; Guerrero, E.D.; Sonni, F.; Natali, N.; Marin, R.N.; Riponi, C., Gas chromatography - mass spectrometry (GC-MS) characterization of volatile compounds in quality vinegars with protected Europian geographical indication, J. Agric. Food Chem., 2009, 57, 11, 4784-4792, https://doi.org/10.1021/jf804005w . [all data]

Tao, Wenlai, et al., 2008
Tao, L.; Wenlai, F.; Yan, X., Characterization of volatile and semi-volatile compounds in Chinese rica wines by headspace solid phase microextraction followed by gas chromatography - mass spectrometry, J. Inst. Brew., 2008, 114, 2, 172-179, https://doi.org/10.1002/j.2050-0416.2008.tb00323.x . [all data]

Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S., Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee., J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004 . [all data]

Tian, Zhang, et al., 2007
Tian, Y.; Zhang, X.; Huang, T.; Zou, K.; Zhou, J., Research advances on the essential oils from leaves of Eucalyptus, Food Fermentation Ind. (Chinese), 2007, 33, 10, 143-147. [all data]

Krings, Zelena, et al., 2006
Krings, U.; Zelena, K.; Wu, S.; Berger, R.G., Thin-layer high-vacuum distillation to isolate volatile flavour compounds of cocoa powder, Eur. Food Res. Technol., 2006, 223, 5, 675-681, https://doi.org/10.1007/s00217-006-0252-x . [all data]

Editorial paper, 2005
Editorial paper, Solid Phase Microextraction (SPME) Application Guide, The Reporter Europe (Supelco), 2005, 16, 5, 12-12. [all data]

Mayorga, Knapp, et al., 2001
Mayorga, H.; Knapp, H.; Winterhalter, P.; Duque, C., Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.), J. Agric. Food Chem., 2001, 49, 4, 1904-1908, https://doi.org/10.1021/jf0011743 . [all data]

Pedersen, Durant, et al., 2005
Pedersen, D.U.; Durant, J.L.; Taghizadeh, K.; Hemond, H.F.; Lafleur, A.L.; Cass, G.R., Human cell mutagenes in respirable airborne particles from the Northeastern United States. 2. Quantification of mutagenes and other organic compounds., Environ. Sci. Technol., 2005, 39, 24, 9547-9560, https://doi.org/10.1021/es050886c . [all data]

Donnelly, Abdel-Hamid, et al., 1993
Donnelly, J.R.; Abdel-Hamid, M.S.; Jeter, J.L.; Gurka, D.F., Application of gas chromatographic retention properties to the identification of environmental contaminants, J. Chromatogr., 1993, 642, 1-2, 409-415, https://doi.org/10.1016/0021-9673(93)80106-I . [all data]

Fuentes, Font, et al., 2007
Fuentes, M.J.; Font, R.; Gomez-Rico, M.F.; Martin-Gullon, I., Pyrolysis and combustion of waste lubricant oil from diesel cars: Decomposition and pollutants, J. Anal. Appl. Pyrolysis, 2007, 79, 1-2, 215-226, https://doi.org/10.1016/j.jaap.2006.12.004 . [all data]

Aracil, Font, et al., 2005
Aracil, I.; Font, R.; Conesa, J.A., Semivolatile and volatile compounds from the pyrolysis and combustion of polyvinyl chloride, J. Anal. Appl. Pyrolysis, 2005, 74, 1-2, 465-478, https://doi.org/10.1016/j.jaap.2004.09.008 . [all data]

Eckel and Kind, 2003
Eckel, W.P.; Kind, T., Use of boiling point-Lee retention index correlation for rapid review of gas chromatography-mass spectrometry data, Anal. Chim. Acta., 2003, 494, 1-2, 235-243, https://doi.org/10.1016/j.aca.2003.08.003 . [all data]

Eckel, Ross, et al., 1993
Eckel, W.P.; Ross, B.; Isensee, R.K., Pentobarbital found in ground water, Ground Water, 1993, 31, 5, 801-804, https://doi.org/10.1111/j.1745-6584.1993.tb00853.x . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References