Acetic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-103.5 ± 0.6kcal/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
gas67.600cal/mol*KN/AWeltner W., 1955Other third-law entropy values at 298.15 K are 284.5 [ Chao J., 1986] and 290.37(4.18) J/mol*K [ Halford J.O., 1941].; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
9.45050.Chao J., 1986p=1 bar. Selected entropies and heat capacities differ from other statistically calculated values [ Weltner W., 1955] by 1.0-1.3 J/mol*K for S(T) and 3.1-5.4 J/mol*K for Cp(T). Please also see Chao J., 1978.; GT
9.661100.
10.22150.
11.55200.
14.19273.15
15.16 ± 0.026298.15
15.23300.
19.04400.
22.45500.
25.378600.
27.875700.
29.995800.
31.785900.
33.2841000.
34.5271100.
35.5541200.
36.4011300.
37.0981400.
37.6741500.

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil391.2 ± 0.6KAVGN/AAverage of 80 out of 90 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus289.6 ± 0.5KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple289.8KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple289.69KN/AMartin and Andon, 1982Uncertainty assigned by TRC = 0.04 K; TRC
Ttriple289.8KN/AParks and Kelley, 1925Uncertainty assigned by TRC = 0.15 K; TRC
Quantity Value Units Method Reference Comment
Tc593. ± 3.KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Pc57.05atmN/AAndereya and Chase, 1990Uncertainty assigned by TRC = 0.20 atm; TRC
Pc57.5279atmN/AD'Souza and Teja, 1987Uncertainty assigned by TRC = 0.89 atm; Ambrose's procedure; TRC
Pc57.10atmN/AAmbrose, Ellender, et al., 1977Uncertainty assigned by TRC = 0.08 atm; TRC
Pc57.11atmN/AYoung, 1910Uncertainty assigned by TRC = 0.99995 atm; TRC
Pc57.110atmN/AYoung, 1891Uncertainty assigned by TRC = 0.2631 atm; TRC
Quantity Value Units Method Reference Comment
ρc5.84mol/lN/AVandana and Teja, 1995Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc5.838mol/lN/AYoung, 1910Uncertainty assigned by TRC = 0.02 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap12.0kcal/molCGCVerevkin, 2000Based on data from 303. to 378. K.; AC
Δvap12.3kcal/molN/AMajer and Svoboda, 1985 
Δvap12.3 ± 0.36kcal/molCKonicek and Wadso, 1970ALS
Δvap12.3 ± 0.38kcal/molCKonicek, Wadsö, et al., 1970AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
5.66391.1N/AMajer and Svoboda, 1985 
9.35360.EBMuñoz and Krähenbühl, 2001Based on data from 345. to 383. K.; AC
9.78335.N/AVercher, Vázquez, et al., 2001Based on data from 320. to 395. K.; AC
9.06406.AStephenson and Malanowski, 1987Based on data from 391. to 550. K.; AC
10.0305.AStephenson and Malanowski, 1987Based on data from 290. to 396. K.; AC
9.25406.AStephenson and Malanowski, 1987Based on data from 391. to 447. K.; AC
9.11452.AStephenson and Malanowski, 1987Based on data from 437. to 535. K.; AC
9.27540.AStephenson and Malanowski, 1987Based on data from 525. to 593. K.; AC
9.94304.AStephenson and Malanowski, 1987Based on data from 289. to 392. K. See also Dykyj, 1970.; AC
10.3308.N/ATamir, Dragoescu, et al., 1983AC
9.63340.N/AMcDonald, Shrader, et al., 1959Based on data from 325. to 391. K.; AC
9.94318.MMPotter and Ritter, 1954Based on data from 303. to 399. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 392.
A (kcal/mol) 5.459
α 0.0184
β -0.0454
Tc (K) 592.7
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
290.26 to 391.014.676351642.54-39.764McDonald, Shrader, et al., 1959

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
16.1 ± 0.2223.TE,MECalis-Van Ginkel, Calis, et al., 1978Based on data from 213. to 230. K.; AC
17. ± 0.2213.TE,MECalis-Van Ginkel, Calis, et al., 1978Based on data from 213. to 230. K.; AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
2.801298.7Domalski and Hearing, 1996See also Martin and Andon, 1982, 2.; AC
2.8031289.9Parks and Kelley, 1925, 2DH
2.588289.8Louguinine and Dupont, 1911AC
2.753283.7Meyer, 1910AC
2.6592290.06Pickering, 1895DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
9.673289.9Parks and Kelley, 1925, 2DH
9.168290.06Pickering, 1895DH

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
2.8011298.69crystaline, IliquidMartin and Andon, 1982, 2DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
9.68298.69crystaline, IliquidMartin and Andon, 1982, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Fluorine anion + Acetic acid = (Fluorine anion • Acetic acid)

By formula: F- + C2H4O2 = (F- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr44.1 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr25.6cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr36.5 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

C2H5O+ + Acetic acid = (C2H5O+ • Acetic acid)

By formula: C2H5O+ + C2H4O2 = (C2H5O+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr28.1kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr29.5kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr28.3cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr27.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr21.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

Chlorine anion + Acetic acid = (Chlorine anion • Acetic acid)

By formula: Cl- + C2H4O2 = (Cl- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr24.40 ± 0.20kcal/molTDAsSieck, 1985gas phase; B,M
Δr21.6 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1971gas phase; B,M
Δr23.9 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.6cal/mol*KPHPMSSieck, 1985gas phase; M
Δr24.0cal/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr19.3cal/mol*KPHPMSYamdagni and Kebarle, 1971gas phase; M
Quantity Value Units Method Reference Comment
Δr18.60 ± 0.30kcal/molTDAsSieck, 1985gas phase; B
Δr15.8 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1971gas phase; B
Δr16.7 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

MeCO2 anion + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr348.2 ± 1.4kcal/molCIDCAngel and Ervin, 2006gas phase; B
Δr348.1 ± 2.2kcal/molG+TSTaft and Topsom, 1987gas phase; B
Δr348.6 ± 2.1kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Δr348.7 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr343.20 ± 0.70kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr341.1 ± 2.0kcal/molIMRETaft and Topsom, 1987gas phase; B
Δr341.5 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B
Δr341.7 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B

C2H7O+ + Acetic acid = (C2H7O+ • Acetic acid)

By formula: C2H7O+ + C2H4O2 = (C2H7O+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr28.4cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr20.8kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

CH6N+ + Acetic acid = (CH6N+ • Acetic acid)

By formula: CH6N+ + C2H4O2 = (CH6N+ • C2H4O2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr22.0kcal/molPHPMSMeot-Ner, 1984gas phase; M
Δr21.4kcal/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KPHPMSMeot-Ner, 1984gas phase; M
Δr24.cal/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.3459.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

(C2H5O+ • 3Acetic acid) + Acetic acid = (C2H5O+ • 4Acetic acid)

By formula: (C2H5O+ • 3C2H4O2) + C2H4O2 = (C2H5O+ • 4C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr12.kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.2245.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

(MeCO2 anion • 2Acetic acid • Water) + Acetic acid = (MeCO2 anion • 3Acetic acid • Water)

By formula: (C2H3O2- • 2C2H4O2 • H2O) + C2H4O2 = (C2H3O2- • 3C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr12.50 ± 0.60kcal/molN/AMeot-ner, Elmore, et al., 1999gas phase; B
Δr16.2 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr5.73kcal/molTDAsMeot-ner, Elmore, et al., 1999gas phase; B
Δr6.2 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B

(MeCO2 anion • Acetic acid • Water) + Acetic acid = (MeCO2 anion • 2Acetic acid • Water)

By formula: (C2H3O2- • C2H4O2 • H2O) + C2H4O2 = (C2H3O2- • 2C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr19.69 ± 0.50kcal/molN/AMeot-ner, Elmore, et al., 1999gas phase; B
Δr16.2 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr10.81kcal/molTDAsMeot-ner, Elmore, et al., 1999gas phase; B
Δr6.2 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B

Acetyl chloride + Water = Acetic acid + Hydrogen chloride

By formula: C2H3ClO + H2O = C2H4O2 + HCl

Quantity Value Units Method Reference Comment
Δr-22.58kcal/molCmDevore and O'Neal, 1969liquid phase; Heat of hydrolysis; ALS
Δr-22.06kcal/molCmPritchard and Skinner, 1950liquid phase; Heat of hydrolysis at 298 K, see Carson and Skinner, 1949; ALS
Δr-22.09kcal/molCmCarson and Skinner, 1949liquid phase; ALS

Acetic anhydride + Water = 2Acetic acid

By formula: C4H6O3 + H2O = 2C2H4O2

Quantity Value Units Method Reference Comment
Δr-13.53 ± 0.96kcal/molCmBecker and Maelicke, 1967liquid phase; ALS
Δr-14.00 ± 0.09kcal/molCmWadso, 1962liquid phase; ALS
Δr-14.0 ± 0.1kcal/molCmConn, Kistiakowsky, et al., 1942liquid phase; Heat of hydrolysis at 303 K; ALS

Iodide + Acetic acid = (Iodide • Acetic acid)

By formula: I- + C2H4O2 = (I- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr16.9 ± 1.0kcal/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.3cal/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr10.5 ± 1.0kcal/molTDAsCaldwell and Kebarle, 1984gas phase; B

C2H3O2- + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr368.0 ± 3.1kcal/molG+TSGrabowski and Cheng, 1989gas phase; B
Δr367.8 ± 4.6kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr361.2 ± 3.0kcal/molIMRBGrabowski and Cheng, 1989gas phase; B

C6H5NO2- + Acetic acid = (C6H5NO2- • Acetic acid)

By formula: C6H5NO2- + C2H4O2 = (C6H5NO2- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr22.60 ± 0.10kcal/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr26.8cal/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr14.60 ± 0.20kcal/molTDAsSieck, 1985gas phase; B

phenoxide anion + Acetic acid = (phenoxide anion • Acetic acid)

By formula: C6H5O- + C2H4O2 = (C6H5O- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr27.4kcal/molPHPMSMeot-Ner and Sieck, 1986gas phase; calculated from CH3COO-.C6H5OH; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; calculated from CH3COO-.C6H5OH; M

(C2H5O+ • 2Acetic acid) + Acetic acid = (C2H5O+ • 3Acetic acid)

By formula: (C2H5O+ • 2C2H4O2) + C2H4O2 = (C2H5O+ • 3C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr13.1kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr22.4cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

(C2H5O+ • Acetic acid) + Acetic acid = (C2H5O+ • 2Acetic acid)

By formula: (C2H5O+ • C2H4O2) + C2H4O2 = (C2H5O+ • 2C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr18.5kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr24.5cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

C6H12NO3+ + Acetic acid = (C6H12NO3+ • Acetic acid)

By formula: C6H12NO3+ + C2H4O2 = (C6H12NO3+ • C2H4O2)

Bond type: Hydrogen bonds with polydentate bonding in positive ions

Quantity Value Units Method Reference Comment
Δr18.1kcal/molPHPMSMeot-Ner, 1984, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr27.2cal/mol*KPHPMSMeot-Ner, 1984, 2gas phase; M

Diacetamide + Water = Acetamide + Acetic acid

By formula: C4H7NO2 + H2O = C2H5NO + C2H4O2

Quantity Value Units Method Reference Comment
Δr-4.33 ± 0.05kcal/molCmHill and Wadso, 1968solid phase; Heat of hydrolysis; ALS
Δr-4.33 ± 0.05kcal/molCmWadso, 1965solid phase; Heat of hydrolysis; ALS

C4H10NO+ + Acetic acid = (C4H10NO+ • Acetic acid)

By formula: C4H10NO+ + C2H4O2 = (C4H10NO+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr18.4kcal/molPHPMSMeot-Ner, 1984, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr24.7cal/mol*KPHPMSMeot-Ner, 1984, 2gas phase; M

Acetyl iodide + Water = Hydrogen iodide + Acetic acid

By formula: C2H3IO + H2O = HI + C2H4O2

Quantity Value Units Method Reference Comment
Δr-22.46kcal/molCmDevore and O'Neal, 1969liquid phase; Heat of hydrolysis; ALS
Δr-21.59kcal/molCmCarson and Skinner, 1949liquid phase; Heat of hydrolysis; ALS

(MeCO2 anion • Water) + Acetic acid = (MeCO2 anion • Acetic acid • Water)

By formula: (C2H3O2- • H2O) + C2H4O2 = (C2H3O2- • C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr29.3 ± 1.0kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr20.4 ± 1.6kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B

Acetic anhydride + 1-Butanamine = Acetamide, N-butyl- + Acetic acid

By formula: C4H6O3 + C4H11N = C6H13NO + C2H4O2

Quantity Value Units Method Reference Comment
Δr-27.06 ± 0.11kcal/molCmWadso, 1962liquid phase; ALS
Δr-39.13 ± 0.06kcal/molCmWadso, 1958liquid phase; Heat of aminolysis; ALS

Acetyl bromide + Water = Hydrogen bromide + Acetic acid

By formula: C2H3BrO + H2O = HBr + C2H4O2

Quantity Value Units Method Reference Comment
Δr-23.31kcal/molCmDevore and O'Neal, 1969liquid phase; Heat of hydrolysis; ALS
Δr-23.06kcal/molCmCarson and Skinner, 1949liquid phase; ALS

thiophenoxide anion + Acetic acid = C8H9O2S-

By formula: C6H5S- + C2H4O2 = C8H9O2S-

Quantity Value Units Method Reference Comment
Δr20.30 ± 0.10kcal/molTDAsSieck and Meot-ner, 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr12.50 ± 0.40kcal/molTDAsSieck and Meot-ner, 1989gas phase; B

(MeCO2 anion • 2Acetic acid) + Acetic acid = (MeCO2 anion • 3Acetic acid)

By formula: (C2H3O2- • 2C2H4O2) + C2H4O2 = (C2H3O2- • 3C2H4O2)

Quantity Value Units Method Reference Comment
Δr16.2kcal/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr33.2cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

(MeCO2 anion • Acetic acid) + Acetic acid = (MeCO2 anion • 2Acetic acid)

By formula: (C2H3O2- • C2H4O2) + C2H4O2 = (C2H3O2- • 2C2H4O2)

Quantity Value Units Method Reference Comment
Δr19.6kcal/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr28.6cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

thiophenoxide anion + Acetic acid = (thiophenoxide anion • Acetic acid)

By formula: C6H5S- + C2H4O2 = (C6H5S- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr20.3kcal/molPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr26.2cal/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M

Lithium ion (1+) + Acetic acid = (Lithium ion (1+) • Acetic acid)

By formula: Li+ + C2H4O2 = (Li+ • C2H4O2)

Quantity Value Units Method Reference Comment
Δr41.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

MeCO2 anion + Acetic acid = (MeCO2 anion • Acetic acid)

By formula: C2H3O2- + C2H4O2 = (C2H3O2- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr29.3kcal/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr29.6cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

2,3-Butanediol, diacetate + 2Water = 2,3-Butanediol + 2Acetic acid

By formula: C8H14O4 + 2H2O = C4H10O2 + 2C2H4O2

Quantity Value Units Method Reference Comment
Δr-5.33 ± 0.50kcal/molCmShlechter, Othmer, et al., 1945liquid phase; Heat of formation derived by Cox and Pilcher, 1970; ALS

1H-Imidazole, 1-acetyl- + Water = 1H-Imidazole + Acetic acid

By formula: C5H6N2O + H2O = C3H4N2 + C2H4O2

Quantity Value Units Method Reference Comment
Δr-4.83 ± 0.05kcal/molCmWadso, 1960liquid phase; solvent: Aqueous; Heat of hydrolysis; ALS

2,3-Butanediol + 2Acetic acid = 2,3-Butanediol, diacetate + 2Water

By formula: C4H10O2 + 2C2H4O2 = C8H14O4 + 2H2O

Quantity Value Units Method Reference Comment
Δr5.330kcal/molEqkShlechter, Othmer, et al., 1945liquid phase; Heat of esterification at 338-453 K; ALS

2,3-Butanediol monoacetate + Acetic acid = 2,3-Butanediol, diacetate + Water

By formula: C6H12O3 + C2H4O2 = C8H14O4 + H2O

Quantity Value Units Method Reference Comment
Δr0.441kcal/molEqkShlechter, Othmer, et al., 1945liquid phase; Heat of esterification at 338-453 K; ALS

N,N,N-Triacetylamine + 2Water = Acetamide + 2Acetic acid

By formula: C6H9NO3 + 2H2O = C2H5NO + 2C2H4O2

Quantity Value Units Method Reference Comment
Δr-24.74 ± 0.02kcal/molCmHill and Wadso, 1968liquid phase; Heat of hydrolysis; ALS

2Water + Ethene, 1,1-dimethoxy- = Acetic acid + 2Methyl Alcohol

By formula: 2H2O + C4H8O2 = C2H4O2 + 2CH4O

Quantity Value Units Method Reference Comment
Δr-17.79 ± 0.86kcal/molCmGuthrie and Liu, 1995liquid phase; Heat of hydrolysis; ALS

1,3-Dehydroadamantane + Acetic acid = Tricyclo[3.3.1.13,7]decan-1-ol, acetate

By formula: C10H14 + C2H4O2 = C12H18O2

Quantity Value Units Method Reference Comment
Δr-43.49 ± 0.08kcal/molCacWiberg, Connon, et al., 1979liquid phase; solvent: Acetic acid; ALS

Thioacetic acid + Water = Acetic acid + Hydrogen sulfide

By formula: C2H4OS + H2O = C2H4O2 + H2S

Quantity Value Units Method Reference Comment
Δr-0.64 ± 0.07kcal/molCmSunner and Wadso, 1957liquid phase; Heat of hydrolysis; ALS

Acetamide + Water = Acetic acid + Ammonia

By formula: C2H5NO + H2O = C2H4O2 + H3N

Quantity Value Units Method Reference Comment
Δr18.2 ± 0.33kcal/molCmHill and Wadso, 1968solid phase; Heat of hydrolysis; ALS

Acetamide, N-butyl- + Acetic acid = Acetamide, N-acetyl-N-butyl- + Water

By formula: C6H13NO + C2H4O2 = C8H15NO2 + H2O

Quantity Value Units Method Reference Comment
Δr9.68 ± 0.12kcal/molCmWadso, 1965liquid phase; Heat of hydrolysis; ALS

Ethanethioic acid, S-propyl ester + Water = Propyl mercaptan + Acetic acid

By formula: C5H10OS + H2O = C3H8S + C2H4O2

Quantity Value Units Method Reference Comment
Δr-0.93 ± 0.06kcal/molCmWadso, 1957liquid phase; Heat of hydrolysis; ALS

Acetamide, N-phenyl- + Acetic acid = C10H11NO2 + Water

By formula: C8H9NO + C2H4O2 = C10H11NO2 + H2O

Quantity Value Units Method Reference Comment
Δr10.88 ± 0.07kcal/molCmWadso, 1965solid phase; Heat of hydrolysis; ALS

m-Cresyl acetate + Water = Phenol, 3-methyl- + Acetic acid

By formula: C9H10O2 + H2O = C7H8O + C2H4O2

Quantity Value Units Method Reference Comment
Δr-4.39 ± 0.14kcal/molCmSunner, 1957liquid phase; Heat of hydrolysis; ALS

Water + Ethanethioic acid, S-butyl ester = 1-Butanethiol + Acetic acid

By formula: H2O + C6H12OS = C4H10S + C2H4O2

Quantity Value Units Method Reference Comment
Δr-1.09 ± 0.06kcal/molCmWadso, 1957liquid phase; Heat of hydrolysis; ALS

1-Acetyl-1H-tetrazole + Water = 1H-Tetrazole + Acetic acid

By formula: C3H4N4O + H2O = CH2N4 + C2H4O2

Quantity Value Units Method Reference Comment
Δr-10.31 ± 0.09kcal/molCmWadso, 1960solid phase; Heat of hydrolysis; ALS

Benzoic acid, 4-(acetylthio)- + Water = Benzoic acid, 4-mercapto- + Acetic acid

By formula: C9H8O3S + H2O = C7H6O2S + C2H4O2

Quantity Value Units Method Reference Comment
Δr-2.75 ± 0.09kcal/molCmNelander, 1964solid phase; Heat of hydrolysis; ALS

Acetamide, N-phenyl- + Water = Aniline + Acetic acid

By formula: C8H9NO + H2O = C6H7N + C2H4O2

Quantity Value Units Method Reference Comment
Δr-10.05 ± 0.06kcal/molCmWadso, 1965solid phase; Heat of hydrolysis; ALS

Acetic acid + Acetone = 1-Propen-2-ol, acetate + Water

By formula: C2H4O2 + C3H6O = C5H8O2 + H2O

Quantity Value Units Method Reference Comment
Δr14.39 ± 0.06kcal/molCmSunner, 1957liquid phase; Heat of hydrolysis; ALS

S-Ethyl ethanethioate + Water = Acetic acid + Ethanethiol

By formula: C4H8OS + H2O = C2H4O2 + C2H6S

Quantity Value Units Method Reference Comment
Δr-0.95 ± 0.06kcal/molCmWadso, 1957liquid phase; Heat of hydrolysis; ALS

Water + Ethanethioic acid, S-(1-methylethyl) ester = Acetic acid + 2-Propanethiol

By formula: H2O + C5H10OS = C2H4O2 + C3H8S

Quantity Value Units Method Reference Comment
Δr-1.39 ± 0.07kcal/molCmWadso, 1957liquid phase; Heat of hydrolysis; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman

View reactions leading to C2H4O2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.65 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)187.3kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity179.9kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.63PITraeger, McLouglin, et al., 1982LBLHLM
10.66EIHolmes, Fingas, et al., 1981LLK
10.66 ± 0.05EIHolmes and Lossing, 1980LLK
10.66EIHolmes and Lossing, 1980, 2LLK
10.66 ± 0.05PIAkopyan and Villem, 1976LLK
10.664 ± 0.003PIWatanabe, Yokoyama, et al., 1974LLK
10.644 ± 0.002PIKnowles and Nicholson, 1974LLK
10.65PEWatanabe, Yokoyama, et al., 1973LLK
10.69 ± 0.03PEThomas, 1972LLK
10.70PESweigart and Turner, 1972LLK
10.37 ± 0.03PIWatanabe, Nakayama, et al., 1962RDSH
10.38 ± 0.03PIVilesov, 1960RDSH
10.35 ± 0.03PIWatanabe, 1957RDSH
10.9PEVon Niessen, Bieri, et al., 1980Vertical value; LLK
10.84PECarnovale, Gan, et al., 1980Vertical value; LLK
10.63PEBenoit and Harrison, 1977Vertical value; LLK
11.5PERao, 1975Vertical value; LLK
10.87PEKimura, Katsumata, et al., 1975Vertical value; LLK
10.8PEGreen and Hayes, 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+22.0 ± 0.5H2+HCOOHEIStepanov, Perov, et al., 1988LL
CHO2+12.27 ± 0.05CH3EIHaney and Franklin, 1969RDSH
CHO2+12.9 ± 0.1CH3EIShigorin, Filyugina, et al., 1966RDSH
CH3+14.0 ± 0.15?EIHaney and Franklin, 1969RDSH
CH3O+12.05 ± 0.10CHOEISelim and Helal, 1981LLK
CO+15.3 ± 0.1CH3OHEIShigorin, Filyugina, et al., 1966RDSH
C2H3O+11.54OHPITraeger, McLouglin, et al., 1982LBLHLM
C2H3O+11.75OHEIHaney and Franklin, 1969RDSH
C2H3O+11.4 ± 0.15OHEIShigorin, Filyugina, et al., 1966RDSH
OH+15.1?EIMajer, Patrick, et al., 1961RDSH

De-protonation reactions

MeCO2 anion + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr348.2 ± 1.4kcal/molCIDCAngel and Ervin, 2006gas phase; B
Δr348.1 ± 2.2kcal/molG+TSTaft and Topsom, 1987gas phase; B
Δr348.6 ± 2.1kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Δr348.7 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr343.20 ± 0.70kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr341.1 ± 2.0kcal/molIMRETaft and Topsom, 1987gas phase; B
Δr341.5 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B
Δr341.7 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B

C2H3O2- + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr368.0 ± 3.1kcal/molG+TSGrabowski and Cheng, 1989gas phase; B
Δr367.8 ± 4.6kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr361.2 ± 3.0kcal/molIMRBGrabowski and Cheng, 1989gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 80
NIST MS number 227635

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Briegleb and Strohmeier, 1946
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 2843
Instrument n.i.g.
Sample temp. (C) 210
Sample pressure 309 mm Hg
Melting point 16.6
Boiling point 117.9

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSE-30120.590.Viani, Müggler-Chavan, et al., 1965He, Chromosorb P; Column length: 6. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax1465.Riu-Aumatell, Castellari, et al., 200430. m/0.25 mm/0.25 μm, 60. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillarySupelcowax1465.Riu-Aumatell, Castellari, et al., 200430. m/0.25 mm/0.25 μm, 60. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryCarbowax 20M1408.Nishimura, Yamaguchi, et al., 19892. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1400.Shibamoto, Kamiya, et al., 1981N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1400.Shibamoto, Kamiya, et al., 1981N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M1447.Garruti, Franco, et al., 2001H2; Column length: 30. m; Column diameter: 0.25 mm; Program: 50 0C (8 min) 4 K/min -> 110 0C 16 K/min -> 200 0C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-5602.Engel and Ratel, 200760. m/0.32 mm/1. μm, 40. C @ 2. min, 3. K/min, 230. C @ 10. min
CapillaryDB-5MS646.Lozano P.R., Drake M., et al., 200730. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 10. K/min, 225. C @ 25. min
CapillaryDB-5645.Steinhaus and Schieberle, 200730. m/0.32 mm/0.25 μm, 40. C @ 2. min, 6. K/min, 240. C @ 10. min
CapillaryDB-5602.Bylaite and Meyer, 200630. m/0.25 mm/1. μm, 50. C @ 1. min, 10. K/min, 290. C @ 10. min
CapillaryMega 5MS661.Condurso, Verzera, et al., 200660. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 60. C; Tend: 240. C
CapillaryCP Sil 8 CB600.Mahadevan and Farmer, 200660. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm
CapillaryDB-5MS600.Whetstine, Cadwallader, et al., 200530. m/0.25 mm/0.25 μm, 40. C @ 3. min, 10. K/min, 200. C @ 20. min
CapillaryDB-5625.Avsar, Karagul-Yuceer, et al., 200430. m/0.25 mm/0.25 μm, 40. C @ 5. min, 10. K/min, 200. C @ 15. min
CapillaryCP-Sil 8CB-MS649.Hierro, de la Hoz, et al., 200460. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillarySPB-5600.Píno, Marbot, et al., 200430. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillaryDB-5663.Karagül-Yüceer, Cadwallader, et al., 200230. m/0.32 mm/0.25 μm, 35. C @ 5. min, 10. K/min, 200. C @ 30. min
CapillaryCP Sil 8 CB606.Elmore, Mottram, et al., 200060. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C
CapillaryDB-1660.4Helmig, Klinger, et al., 199960. m/0.32 mm/1. μm, -50. C @ 2. min, 6. K/min; Tend: 175. C
CapillarySPB-5625.Verdier-Metz., Coulon, et al., 199860. m/0.32 mm/1. μm, He, 40. C @ 5. min, 3. K/min, 200. C @ 2. min
CapillaryDB-1625.Helmig, Pollock, et al., 199630. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5600.Özel, Gögüs, et al., 2006Program: not specified
CapillaryDB-5599.Klesk and Qian, 200330. m/0.25 mm/0.25 μm, He; Program: 40C(2min) => 5C/min => 100C => 4C/min => 230C(10min)
CapillaryDB-1594.Place, Imhof, et al., 200360. m/0.32 mm/1. μm, He; Program: 35C(5min) => 10C/min => 45C (5min) => 5C/min => 250C (10min)
CapillaryDB-5600.Jezussek, Juliano, et al., 200230. m/0.32 mm/0.25 μm, He; Program: 40C(1min) => 40C/min => 50C(2min) => 6C/min => 240C
CapillarySE-54605.Tairu, Hofmann, et al., 200030. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 40C/min => 60C (2min) => 6C/min => 180C (5min) => 10C/min => 230C (5min)
CapillarySE-54610.Buettner and Schieberle, 199930. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 40C/min => 50C (2min) => 6C/min => 180C => 10C/min => 230C (10min)
CapillaryBPX-5665.Bredie, Mottram, et al., 199850. m/0.32 mm/0.5 μm, He; Program: OC (5min) => 60C/min => 60C(5min) => 4C/min => 250C
CapillarySE-54600.Fickert and Schieberle, 199825. m/0.32 mm/0.5 μm, He; Program: 35C (2min) => 4C/min => 150C => 10C/min => 240C
CapillarySE-54610.Hinterholzer, Lemos, et al., 199830. m/0.32 mm/0.25 μm, He; Program: 35C(2min) => 40C/min => 50C(2min) => 6C/min => 180C => 10C/min => 230C(10 min)
CapillarySE-54610.Hinterholzer and Schieberie, 199830. m/0.32 mm/0.25 μm, He; Program: 35C(2min) => 40C/min => 50C(2min) => 6C/min => 180C => 10C/min => 230C(10min)
CapillarySE-54645.Münch, Hofmann, et al., 199730. m/0.32 mm/0.25 μm, He; Program: 40C (2min) => 40C/min => 50C (2min) => 240C (10min)
CapillaryMethyl Silicone642.Peng, Yang, et al., 1991Program: not specified
PackedSE-30642.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-FFAP1449.Jarunrattanasri, Theerakulkait, et al., 200730. m/0.25 mm/0.5 μm, He, 35. C @ 5. min, 4. K/min, 225. C @ 30. min
CapillaryDB-FFAP1452.Jarunrattanasri, Theerakulkait, et al., 200730. m/0.25 mm/0.5 μm, He, 35. C @ 5. min, 4. K/min, 225. C @ 30. min
CapillaryFFAP1445.Lozano P.R., Drake M., et al., 200730. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 10. K/min, 225. C @ 25. min
CapillaryFFAP1435.Lozano P.R., Miracle E.R., et al., 200730. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 10. K/min, 225. C @ 25. min
CapillaryHP-20M1402.Politeo, Jukic, et al., 200750. m/0.20 mm/0.20 μm, Helium, 70. C @ 4. min, 4. K/min, 180. C @ 15. min
CapillaryDB-Wax1452.Pozo-Bayon M.A., Ruiz-Rodriguez A., et al., 200730. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 4. K/min, 250. C @ 15. min
CapillaryHP-Innowax1427.Quijano, Linares, et al., 200760. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 10. min
CapillaryDB-Wax1460.Ruiz Perez-Cacho, Mahattanatawee, et al., 200730. m/0.32 mm/0.5 μm, He, 7. K/min, 240. C @ 5. min; Tstart: 40. C
CapillaryFFAP1436.Steinhaus and Schieberle, 200730. m/0.32 mm/0.25 μm, 40. C @ 2. min, 6. K/min, 240. C @ 10. min
CapillaryDB-Wax1461.Gurbuz O., Rouseff J.M., et al., 200660. m/0.25 mm/0.25 μm, He, 7. K/min, 265. C @ 5. min; Tstart: 40. C
CapillaryDB-Wax1452.Gurbuz O., Rouseff J.M., et al., 200630. m/0.32 mm/0.5 μm, He, 7. K/min, 265. C @ 5. min; Tstart: 40. C
CapillaryCP-Wax 52CB1449.Mahadevan and Farmer, 200660. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm
CapillaryDB-Wax1429.Osorio, Alarcon, et al., 200630. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min
CapillaryDB-Wax1460.Petka, Ferreira, et al., 200630. m/0.32 mm/0.5 μm, 40. C @ 3. min, 5. K/min, 200. C @ 8. min
CapillaryLM-1201464.Pinto, Guedes, et al., 200650. m/0.25 mm/0.5 μm, 3. K/min, 240. C @ 30. min; Tstart: 50. C
CapillaryDB-Wax1479.Whetstine M.E.C., Drake M.A., et al., 200630. m/0.25 mm/0.25 μm, He, 40. C @ 3. min, 10. K/min, 200. C @ 20. min
CapillaryCP-Wax 52CB1463.Alasalvar, Taylor, et al., 200560. m/0.25 mm/0.25 μm, 35. C @ 4. min, 3. K/min; Tend: 203. C
CapillaryOV-3511434.Bonvehí, 200550. m/0.32 mm/0.2 μm, He, 5. K/min; Tstart: 60. C; Tend: 220. C
CapillaryDB-Wax1441.Carunchia Whetstine, Croissant, et al., 200530. m/0.25 mm/0.25 μm, 40. C @ 3. min, 10. K/min, 200. C @ 20. min
CapillaryDB-Wax1424.Carunchia Whetstine, Croissant, et al., 200530. m/0.25 mm/0.25 μm, 40. C @ 3. min, 10. K/min, 200. C @ 20. min
CapillaryStabilwax1453.Cros, Lignot, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryStabilwax1467.Fang and Qian, 200530. m/0.32 mm/1. μm, N2, 40. C @ 2. min, 4. K/min, 230. C @ 10. min
CapillaryDB-Wax1433.Gancel, Ollitrault, et al., 200530. m/0.25 mm/0.25 μm, He, 3. K/min, 250. C @ 20. min; Tstart: 40. C
CapillaryInnowax1486.Lee, Lee, et al., 200550. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 2. K/min, 220. C @ 20. min
CapillaryDB-Wax1463.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryDB-Wax1480.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryInnowax1465.Pena, Barciela, et al., 200530. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 5. K/min, 200. C @ 2. min
CapillarySupelcowax-101443.Riu-Aumatell, Lopez-Tamames, et al., 200530. m/0.25 mm/0.25 μm, He, 60. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryCarbowax 20M1436.Verzera, Campisi, et al., 200560. m/0.25 mm/0.25 μm, He, 45. C @ 0.17 min, 2. K/min; Tend: 250. C
CapillaryZB-Wax1464.Wu, Zorn, et al., 200530. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 5. K/min, 250. C @ 5. min
CapillaryDB-Wax1448.Avsar, Karagul-Yuceer, et al., 200430. m/0.25 mm/0.25 μm, 40. C @ 5. min, 10. K/min, 200. C @ 15. min
CapillaryDB-Wax1448.Avsar, Karagul-Yuceer, et al., 200430. m/0.25 mm/0.25 μm, 40. C @ 5. min, 10. K/min, 200. C @ 15. min
CapillaryZB-Wax1434.Ledauphin, Saint-Clair, et al., 200430. m/0.25 mm/0.15 μm, He, 35. C @ 10. min, 1.8 K/min, 220. C @ 10. min
CapillaryDB-Wax1460.Mahajan, Goddik, et al., 200430. m/0.25 mm/0.5 μm, He, 40. C @ 2. min, 5. K/min, 230. C @ 10. min
CapillaryDB-Wax1429.Varming, Petersen, et al., 200430. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 6. K/min, 240. C @ 25. min
CapillaryDB-Wax1444.Aubert, Günata, et al., 200330. m/0.32 mm/0.5 μm, 40. C @ 3. min, 2. K/min, 245. C @ 20. min
CapillaryDB-Wax1418.Brat, Rega, et al., 200330. m/0.25 mm/0.25 μm, He, 3. K/min, 250. C @ 20. min; Tstart: 40. C
CapillaryStabilwax1453.Cros, Vandanjon, et al., 200360. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryDB-Wax1433.Gancel, Ollitrault, et al., 200360. m/0.32 mm/0.25 μm, H2, 1.5 K/min, 245. C @ 20. min; Tstart: 40. C
CapillaryAT-Wax1442.Pino, Almora, et al., 200360. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillaryDB-Wax1449.Valim, Rouseff, et al., 200330. m/0.32 mm/0.5 μm, 7. K/min, 240. C @ 5. min; Tstart: 40. C
CapillaryDB-Wax1488.Claudela, Dirningera, et al., 200260. m/0.32 mm/0.5 μm, He, 2.7 K/min, 235. C @ 30. min; Tstart: 67. C
CapillaryDB-FFAP1419.Karagül-Yüceer, Cadwallader, et al., 200230. m/0.25 mm/0.25 μm, 35. C @ 5. min, 10. K/min, 200. C @ 30. min
CapillaryDB-FFAP1434.Karagül-Yüceer, Cadwallader, et al., 200230. m/0.25 mm/0.25 μm, 35. C @ 5. min, 10. K/min, 200. C @ 30. min
CapillaryAT-Wax1443.Pino, Marbot, et al., 200260. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillaryDB-Wax1431.Karagül-Yüceer, Drake, et al., 200130. m/0.25 mm/0.25 μm, 35. C @ 5. min, 10. K/min, 200. C @ 30. min
CapillaryAT-Wax1443.Pino, Marbot, et al., 200160. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillaryDB-Wax1452.Shimoda, Yoshimura, et al., 200160. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillaryCP-Wax 52CB1436.Verzera, Campisi, et al., 200160. m/0.25 mm/0.25 μm, He, 45. C @ 0.17 min, 2. K/min; Tend: 250. C
CapillaryDB-FFAP1426.Charles, Martin, et al., 200030. m/0.32 mm/0.25 μm, H2, 40. C @ 2. min, 5. K/min; Tend: 240. C
CapillarySupelcowax-101472.Chung, 200060. m/0.25 mm/0.25 μm, He, 2. K/min, 195. C @ 90. min; Tstart: 35. C
CapillaryDB-Wax1440.Moio, Piombino, et al., 200030. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax1442.Moio, Piombino, et al., 200030. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax1484.Peng, 200015. m/0.53 mm/1. μm, He, 40. C @ 3. min, 5. K/min, 220. C @ 30. min
CapillaryCP-Wax 52CB1450.Chevance and Farmer, 199960. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm
CapillarySupelcowax-101472.Chung, 199960. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryFFAP1468.Stephan and Steinhart, 199960. m/0.25 mm/0.5 μm, 50. C @ 3. min, 5. K/min, 230. C @ 15. min
CapillaryDB-Wax1447.Cha, Kim, et al., 199860. m/0.25 mm/0.25 μm, 40. C @ 5. min, 3. K/min, 200. C @ 60. min
CapillaryDB-Wax1434.Cha, Kim, et al., 199830. m/0.32 mm/0.25 μm, He, 40. C @ 5. min, 6. K/min, 200. C @ 30. min
CapillaryDB-Wax1440.Moio and Addeo, 199830. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax1442.Moio and Addeo, 199830. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax1442.Moio and Addeo, 199830. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryFFAP1498.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
CapillaryDB-Wax1442.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax1460.Ott, Fay, et al., 199760. m/0.53 mm/1. μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax1462.Ott, Fay, et al., 199760. m/0.53 mm/1. μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax1462.Ott, Fay, et al., 199760. m/0.53 mm/1. μm, He, 20. C @ 5. min, 4. K/min, 200. C @ 10. min
CapillaryDB-Wax1435.Shimoda, Peralta, et al., 199660. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 50. C; Tend: 230. C
CapillaryDB-Wax1445.Shimoda, Shiratsuchi, et al., 199660. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillaryDB-Wax1451.Shimoda, Wu, et al., 199660. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 50. C; Tend: 230. C
CapillaryDB-Wax1435.Shimoda, Shigematsu, et al., 199560. m/0.25 mm/0.25 μm, 2. K/min; Tstart: 50. C; Tend: 230. C
CapillaryDB-Wax1435.Shimoda, Shigematsu, et al., 1995, 260. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 50. C; Tend: 230. C
CapillaryDB-Wax1459.Shiratsuchi, Shimoda, et al., 199460. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillaryDB-Wax1459.Sumitani, Suekane, et al., 1994He, 40. C @ 5. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryHP-20M1404.Chung, Eiserich, et al., 1993He, 3. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 190. C
CapillaryHP-FFAP1471.Chung, Eiserich, et al., 1993He, 3. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 210. C
CapillaryDB-Wax1442.Shiratsuchi, Shimoda, et al., 199360. m/0.25 mm/0.25 μm, 50. C @ 4. min, 2. K/min, 230. C @ 30. min
CapillaryDB-Wax1484.Umano, Hagi, et al., 1992He, 40. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax1424.Humpf and Schreier, 199130. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 220. C @ 20. min
CapillaryDB-Wax1415.Krammer, Winterhalter, et al., 199130. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryCP-Wax 58CB1431.Pabst, Barron, et al., 199130. m/0.25 mm/0.22 μm, He, 3. K/min; Tstart: 40. C; Tend: 220. C
CapillaryCarbowax 20M1415.Suárez and Duque, 19912. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tstart: 50. C; Tend: 200. C
CapillaryCarbowax 20M1425.Suárez and Duque, 19912. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tstart: 50. C; Tend: 200. C
CapillaryDB-Wax1415.Suárez, Duque, et al., 199130. m/0.259 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryDB-Wax1418.Suárez, Duque, et al., 199130. m/0.259 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryDB-Wax1415.Suárez, Duque, et al., 199130. m/0.259 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryDB-Wax1419.Suárez, Duque, et al., 199130. m/0.259 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryDB-Wax1415.Frohlich and Schreier, 199030. m/0.32 mm/0.25 μm, He, 40. C @ 3. min, 5. K/min; Tend: 220. C
CapillaryDB-Wax1415.Fröhlich, Duque, et al., 198930. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 250. C
CapillaryDB-Wax1419.Fröhlich, Duque, et al., 198930. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 250. C
CapillaryCarbowax 20M1403.Schwab, Mahr, et al., 198930. m/0.25 mm/0.25 μm, He, 40. C @ 3. min, 4. K/min; Tend: 240. C
CapillaryCarbowax 20M1455.Chen, Kuo, et al., 1986He, 50. C @ 5. min, 2. K/min, 200. C @ 40. min; Column length: 50. m; Column diameter: 0.32 mm

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-101480.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryDB-Wax1460.Escudero, Campo, et al., 200730. m/0.32 mm/0.5 μm, H2; Program: 40C(5min) => 4C/min => 100C6C/min => 136C => 3C/min => 220C (10min)
CapillaryCP-Wax 52CB1450.Romeo, Ziino, et al., 200760. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C
CapillaryCP-Wax 52CB1463.Condurso, Verzera, et al., 200660. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C
CapillaryFFAP1448.Frauendorfer and Schieberle, 200625. m/0.32 mm/0.2 μm, He; Program: 40C(1min) => 40C/min => 60C(1min) => 6C/min => 180C => 15C/min => 240C
CapillaryDB-Wax1446.Guillot, Peytavi, et al., 200630. m/0.25 mm/0.25 μm, He; Program: 60C => 5C/min => 200C => 6C/min => 250C(5min)
CapillaryStabilwax1463.Natali N., Chinnici F., et al., 200630. m/0.25 mm/0.25 μm, He; Program: 40C => 3C/min => 100C => 5C/min => 240C(10min)
CapillaryDB-Wax1461.Campo, Ferreira, et al., 200530. m/0.32 mm/0.5 μm, H2; Program: 40C(5min) => 4C/min => 100C => 6C/min => 200C
CapillaryFFAP1453.Fritsch and Schieberle, 200530. m/0.32 mm/0.25 μm, He; Program: 35C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 20C/min => 230C(10min)
CapillaryFFAP1478.Ranau, Kleeberg, et al., 200560. m/0.25 mm/0.5 μm, He; Program: 50C(3min) => 3C/min => 100C => 10C/min => 220C(13.5min)
CapillaryFFAP1478.Ranau and Steinhart, 200560. m/0.25 mm/0.5 μm, He; Program: 50C(3min) => 3C/min => 100C => 10C/min => 220C (13.5min)
CapillaryFFAP1478.Ranau and Steinhart, 200560. m/0.25 mm/0.5 μm, He; Program: 50C(3min) => 3C/min => 100C => 10C/min => 220C (13.5min)
CapillaryDB-FFAP1430.Schuh and Schieberle, 200530. m/0.32 mm/0.25 μm; Program: 40C(2min) => 6C/min => 150C => 20C/min => 230C
CapillaryStabilwax1486.Wang, Finn, et al., 200530. m/0.32 mm/1. μm, He; Program: 40C(2min) => 5C/min => 100C => 4C/min => 230C (10min)
CapillaryStabilwax1476.Wang, Finn, et al., 200530. m/0.32 mm/1. μm, He; Program: 40C(2min) => 5C/min => 100C => 4C/min => 230C (10min)
CapillaryDB-Wax1445.Ferrari, Lablanquie, et al., 200460. m/0.25 mm/0.25 μm, He; Program: 35C(0.7min) => 20C/min => 70C => 4C/min => 240C
CapillaryStabilwax1461.Klesk, Qian, et al., 200430. m/0.32 mm/1. μm, He; Program: 40C (2min) => 5C/min => 100C => 4C/min => 230C (10min)
CapillaryCP-Wax 52CB1461.Verzera, Ziino, et al., 200460. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C
CapillaryCP-Wax 52CB1460.Alasalvar, Shahidi, et al., 200360. m/0.25 mm/0.25 μm, He; Program: 40C => 5C/min => 60C => 2.5C/min => 155C
CapillaryDB-FFAP1425.Huynh-Ba, Matthey-Doret, et al., 200330. m/0.32 mm/0.25 μm; Program: 35C(2min) => 6C/min => 180C => 10C/min => 240C (10min)
CapillaryStabilwax1467.Klesk and Qian, 200330. m/0.32 mm/1. μm, He; Program: 40C(2min) => 5C/min => 100C => 4C/min => 230C(10min)
CapillaryFFAP1430.Engel and Schieberle, 200230. m/0.32 mm/0.25 μm, He; Program: 40C (2min) => 40C/min => 60C (1min) => 6C/min => 230C (15min)
CapillaryFFAP1447.Fuhrmann and Grosch, 200225. m/0.32 mm/0.3 μm, He; Program: 35C(2min) => 5C/min => 170C => 20C/min => 240C (10min)
CapillaryFFAP1443.Jezussek, Juliano, et al., 200230. m/0.25 mm/0.25 μm, He; Program: 40C(1min) => 40C/min => 50C(2min) => 6C/min => 240C
CapillaryFFAP1444.Kirchhoff and Schieberle, 200230. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 60C/min => 50C (2min) => 6C/min => 240C (10min)
CapillaryHP-Innowax1461.Koprivnjak, Conte, et al., 200230. m/0.32 mm/0.5 μm, He; Program: 40C(4min) => 10C/min => 70C => 5C/min => 150C => 10C/min => 250C (10min)
CapillaryDB-FFAP1453.Zehentbauer and Reineccius, 200230. m/0.25 mm/0.25 μm, He; Program: 35 0C (2 min) 40 K/min -> 60 0C (2 min) 6 K/min -> 230 0C
CapillaryFFAP1444.Kirchhoff and Schieberle, 200130. m/0.32 mm/0.25 μm, He; Program: 40C(2min) => 40C/min => 60C(2min) => 6C/min => 240C(10min)
CapillaryDB-Wax1413.Boulanger and Crouzet, 200030. m/0.25 mm/0.25 μm, H2; Program: 60C(3min) => 2C/min => 220C => 5C/min => 250C (15min)
CapillaryDB-FFAP1431.Munk, Munch, et al., 200030. m/0.32 mm/0.25 μm; Program: 40C(2min) => 40C/min => 60C (2min) => 6C/min => 180C => 10C/min => 240C (5min)
CapillaryDB-FFAP1428.Munk, Munch, et al., 200030. m/0.32 mm/0.25 μm; Program: 40C(2min) => 40C/min => 60C (2min) => 6C/min => 180C => 10C/min => 240C (5min)
CapillaryFFAP1439.Tairu, Hofmann, et al., 200030. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 40C/min => 60C (2min) => 6C/min => 180C (5min) => 10C/min => 230C (5min)
CapillaryFFAP1450.Buettner and Schieberle, 199930. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 40C/min => 60C (2min) => 6C/min => 180C => 10C/min => 230C (10min)
CapillaryFFAP1451.Derail, Hofmann, et al., 199930. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 40C/min => 60C => 4C/min => 230C (10min)
CapillaryFFAP1420.Fickert and Schieberle, 199825. m/0.32 mm/0.5 μm, He; Program: 35C (2min) => 40C/min => 60C => 6C/min => 230C (10min)
CapillaryFFAP1450.Hinterholzer, Lemos, et al., 199830. m/0.32 mm/0.25 μm, He; Program: 35C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 10C/min => 230C(10 min)
CapillaryDB-Wax1486.6Yang, Chyau, et al., 1998He; Column length: 50. m; Column diameter: 0.32 mm; Program: 50C => 2.5C/min => 150C => 1.5C/min => 210C
CapillaryDB-Wax1486.6Yang, Chyau, et al., 1998He; Column length: 50. m; Column diameter: 0.32 mm; Program: 50C => 2.5C/min => 150C => 1.5C/min => 210C
CapillaryFFAP1451.Kubícková and Grosch, 199730. m/0.32 mm/0.25 μm; Program: 35C (2min) => 40C/min => 60C (2min) => 6C/min => 230C (10min)
CapillaryFFAP1436.Münch, Hofmann, et al., 199730. m/0.32 mm/0.25 μm, He; Program: 40C (2min) => 40C/min => 60C (2min) => 240C (10min)
CapillaryFFAP1462.Yasuhara, 198750. m/0.25 mm/0.25 μm, He; Program: 20C (5min) => 2C/min => 70C => 4C/min => 210C

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOptima-5 MS609.Goeminne, Vandendriessche, et al., 201230. m/0.25 mm/0.25 μm, Helium, 35. C @ 3. min, 10. K/min, 250. C @ 5. min
CapillaryDB-5640.Cais-Sokolinska, Majcher, et al., 201125. m/0.20 mm/0.33 μm, Helium, 50. C @ 1. min, 20. K/min; Tend: 240. C
CapillaryVF-5 MS587.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryVF-5 MS588.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryDB-5 MS623.Majcher, Lawrowski, et al., 201025. m/0.20 mm/0.33 μm, Helium, 40. C @ 1. min, 10. K/min; Tend: 250. C
CapillaryHP-5 MS602.Pino, Marquez, et al., 201030. m/0.32 mm/0.25 μm, Helium, 50. C @ 2. min, 4. K/min, 240. C @ 10. min
CapillaryHP-5641.Mildner-Szkudlarz and Jelen, 200810. m/0.10 mm/0.40 μm, Helium, 40. C @ 1. min, 20. K/min, 280. C @ 1. min
CapillaryRTX-5622.Pham, Schilling, et al., 200830. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 20. K/min; Tend: 250. C
CapillaryRTX-5610.Berdague, Tournayre, et al., 200760. m/0.32 mm/1. μm, 40. C @ 5. min, 4. K/min, 205. C @ 5. min
CapillaryDB-5600.Gogus, Ozel, et al., 200760. m/0.32 mm/1.0 μm, Helium, 35. C @ 7. min, 15. K/min, 240. C @ 10. min
Capillary5 % Phenyl methyl siloxane615.Ramirez R. and Cava R., 200730. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
Capillary5 % Phenyl methyl siloxane615.Ramirez R. and Cava R., 200730. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
CapillaryDB-5662.Fadel, Mageed, et al., 2006He, 60. C @ 5. min, 4. K/min; Column length: 60. m; Column diameter: 0.32 mm; Tend: 250. C
CapillaryDB-5658.Fadel, Mageed, et al., 2006, 2He, 50. C @ 5. min, 4. K/min; Column length: 60. m; Column diameter: 0.32 mm; Tend: 250. C
CapillaryDB-5600.Ozel, Gogus, et al., 200630. m/0.32 mm/0.25 μm, He, 60. C @ 0.5 min, 5. K/min, 280. C @ 2. min
CapillaryHP-5MS660.Krist, Stuebiger, et al., 200530. m/0.25 mm/0.25 μm, 38. C @ 1. min, 5. K/min, 220. C @ 2. min
CapillaryMDN-5649.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryOV-101638.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
Capillary5 % Phenyl methyl siloxane660.Ramírez, Estévez, et al., 20040. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
CapillaryMDN-5641.Mildner-Szkudlarz, Jelen, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 20. K/min, 280. C @ 1. min
CapillaryDB-5600.Pino, Marbot, et al., 200330. m/0.25 mm/0.25 μm, H2, 60. C @ 10. min, 4. K/min, 280. C @ 40. min
CapillarySPB-1617.Vichi, Castellote, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillarySPB-1617.Vichi, Pizzale, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillaryRSL-200603.Jirovetz, Buchbauer, et al., 200230. m/0.32 mm/0.25 μm, H2, 40. C @ 5. min, 6. K/min, 280. C @ 5. min
CapillaryRSL-200603.Jirovetz, Smith, et al., 200230. m/0.25 mm/0.25 μm, H2, 40. C @ 2. min, 6. K/min, 280. C @ 10. min
CapillaryDB-5606.Joffraud, Leroi, et al., 200160. m/0.32 mm/1. μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryAT-1584.Kelling, 2001He, 50. C @ 2. min, 10. K/min; Tend: 300. C
CapillaryDB-5MS637.Suriyaphan, Drake, et al., 200130. m/0.32 mm/0.25 μm, He, 40. C @ 5. min, 5. K/min, 195. C @ 40. min
CapillaryDB-5628.Kotseridis and Baumes, 200030. m/0.32 mm/0.5 μm, H2, 60. C @ 3. min, 3. K/min, 245. C @ 20. min
CapillaryDB-5628.Kotseridis and Baumes, 200030. m/0.32 mm/0.5 μm, H2, 60. C @ 3. min, 3. K/min, 245. C @ 20. min
CapillaryOV-101580.Tamura, Boonbumrung, et al., 2000Nitrogen, 40. C @ 10. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryMethyl Silicone620.77Baraldi, Rapparini, et al., 199960. m/0.25 mm/0.25 μm, 40. C @ 10. min, 5. K/min; Tend: 220. C
CapillarySE-54616.Ding, Deng, et al., 199835. C @ 3. min, 4. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tend: 250. C
CapillaryDB-1650.Tai and Ho, 199860. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: 40. C; Tend: 280. C
CapillaryDB-1650.Tai and Ho, 199860. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: 40. C; Tend: 280. C
CapillaryDB-5608.Kondjoyan, Viallon, et al., 199760. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 200. C @ 2. min
CapillaryUltra-2602.King, Matthews, et al., 199550. m/0.32 mm/0.52 μm, He, 40. C @ 3. min, 4. K/min, 250. C @ 30. min
CapillaryDB-1611.Yu, Wu, et al., 199460. m/0.25 mm/1.0 μm, He, 40. C @ 5. min, 2. K/min, 260. C @ 60. min
CapillaryDB-1600.Yu, Wu, et al., 199460. m/0.25 mm/1.0 μm, He, 40. C @ 5. min, 2. K/min, 260. C @ 60. min
CapillaryDB-1622.Yu, Wu, et al., 1994, 260. m/0.25 mm/1. μm, He, 40. C @ 5. min, 2. K/min, 260. C @ 60. min
CapillaryDB-1646.Ciccioli, Cecinato, et al., 199260. m/0.32 mm/1.2 μm, He, 30. C @ 10. min, 3. K/min; Tend: 240. C
CapillaryDB-1621.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySLB-5 MS630.Mondello, 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-5 MS662.Grzeszczuk, Wesolowska, et al., 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (5 min) 30 0C/min -> 60 0C 6 0C/min -> 230 0C (10 min)
Capillary 600.Karimi, Farmany, et al., 2011Program: not specified
CapillaryHP-5 MS600.Pino, Marquez, et al., 201030. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-5600.San-Juan, Petka, et al., 201030. m/0.32 mm/0.50 μm, Hydrogen; Program: 40 0C (5 min) 4 0C/min -> 100 0C 6 0C/min -> 220 0C (20 min)
CapillarySE-54600.Christlbauer and Schieberle, 200930. m/0.32 mm/0.25 μm, Helium; Program: 35 0C (2 min) 10 0C/min -> 50 0C (2 min) 6 0C/min -> 250 0C
CapillaryRTX-5 MS606.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-5595.Pugliese, Sirtori, et al., 200950. m/0.32 mm/1.05 μm, Helium; Program: not specified
CapillaryHP-5638.Rotsatschakul, Visesanguan, et al., 200960. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (2 min) 2 0Cmin -> 60 0C 10 0C/min -> 100 0C 20 0C/min -> 140 0C 10 0C/min -> 200 0C (10 min)
CapillaryDB-5610.Buettner, 200730. m/0.32 mm/0.25 μm; Program: 40C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 15C/min => 230C(10min)
CapillaryDB-5600.Greger and Schieberle, 200730. m/0.25 mm/0.25 μm, He; Program: 40C(1min) => 7C/min => 110C => 5C/min => 180C => 10C/min => 240C(10min)
CapillarySE-54600.Lasekan, Buettner, et al., 200730. m/0.32 mm/0.25 μm; Program: 35C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 10C/min => 230C(10min)
CapillaryDB-5 MS594.Liu, Xu, et al., 200760. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 6 0C/min -> 100 0C 4 0C/min -> 180 0C 8 0C/min -> 250 0C (12 min)
CapillaryDB-5601.Pellicer, 200730. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillaryBP-5616.Helsper, Bücking, et al., 200630. m/0.25 mm/1. μm, He; Program: 40C(2min) => 4C/min => 150C => 8C/min => 250C (15min)
CapillaryBPX-5618.Duflos, Moine, et al., 200560. m/0.25 mm/0.25 μm, He; Program: 40C(5min) => 5C/min => 100C => 20C/min => 280C (5min)
CapillaryHP-5622.Himanen, Vuorinen, et al., 200550. m/0.2 mm/0.5 μm, He; Program: 40C(1min) => 5C/min => 210C => 20C/min => 250C(8min)
CapillaryHP-5606.Riu-Aumatell, Lopez-Tamames, et al., 2005Program: not specified
CapillarySE-54610.Buettner and Welle, 200430. m/0.32 mm/0.25 μm, He; Program: 40C (2min) => 40C/min => 50C(2min) => 6C/min => 180C => 15C/min => 230C(10min)
CapillarySE-54610.Buettner and Welle, 200430. m/0.32 mm/0.25 μm, He; Program: 40C (2min) => 40C/min => 50C(2min) => 6C/min => 180C => 15C/min => 230C(10min)
CapillarySE-54610.Buettner, 200430. m/0.32 mm/0.25 μm, He; Program: 40C(2min) => 40C/min => 50C(2min) => 6C/min => 180C => 15C/min => 230C (10min)
CapillarySE-54610.Buettner, 200430. m/0.32 mm/0.25 μm, He; Program: 40C(2min) => 40C/min => 50C(2min) => 6C/min => 180C => 15C/min => 230C (10min)
CapillarySE-54610.Buettner, 200430. m/0.32 mm/0.25 μm, He; Program: 40C(2min) => 40C/min => 50C(2min) => 6C/min => 180C => 15C/min => 230C (10min)
CapillaryHP-5591.Garcia-Estaban, Ansorena, et al., 200450. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C(5min)
CapillaryDB-5591.Garcia-Estaban, Ansorena, et al., 2004, 250. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C (5min)
CapillarySE-30630.Vinogradov, 2004Program: not specified
CapillaryMethyl phenyl siloxane (not specified)612.Poligne, Collignan, et al., 2002Program: not specified
CapillaryDB-5644.Dittmann and Nitz, 2000Program: not specified
CapillarySE-54612.Ding, Deng, et al., 1998Column length: 25. m; Column diameter: 0.31 mm; Program: not specified
CapillarySE-54614.Ding, Deng, et al., 1998Column length: 25. m; Column diameter: 0.31 mm; Program: not specified
CapillaryHP-5622.Timón, Ventanas, et al., 199850. m/0.32 mm/0.52 μm, He; Program: 35 0C 10 0C/min -> 200 0C (20 min) 5 0C/min -> 230 0C (50 min)
CapillaryDB-5645.Mateo, Aguirrezábal, et al., 199750. m/0.32 mm/0.25 μm, He; Program: 40C(10min) => 3C/min => 95C => 10C/min => 270C(10min)
CapillarySE-54600.Schermann and Schieberle, 199730. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 40C/min => 60C (2min) => 6C/min => 180C => 10C/min => 240C
CapillaryDB-5645.Mateo and Zumalacárregui, 199650. m/0.32 mm/0.25 μm, He; Program: 40C (10min) => 3C/min => 95C => 10C/min => 270C (10min)
CapillaryDB-5645.Mateo and Zumalacárregui, 199650. m/0.32 mm/0.25 μm, He; Program: 40C (10min) => 3C/min => 95C => 10C/min => 270C (10min)
CapillaryMethyl Silicone634.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-1648.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified
CapillaryDB-1648.Ciccioli, Brancaleoni, et al., 199360. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min
CapillarySE-54660.Um, Bailey, et al., 1992He; Column length: 50. m; Column diameter: 0.32 mm; Program: 35 0C (5 min) 8 0C/min -> 200 0C 2 0C/min -> 250 0C
CapillarySE-54660.Suzuki and Bailey, 1985Column length: 50. m; Column diameter: 0.32 mm; Program: 35C(5min) => 8C/min => 200C => 2C/min => 250C

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-FFAP1465.Wanakhachornkrai and Lertsiri, 999925. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryHP-FFAP1476.Wanakhachornkrai and Lertsiri, 999925. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryDB-Wax1431.Onishi, Inoue, et al., 201160. m/0.25 mm/0.25 μm, Helium, 50. C @ 2. min, 3. K/min, 220. C @ 20. min
CapillaryDB-FFAP1465.Osorio, Carriazo, et al., 201130. m/0.32 mm/0.25 μm, Helium, 50. C @ 4. min, 4. K/min, 250. C @ 5. min
CapillaryFFAP1429.Piyachaiseth, Jirapakkul, et al., 201160. m/0.25 mm/0.25 μm, Helium, 45. C @ 1. min, 5. K/min, 220. C @ 5. min
CapillaryDB-Wax1439.Kumazawa, Sakai, et al., 201030. m/0.25 mm/0.25 μm, Helium, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryTC-Wax1455.Miyazawa, Fujita, et al., 2010Helium, 40. C @ 3. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 230. C
CapillaryDB-Wax1465.Moon and Shibamoto, 201060. m/0.25 mm/0.50 μm, Helium, 40. C @ 5. min, 2. K/min, 210. C @ 70. min
CapillaryFFAP1450.Christlbauer and Schieberle, 200930. m/0.32 mm/0.25 μm, Helium, 40. C @ 2. min, 6. K/min; Tend: 240. C
CapillaryDB-FFAP1450.Laselan, Buettner, et al., 200930. m/0.32 mm/0.25 μm, 0. C @ 2. min, 6. K/min; Tend: 200. C
CapillaryCP-Wax1445.Mo, Fan, et al., 200960. m/0.25 mm/0.25 μm, Helium, 50. C @ 2. min, 6. K/min, 230. C @ 15. min
CapillaryDB-Wax1468.Moon and Shibamoto, 200960. m/0.25 mm/0.50 μm, Helium, 40. C @ 5. min, 2. K/min, 210. C @ 70. min
CapillaryDB-Wax1441.Zhao, Xu, et al., 200930. m/0.25 mm/0.25 μm, Helium, 40. C @ 2. min, 3. K/min, 230. C @ 5. min
CapillaryDB-Wax1464.Caldeira, de Sousa, et al., 200830. m/0.25 mm/0.25 μm, Helium, 40. C @ 10. min, 3.5 K/min, 180. C @ 30. min
CapillaryDB-Wax1425.Guo, Wu, et al., 200830. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 250. C @ 10. min
CapillaryDB-Wax1425.Guo, Wu, et al., 200830. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 250. C @ 10. min
CapillaryHP-Innowax1471.Soria, Sanz, et al., 200850. m/0.20 mm/0.20 μm, Helium, 45. C @ 2. min, 4. K/min, 190. C @ 50. min
CapillaryHP-Innowax1460.Thakeow, Angeli, et al., 200830. m/0.25 mm/0.25 μm, Helium, 50. C @ 1.5 min, 6.5 K/min, 250. C @ 10. min
CapillaryCP Wax 52 CB1436.Chen, Chyau, et al., 200760. m/0.25 mm/0.25 μm, Helium, 3. K/min; Tstart: 40. C; Tend: 220. C
CapillaryStabilwax1453.Cros, Vandanjon, et al., 200760. m/0.25 mm/0.25 μm, Helium, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryDB-Wax1469.Dury-Brun, Fournier, et al., 200730. m/0.32 mm/0.5 μm, He, 5. K/min; Tstart: 40. C; Tend: 240. C
CapillaryFFAP1478.Nebesny, Budryn, et al., 200730. m/0.32 mm/0.5 μm, N2, 35. C @ 5. min, 4. K/min, 320. C @ 45. min
CapillaryCP-Wax 52CB1462.Povolo, Contarini, et al., 200760. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min
CapillaryRTX-Wax1436.Prososki, Etzel, et al., 200730. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 10. K/min, 220. C @ 10. min
CapillaryDB-Wax1424.Xu, Fan, et al., 200730. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 230. C @ 5. min
CapillaryDB-Wax1448.Cai, Lin, et al., 200660. m/0.25 mm/0.5 μm, He, 50. C @ 2. min, 3. K/min, 230. C @ 20. min
CapillaryDB-Wax1424.Fan and Qian, 200630. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min, 230. C @ 15. min
CapillaryDB-Wax1473.Fan and Qian, 2006, 230. m/0.32 mm/0.25 μm, N2, 40. C @ 2. min, 6. K/min, 230. C @ 15. min
CapillaryHP-Innowax1433.Komes, Ulrich, et al., 200630. m/0.25 mm/0.5 μm, He, 40. C @ 3. min, 2. K/min, 200. C @ 15. min
CapillaryDB-Wax1449.Lan Phi N.T., Nishiyama C., et al., 200660. m/0.25 mm/0.25 μm, 70. C @ 2. min, 2. K/min, 230. C @ 20. min
CapillaryDB-Wax Etr1485.Perestrelo, Fernandes, et al., 200630. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 2. K/min, 220. C @ 10. min
CapillaryZB-Wax1477.Wierda R.L., Fletcher G., et al., 200660. m/0.32 mm/0.5 μm, He, 40. C @ 2. min, 3. K/min, 250. C @ 10. min
CapillaryDB-Wax1473.Fan and Qian, 200530. m/0.32 mm/0.25 μm, N2, 40. C @ 2. min, 4. K/min, 230. C @ 5. min
CapillaryCarbowax 20M1458.de la Fuente, Martinez-Castro, et al., 200550. m/0.25 mm/0.25 μm, Helium, 40. C @ 2. min, 4. K/min, 190. C @ 30. min
CapillaryStabilwax1409.Jirovetz, Buchbauer, et al., 200530. m/0.32 mm/0.5 μm, 40. C @ 5. min, 6. K/min, 280. C @ 5. min
CapillaryStabilwax DA1470.Nogueira, Lubachevsky, et al., 200560. m/0.25 mm/0.5 μm, 40. C @ 5. min, 5. K/min; Tend: 180. C
CapillaryDB-Wax1471.Qian and Wang, 200560. m/0.32 mm/0.50 μm, Nitrogen, 35. C @ 4. min, 2. K/min, 235. C @ 30. min
CapillaryZB-Wax1454.N/A30. m/0.32 mm/0.25 μm, Helium, 40. C @ 2. min, 5. K/min, 250. C @ 5. min
CapillaryZB-Wax1466.N/A30. m/0.32 mm/0.25 μm, Helium, 40. C @ 2. min, 5. K/min, 250. C @ 5. min
CapillaryPEG-20M1466.Yao, Guo, et al., 200560. C @ 10. min, 3. K/min, 180. C @ 30. min; Column length: 30. m; Column diameter: 0.25 mm
CapillaryDB-Wax1457.Chida, Sone, et al., 200460. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax1477.Culleré, Escudero, et al., 200430. m/0.32 mm/0.5 μm, H2, 40. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryTC-Wax1455.Ishikawa, Ito, et al., 200460. m/0.25 mm/0.5 μm, He, 40. C @ 8. min, 3. K/min; Tend: 230. C
CapillaryDB-Wax1448.Jiang and Kubota, 2004He, 60. C @ 4. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 220. C
CapillaryDB-Wax1448.Jiang and Kubota, 2004He, 60. C @ 4. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 220. C
CapillaryDB-Wax1466.López, Ezpeleta, et al., 200460. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 220. C
CapillaryHP-FFAP1463.López, Guzmán, et al., 200430. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 5. K/min, 120. C @ 3. min
CapillaryHP-Innowax1471.Soria, Gonzalez, et al., 200450. m/0.2 mm/0.2 μm, He, 45. C @ 2. min, 4. K/min, 190. C @ 50. min
CapillaryDB-Wax1455.Yanagimoto, Ochi, et al., 200430. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C
CapillaryDB-Wax1474.Alves and Franco, 200330. m/0.25 mm/0.5 μm, H2, 50. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryStabilwax1453.Cros, Vandanjon, et al., 2003, 260. m/0.25 mm/0.25 μm, Helium, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryDB-Wax1449.Dregus and Engel, 200360. m/0.32 mm/0.25 μm, H2, 40. C @ 5. min, 4. K/min, 230. C @ 25. min
CapillaryDB-Wax1447.Kumazawa and Masuda, 200360. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax1454.Kumazawa and Masuda, 200330. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-Wax1434.Lee and Noble, 200330. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 185. C @ 20. min
CapillaryDB-Wax1451.Lin, Cai, et al., 200330. m/0.25 mm/0.25 μm, He, 50. C @ 2. min, 3. K/min, 230. C @ 20. min
CapillaryDB-Wax1467.López, Ortín, et al., 200330. m/0.32 mm/0.5 μm, H2, 40. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryTC-Wax1459.Miyazawa and Okuno, 2003He, 4. K/min, 250. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 80. C
CapillaryInnowax1475.Suleimenov, Atazharova, et al., 2003He, 60. C @ 10. min, 4. K/min, 220. C @ 10. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-Wax1451.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillaryDB-Wax1451.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillarySupelcowax-101448.Vichi, Castellote, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillarySupelcowax-101442.Vichi, Pizzale, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillaryHP-FFAP1465.Wanakhachornkrai and Lertsiri, 200325. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryHP-FFAP1476.Wanakhachornkrai and Lertsiri, 200325. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryDB-FFAP1443.Czerny and Schieberle, 200230. m/0.32 mm/0.25 μm, He, 40. C @ 2. min, 6. K/min, 230. C @ 10. min
CapillaryBP-201452.Darriet, Pons, et al., 200250. m/0.25 mm/0.25 μm, H2, 45. C @ 1. min, 3. K/min, 230. C @ 10. min
CapillaryDB-Wax1461.Ferreira, Ortín, et al., 200230. m/0.32 mm/0.5 μm, H2, 40. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax1433.Fu, Yoon, et al., 200230. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 8. K/min, 250. C @ 5. min
CapillaryRTX-Wax1451.Galindo-Cuspinera, Lubran, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 5. K/min, 180. C @ 20. min
CapillaryFFAP1410.Lecanu, Ducruet, et al., 200230. m/0.32 mm/1. μm, He, 35. C @ 3. min, 5. K/min; Tend: 240. C
CapillaryTC-WAX FFS1453.Miyazawa, Maehara, et al., 2002He, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 240. C
CapillaryDB-Wax1415.Osorio, Duque, et al., 200230. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min
CapillaryDB-Wax1432.Osorio, Duque, et al., 200230. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 20. min
CapillaryHP-FFAP1460.Qian and Reineccius, 200225. m/0.32 mm/0.52 μm, 60. C @ 1. min, 5. K/min, 240. C @ 5. min
CapillaryHP-Wax1480.Sanz, Maeztu, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryTC-Wax1424.Suhardi, Suzuki, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 230. C @ 10. min
CapillaryDB-Wax1437.Umano, Hagi, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C
CapillaryDB-Wax1452.Aznar, López, et al., 200130. m/0.32 mm/0.5 μm, H2, 40. C @ 5. min, 4. K/min, 200. C @ 60. min
CapillaryEC-10001455.Bendall, 200130. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 5. K/min, 230. C @ 15. min
CapillaryDB-Wax1422.Duque, Bonilla, et al., 200130. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C
CapillaryDB-Wax1452.Ferreira, Aznar, et al., 200130. m/0.32 mm/0.5 μm, H2, 40. C @ 5. min, 4. K/min, 200. C @ 60. min
CapillaryHP-Wax1480.Maeztu, Sanz, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryTC-Wax1441.Miyazawa, Kurose, et al., 2001He, 4. K/min, 250. C @ 47. min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 80. C
CapillaryHP-Wax1480.Sanz, Ansorena, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryDB-FFAP1452.Suriyaphan, Drake, et al., 200130. m/0.32 mm/0.25 μm, He, 40. C @ 5. min, 5. K/min, 195. C @ 40. min
CapillaryDB-Wax1451.Weckerle, Bastl-Borrmann, et al., 200130. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 220. C
CapillaryDB-Wax1435.Wei, Mura, et al., 200160. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 200. C
CapillaryDB-Wax1440.Buttery, Light, et al., 200060. m/0.25 mm/0.25 μm, 30. C @ 4. min, 2. K/min, 170. C @ 30. min
CapillaryDB-Wax1465.Franco and Shibamoto, 2000He, 50. C @ 8. min, 3. K/min; Column length: 30. m; Column diameter: 0.2 mm; Tend: 180. C
CapillaryDB-Wax1449.Kotseridis and Baumes, 200030. m/0.32 mm/0.5 μm, H2, 60. C @ 3. min, 3. K/min, 245. C @ 20. min
CapillaryDB-Wax1449.Kotseridis and Baumes, 200030. m/0.32 mm/0.5 μm, H2, 60. C @ 3. min, 3. K/min, 245. C @ 20. min
CapillaryDB-Wax1424.Parada, Duque, et al., 200030. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax1430.Parada, Duque, et al., 200030. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax1457.Tamura, Boonbumrung, et al., 2000Nitrogen, 40. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M1432.Xue, Ye, et al., 2000He, 60. C @ 2. min, 5. K/min, 190. C @ 20. min; Column length: 25. m; Column diameter: 0.3 mm
CapillaryCP-Wax 52CB1450.Hwan and Chou, 199950. m/0.32 mm/0.22 μm, H2, 60. C @ 4. min, 2. K/min, 190. C @ 21. min
CapillaryDB-Wax1450.Iwatsuki, Mizota, et al., 19994. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C
CapillaryDB-Wax1449.Iwatsuki, Mizota, et al., 19994. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C
CapillaryCarbowax 20M1454.Lopez, Ferreira, et al., 199960. m/0.32 mm/0.5 μm, He, 40. C @ 5. min, 2. K/min; Tend: 190. C
CapillaryDB-Wax1460.Ngassoum, Yonkeu, et al., 199960. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 60. C; Tend: 240. C
CapillaryDB-Wax1440.Buttery and Ling, 199830. C @ 4. min, 2. K/min, 170. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillarySupelcowax-101470.Campeanu, Burcea, et al., 199860. m/0.32 mm/0.5 μm, H2, 35. C @ 5. min, 5. K/min, 250. C @ 20. min
CapillaryCarbowax 20M1430.Chatonnet and Dubourdieu, 199850. m/0.25 mm/0.25 μm, He, 3. K/min, 230. C @ 30. min; Tstart: 35. C
CapillaryDB-Wax1424.Parada and Duque, 199830. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax1446.Parada and Duque, 199830. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryInnowax1451.Petersen, Poll, et al., 199830. m/0.25 mm/0.25 μm, 40. C @ 10. min, 6. K/min, 240. C @ 25. min
CapillaryPEG-20M1430.Awano, Honda, et al., 1997He, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 210. C
CapillaryDB-Wax1445.Sekiwa, Kubota, et al., 1997He, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C
CapillaryDB-Wax1459.Wada and Shibamoto, 1997He, 3. K/min, 200. C @ 40. min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 50. C
CapillaryPEG-20M1415.Kubota, Matsujage, et al., 199650. m/0.25 mm/0.25 μm, Nitrogen, 2. K/min; Tstart: 60. C; Tend: 180. C
CapillaryTC-Wax1460.Shuichi, Masazumi, et al., 199680. C @ 5. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 240. C
CapillarySupelcowax-101488.Wong and Lai, 199660. m/0.25 mm/0.25 μm, He, 40. C @ 3. min, 3. K/min, 200. C @ 30. min
CapillaryDB-Wax1418.Christensen and Reineccius, 199530. m/0.25 mm/0.25 μm, 20. C @ 1. min, 5. K/min; Tend: 230. C
CapillaryDB-Wax1448.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M1405.Kawakami, Kobayashi, et al., 1993He, 60. C @ 4. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 180. C
CapillaryDB-Wax1410.Hatsuko, Kazuko, et al., 1992He, 60. C @ 10. min, 3. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 240. C
CapillaryCarbowax 20M1410.Vernin, Metzger, et al., 1992He, 3. K/min; Column length: 50. m; Column diameter: 0.33 mm; Tstart: 60. C; Tend: 200. C
CapillaryCarbowax 20M1405.Kawakami and Kobayashi, 1991He, 60. C @ 4. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 180. C
CapillaryPEG-20M1417.Kubota, Nakamoto, et al., 1991N2, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C
CapillaryDB-Wax1451.Binder, Flath, et al., 198950. C @ 0.1 min, 4. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm
CapillarySupelcowax-101471.Hsieh, Williams, et al., 198960. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 1. K/min; Tend: 175. C
CapillaryCarbowax 20M1403.Mihara, Tateba, et al., 1988N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1413.Mihara, Tateba, et al., 1988N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1403.Mihara, Tateba, et al., 1988N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1413.Mihara, Tateba, et al., 1988N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryFFAP1425.Vernin, Metzger, et al., 1988He, 60. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tend: 240. C
CapillaryFFAP1425.Vernin, Metzger, et al., 1988He, 60. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tend: 240. C
CapillaryCarbowax 20M1403.Mihara, Tateba, et al., 1987N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1413.Mihara, Tateba, et al., 1987N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1403.Mihara, Tateba, et al., 1987N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1413.Mihara, Tateba, et al., 1987N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1430.Buttery, Kamm, et al., 19841. K/min, 170. C @ 30. min; Column length: 150. m; Column diameter: 0.64 mm; Tstart: 50. C
CapillaryCarbowax 20M1430.Buttery, Ling, et al., 198350. C @ 30. min, 1. K/min, 170. C @ 60. min; Column length: 150. m; Column diameter: 0.64 mm

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1448.Gyawali and Kim, 201260. m/0.20 mm/0.25 μm, Helium; Program: 40 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 220 0C (20 min) 5 0C/min -> 230 0C
CapillaryCarbowax 20M1458.Lee, Chong, et al., 2012Program: not specified
CapillaryDB-Wax1451.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax1457.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillarySOLGel-Wax1446.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax1449.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax1450.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryCP-Wax 52 CB1462.Povolo, Cabassi, et al., 2011Program: not specified
CapillaryDB-Wax1445.Sampaio, Garruti, et al., 201130. m/0.25 mm/0.25 μm, Hydrogen; Program: 35 0C (9 min) 5 0C/min -> 80 0C 1 0C/min -> 100 0C 16 0C/min -> 210 0C (20 min)
CapillaryHP-Innowax1473.Xiao, Dai, et al., 201160. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 3 0C/min -> 150 0C 5 0C/min -> 220 0C (5 min)
CapillaryHP-Innowax1492.Cajka, Riddellova, et al., 201030. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (1 min) 5 oC/min -> 170 0C 10 0C/min -> 260 0C (1 min)
CapillaryDB-Wax1452.San-Juan, Petka, et al., 201030. m/0.32 mm/0.50 μm, Hydrogen; Program: 40 0C (5 min) 4 0C/min -> 100 0C 6 0C/min -> 220 0C (20 min)
CapillaryDB-Wax1452.Ferreira, Juan, et al., 200930. m/0.32 mm/0.50 μm; Program: 40 0C (5 min) 4 0C/min -> 100 0C 6 0C/min -> 220 0C (40 min)
CapillaryPolyethylene glycol (Free Fatty Acid Phase)1447.Harraca, Syed, et al., 2009Column length: 30. m; Column diameter: 0.25 mm; Program: not specified
CapillaryPolyethylene glycol (Free Fatty Acid Phase)1449.Harraca, Syed, et al., 2009Column length: 30. m; Column diameter: 0.25 mm; Program: not specified
CapillaryPolyethylene glycol (Free Fatty Acid Phase)1457.Harraca, Syed, et al., 2009Column length: 30. m; Column diameter: 0.25 mm; Program: not specified
CapillaryDB-FFAP1456.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 50 0C 2 0C/min -> 100 0C (5 min) 5 0C/min -> 250 0C
CapillaryDB-FFAP1454.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax1445.Zhao, Xu, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryFFAP1462.Frauendorfer and Schieberle, 2008Helium; Program: not specified
CapillarySOLGel-Wax1448.Shu and Shen, 200830. m/0.53 mm/0.50 μm, Helium; Program: 40 0C 7 0C/min -> 180 0C 10 0C/min -> 240 0C (10 min)
CapillarySOLGel-Wax1443.Shu and Shen, 200830. m/0.53 mm/0.50 μm, Helium; Program: not specified
CapillarySupelcowax 101498.Soria, Martinez-Castro, et al., 200850. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillaryDB-Wax1445.Tao, Wenlai, et al., 200830. m/0.32 mm/0.25 μm, Helium; Program: 50 0C 20 0C/min -> 80 0C 3 0C/min -> 230 0C
CapillaryPEG 20M1450.Zhang, Zhang, et al., 200830. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (3 min) 5 0C/min -> 60 0C 6 0C/min -> 130 0C 10 0C/min -> 230 0C
CapillarySupelcowax-101480.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillaryDB-FFAP1449.Buettner, 200730. m/0.32 mm/0.25 μm; Program: 40C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 15C/min => 230C(10min)
CapillaryDB-FFAP1451.Buettner, 200730. m/0.32 mm/0.25 μm; Program: 40C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 15C/min => 230C(10min)
CapillaryCarbowax 20M1410.Dury-Brun, Fournier, et al., 2007Program: not specified
CapillaryDB-Wax1440.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C
CapillaryDB-Wax1450.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: not specified
CapillaryDB-FFAP1443.Greger and Schieberle, 200730. m/0.32 mm/0.25 μm, He; Program: 40C(1min) => 7C/min => 180C => 10C/min => 240C (10min)
CapillaryDB-FFAP1428.Lasekan, Buettner, et al., 200730. m/0.32 mm/0.25 μm; Program: 35C(2min) => 40C/min => 50C(2min) => 6C/min => 180C => 10C/min => 230C(10min)
CapillaryBP-201457.Pontes, Marques, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 50C(1min) => 2.5C/min => 100C => 2C/min => 180C => 15C/min => 220C
CapillaryBP-201457.Pontes, Marques, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 50C(1min) => 2.5C/min => 100C => 2C/min => 180C => 15C/min => 220C
CapillaryDB-Wax1409.Selli, 200730. m/0.32 mm/0.50 μm, Hydrogen; Program: 60 0C (3 min) 2 0C/min -> 220 0C 3 0C/min -> 245 0C (20 min)
CapillaryDB-Wax1441.Tian, Zhang, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 50 0C (2 min) 6 0C/min -> 150 0C 8 0C/min -> 230 0C (15 min)
CapillaryHP-Innowax1454.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 60 0C (5 min) 8 0C/min -> 250 0C (3 min)
CapillaryHP-Innowax1459.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-Innowax1476.Weldegergis B.T., Tredoux A.G.J., et al., 200730. m/0.25 mm/0.5 μm, He; Program: 30C(2min) => 4C/min => 130C => 8C/min => 250C(5min)
CapillaryPEG-20M1450.Zhang C., Zhang H., et al., 200730. m/0.25 mm/0.25 μm; Program: 40C(3min) => 5C/min => 60C => 6C/min => 130C => 10C/min => 230C (10min)
CapillaryDB-Wax1432.Gyawalia, Seo, et al., 200660. m/0.2 mm/0.25 μm, He; Program: 40C(3min) => 2C/min => 150C => 4C/min => 220C(20min) => 5C/min => 230C
CapillarySupelcowax-101452.Kourkoutas, Bosnea, et al., 200660. m/0.32 mm/0.25 μm, He; Program: 35C(3min) => 5C/min => 110C => 10C/min => 240C (10min)
CapillaryDB-Wax1418.Krings, Zelena, et al., 200630. m/0.32 mm/0.25 μm, He; Program: 45C(5min) => 5C/min => 150C => 10C/min => 240C (10min)
CapillaryDB-Wax1401.Krings, Zelena, et al., 200630. m/0.32 mm/0.25 μm, He; Program: 45C(5min) => 5C/min => 150C => 10C/min => 240C (10min)
CapillaryHP-Innowax1425.Quijano and Pino, 200660. m/0.25 mm/0.25 μm, Nitrogen; Program: 50 0C (4 min) -> 40 0C 4 0C/min -> 220 0C
CapillaryCarbowax 20M1436.Editorial paper, 2005Program: not specified
CapillaryCarbowax 20M1451.Editorial paper, 2005Program: not specified
CapillaryDB-Wax1453.Mattheis, Fan, et al., 200560. m/0.25 mm/0.25 μm, He; Program: 35C(5min) => 2C/min => 50C => 5C/min => 200C (5min)
CapillaryDB-FFAP1449.Buettner and Welle, 200430. m/0.32 mm/0.25 μm, He; Program: 40C (2min) => 40C/min => 60C(2min) => 6C/min => 180C => 15C/min => 230C(10min)
CapillaryDB-FFAP1449.Buettner and Welle, 200430. m/0.32 mm/0.25 μm, He; Program: 40C (2min) => 40C/min => 60C(2min) => 6C/min => 180C => 15C/min => 230C(10min)
CapillaryDB-FFAP1449.Buettner, 200430. m/0.32 mm/0.25 μm, He; Program: 40C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 15C/min => 230C (10min)
CapillaryDB-FFAP1449.Buettner, 200430. m/0.32 mm/0.25 μm, He; Program: 40C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 15C/min => 230C (10min)
CapillaryDB-FFAP1449.Buettner, 200430. m/0.32 mm/0.25 μm, He; Program: 40C(2min) => 40C/min => 60C(2min) => 6C/min => 180C => 15C/min => 230C (10min)
CapillaryDB-Wax1461.Escudero, Gogorza, et al., 2004Program: not specified
CapillaryDB-Wax1447.Kim. J.H., Ahn, et al., 200460. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 200 0C
CapillaryBP-211435.Salinas, Zalacain, et al., 200450. m/0.22 mm/0.25 μm, He; Program: 50C => 2.5C/min => 180C(2min) => 1C/min => 200C(10min)
CapillaryPEG-20M1447.Garruti, Franco, et al., 200330. m/0.25 mm/0.25 μm; Program: 50C(8min) => 4C/min => 110C => 16C/min => 200C
CapillaryDB-FFAP1434.Triqui and Bouchriti, 200330. m/0.3 mm/0.25 μm, H2; Program: 35C (1min) => 40C/min => 60C (5min) => 4C/min => 220C
CapillaryCP-Wax 52CB1446.Escalona, Birkmyre, et al., 200230. m/0.25 mm/0.25 μm, He; Program: 50C(5min) => 7C/min => 180C => 10C/min => 240C(10min)
CapillaryTRWAX1476.Torrens, 200260. m/0.25 mm/0.25 μm, He; Program: not specified
CapillaryFFAP1450.Buettner and Schieberle, 200130. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 40C/min => 60C (2min) => 6C/min => 180C => 10C/min => 230C (10min)
CapillaryCP-Wax 52CB1447.Escalona, Birkmyre, et al., 200130. m/0.25 mm/0.25 μm, He; Program: 50C(5min) => 7C/min => 180C => 10C/min => 240C(10min)
CapillaryNukol1468.López and Dufour, 2001N2; Column length: 25. m; Column diameter: 0.25 mm; Program: 45C(5min) => 20C/min => 100C(1min) => 3C/min => 190C(40min)
CapillaryDB-Wax1430.Mayorga, Knapp, et al., 200130. m/0.25 mm/0.25 μm; Program: 50C(4min) => 4C/min => 130C => 1C/min => 190C => 4C/min => 220C(20min)
CapillaryDB-Wax1439.Mayorga, Knapp, et al., 200130. m/0.25 mm/0.25 μm; Program: 50C(4min) => 4C/min => 130C => 1C/min => 190C => 4C/min => 220C(20min)
CapillaryInnowax1475.Özcan, Akgül, et al., 200160. m/0.25 mm/0.25 μm, He; Program: 60C(10min) => 4C/min => 200C(10min) => 1C/min => 240C
CapillaryCarbowax 20M1425.Teai, Claude-Lafontaine, et al., 200150. m/0.2 mm/0.2 μm, N2; Program: 60C => 2C/min => 150C => 4C/min => 220C
CapillaryFFAP1408.Tucker, Maciarello, et al., 200150. m/0.2 mm/0.33 μm; Program: 60C(1min) => 2.5C/min => 115C => 1C/min => 210C(30min)
CapillaryCP-Wax 52CB1457.Muresan, Eillebrecht, et al., 200050. m/0.32 mm/1.2 μm; Program: 40C(10min) => 3C/min => 190C => 10C/min => 250C(5min)
CapillaryFFAP1453.Reiners and Grosch, 199825. m/0.32 mm/0.3 μm; Program: 35C (2min) => 40C/min => 60C(1min) => 6C/min => 230C
CapillaryPEG1463.Vas, Gal, et al., 199840. m/0.182 mm/0.30 μm, Hydrogen; Program: 35 0C (5 min) 5 0C/min -> 100 0C 3 0C/min -> 200 0C (1 min) 20 0C/min -> 240 0C (2 min)
CapillaryFFAP1431.Zehentbauer and Grosch, 199825. m/0.32 mm/0.25 μm, He; Program: 35C(2min) => 40C/min => 60C(2min) => 6C/min => 230C
CapillaryDB-FFAP1435.Guth, 199730. m/0.32 mm/0.25 μm; Program: 35C (1min) => 40C/min => 60C (1min) => 6C/min => 250C (10min)
CapillaryFFAP1439.Schermann and Schieberle, 199730. m/0.32 mm/0.25 μm, He; Program: 35C (2min) => 40C/min => 60C (2min) => 6C/min => 180C => 10C/min => 240C
CapillaryPolyethylene Glycol1428.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryFFAP1435.Guth and Grosch, 1994Program: not specified
CapillaryFFAP1446.Schieberle and Grosch, 1994He; Column length: 30. m; Column diameter: 0.32 mm; Program: 35C => 40C/min => 60C(2min) => 4C/min => 240C
CapillaryFFAP1455.Blank and Schieberle, 199330. m/0.32 mm/0.25 μm, Helium; Program: 35 0C (2 min) 40 0C/min -> 50 0C (2 min) 6 0C/min -> 180 0C 10 0C/min -> 230 0C (10 min)
CapillaryFFAP1435.Guth and Grosch, 1993Program: not specified
CapillaryDB-Wax1409.Hatsuko, Kazuko, et al., 1992He; Column length: 30. m; Column diameter: 0.25 mm; Program: not specified
CapillaryDB-Wax1454.Mattheis, Buchanan, et al., 199260. m/0.25 mm/0.25 μm, He; Program: 35C (5min) => 2C/min => 50C => 5C/min => 200C(5min)
CapillaryDB-Wax1454.Mattheis, Buchanan, et al., 199260. m/0.25 mm/0.25 μm, He; Program: 35C (5min) => 2C/min => 50C => 5C/min => 200C(5min)
CapillaryDB-Wax1430.Peng, Yang, et al., 1991, 2Program: not specified
CapillaryDB-Wax1430.Peng, Yang, et al., 1991, 2Program: not specified
CapillaryDB-Wax1450.Binder, Flath, et al., 1989Column length: 60. m; Column diameter: 0.32 mm; Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Weltner W., 1955
Weltner W., Jr., The vibrational spectrum, associative and thermodynamic properties of acetic acid vapor, J. Am. Chem. Soc., 1955, 77, 3941-3950. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Halford J.O., 1941
Halford J.O., The entropy of acetic acid, J. Chem. Phys., 1941, 9, 859-863. [all data]

Chao J., 1978
Chao J., Ideal gas thermodynamic properties of methanoic and ethanoic acids, J. Phys. Chem. Ref. Data, 1978, 7, 363-377. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Martin and Andon, 1982
Martin, J.F.; Andon, R.J.L., Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids., J. Chem. Thermodyn., 1982, 14, 679-88. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds, J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]

Andereya and Chase, 1990
Andereya, E.; Chase, J.D., Chem. Eng. Technol., 1990, 13, 304-12. [all data]

D'Souza and Teja, 1987
D'Souza, R.; Teja, A.S., The prediction of the vapor pressures of carboxylic acids, Chem. Eng. Commun., 1987, 61, 13. [all data]

Ambrose, Ellender, et al., 1977
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R., Thermo. Prop. of Org. Oxygen Compounds XLV. The Vapor Pressure of Acetic Acid, J. Chem. Thermodyn., 1977, 9, 735. [all data]

Young, 1910
Young, S., The Internal Heat of Vaporization constants of thirty pure substances, Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]

Young, 1891
Young, S., J. Chem. Soc., 1891, 59, 903. [all data]

Vandana and Teja, 1995
Vandana, V.; Teja, A.S., The critical temperatures and densities of acetic acid-water mixtures, Fluid Phase Equilib., 1995, 103, 113-18. [all data]

Verevkin, 2000
Verevkin, S.P., Measurement and Prediction of the Monocarboxylic Acids Thermochemical Properties, J. Chem. Eng. Data, 2000, 45, 5, 953-960, https://doi.org/10.1021/je990282m . [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Konicek and Wadso, 1970
Konicek, J.; Wadso, I., Enthalpies of vaporization of organic compounds. VII. Some carboxylic acids, Acta Chem. Scand., 1970, 24, 2612-26. [all data]

Konicek, Wadsö, et al., 1970
Konicek, Jiri; Wadsö, Ingemar; Munch-Petersen, J.; Ohlson, Ragnar; Shimizu, Akira, Enthalpies of Vaporization of Organic Compounds. VII. Some Carboxylic Acids., Acta Chem. Scand., 1970, 24, 2612-2616, https://doi.org/10.3891/acta.chem.scand.24-2612 . [all data]

Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina, Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid, J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u . [all data]

Vercher, Vázquez, et al., 2001
Vercher, Ernesto; Vázquez, M. Isabel; Martínez-Andreu, Antoni, Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Lithium Acetate, J. Chem. Eng. Data, 2001, 46, 6, 1584-1588, https://doi.org/10.1021/je010106p . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Tamir, Dragoescu, et al., 1983
Tamir, Abraham; Dragoescu, Claudia; Apelblat, Alexander; Wisniak, Jaime, Heats of vaporization and vapor-liquid equilibria in associated solutions containing formic acid, acetic acid, propionic acid and carbon tetrachloride, Fluid Phase Equilibria, 1983, 10, 1, 9-42, https://doi.org/10.1016/0378-3812(83)80002-8 . [all data]

McDonald, Shrader, et al., 1959
McDonald, R.A.; Shrader, S.A.; Stull, D.R., Vapor Pressures and Freezing Points of Thirty Pure Organic Compounds., J. Chem. Eng. Data, 1959, 4, 4, 311-313, https://doi.org/10.1021/je60004a009 . [all data]

Potter and Ritter, 1954
Potter, Andrew E.; Ritter, H.L., The Vapor Pressure of Acetic Acid and Acetic-d 3 Acid-d. The Liquid Density of Acetic-d 3 Acid-d, J. Phys. Chem., 1954, 58, 11, 1040-1042, https://doi.org/10.1021/j150521a025 . [all data]

Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J., Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids, The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Martin and Andon, 1982, 2
Martin, J.F.; Andon, R.J.L., Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids, J. Chem. Thermodynam., 1982, 14, 679-688. [all data]

Parks and Kelley, 1925, 2
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Louguinine and Dupont, 1911
Louguinine, W.; Dupont, G., Bull. Soc. Chim. Fr., 1911, 9, 219. [all data]

Meyer, 1910
Meyer, J., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1910, 72, 225. [all data]

Pickering, 1895
Pickering, S.U., A comparison of some properties of acetic acid and its chloro- and bromo-derivatives, J. Chem. Soc., 1895, 67, 664-684. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P., Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria, J. Am. Chem. Soc., 1971, 93, 7139. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M., Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid, J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426 . [all data]

Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D., The Nature and Analysis of Substituent Effects, Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Meot-ner, Elmore, et al., 1999
Meot-ner, M.; Elmore, D.E.; Scheiner, S., Ionic Hydrogen Bond Effects on the Acidities, Basicities, Solvation, Solvent Bridging and Self-assembly of Carboxylic Groups, J. Am. Chem. Soc., 1999, 121, 33, 7625, https://doi.org/10.1021/ja982173i . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

Devore and O'Neal, 1969
Devore, J.A.; O'Neal, H.E., Heats of formation of the acetyl halides and of the acetyl radical, J. Phys. Chem., 1969, 73, 2644-2648. [all data]

Pritchard and Skinner, 1950
Pritchard, H.O.; Skinner, H.A., The heats of hydrolysis of the chloro-substituted acetyl chlorides, J. Chem. Soc., 1950, 272-276. [all data]

Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A., 201. Carbon-halogen bond energies in the acetyl halides, J. Chem. Soc., 1949, 936-939. [all data]

Becker and Maelicke, 1967
Becker, F.; Maelicke, A., Thermokinetische Messungen nach dem Prinzip der Wärmefluβkalorimetrie, Z. Phys. Chem. (Neue Folge), 1967, 55, 280-295. [all data]

Wadso, 1962
Wadso, I., Heats of aminolysis and hydrolysis of some N-acetyl compounds and of acetic anhydride, Acta Chem. Scand., 1962, 16, 471-478. [all data]

Conn, Kistiakowsky, et al., 1942
Conn, J.B.; Kistiakowsky, G.B.; Roberts, R.M.; Smith, E.A., Heats of organic reactions. XIII. Heats of hydrolysis of some acid anhydrides, J. Am. Chem. Soc., 1942, 64, 1747-17. [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Grabowski and Cheng, 1989
Grabowski, J.J.; Cheng, X., Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction, J. Am. Chem. Soc., 1989, 111, 8, 3106, https://doi.org/10.1021/ja00190a078 . [all data]

Meot-Ner, 1984, 2
Meot-Ner, (Mautner), The Ionic Hydrogen Bond. 4. Intramolecular and Multiple Bonds. Proton Affinities, Hydration and Complexes of Amides and Amino Acid Derivatives, J. Am. Chem. Soc., 1984, 106, 2, 278, https://doi.org/10.1021/ja00314a003 . [all data]

Hill and Wadso, 1968
Hill, J.O.; Wadso, I., Some thermochemical properties of N,N,N-triacetylammonia, Acta Chem. Scand., 1968, 22, 1590-1594. [all data]

Wadso, 1965
Wadso, I., Thermochemical properties of diacetimide, N-butyldiacetimide and N-phenyldiacetimide, Acta Chem. Scand., 1965, 19, 1079-1087. [all data]

Wadso, 1958
Wadso, I., The heats of aminolysis of n-butyl thiolacetate and acetic anhydride, Acta Chem. Scand., 1958, 12, 635-640. [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Shlechter, Othmer, et al., 1945
Shlechter, N.; Othmer, D.F.; Marshak, S., Esterification of 2,3-butylene glycol with acetic acid, Ind. Eng. Chem., 1945, 37, 900-905. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Wadso, 1960
Wadso, I., Heats of hydrolysis of N-acetylated imidazole, 1,2,4-triazole and tetrazole, Acta Chem. Scand., 1960, 14, 903-908. [all data]

Guthrie and Liu, 1995
Guthrie, J.P.; Liu, Z., The enols of acetic acid and methyl acetate, Can. J. Chem., 1995, 73, 1395-2398. [all data]

Wiberg, Connon, et al., 1979
Wiberg, K.B.; Connon, H.A.; Pratt, W.E., Enthalpies of acetolysis of tricyclo[3.2.1.01,5]octane ([3.2.1]propellane) and 1,3-dehydroadamantane, J. Am. Chem. Soc., 1979, 101, 6970-6972. [all data]

Sunner and Wadso, 1957
Sunner, S.; Wadso, I., The heat of hydrolysis of thiolacetic acid, Trans. Faraday Soc., 1957, 53, 455-459. [all data]

Wadso, 1957
Wadso, I., The heats of hydrolysis of some alkyl thiolesters, Acta Chem. Scand., 1957, 11, 1745-1751. [all data]

Sunner, 1957
Sunner, S., The heat of hydrolysis of i-propenyl acetate and m-cresyl acetate and the heat of formation of acetone, Acta Chem. Scand., 1957, 11, 1757-1760. [all data]

Nelander, 1964
Nelander, L., The heats of hydrolysis of aspirin, thioaspirin, and their p-analogues, Acta Chem. Scand., 1964, 18, 973-984. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C., Heat of formation for acetyl cation in the gas phase, J. Am. Chem. Soc., 1982, 104, 5318. [all data]

Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P., Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations, Can. J. Chem., 1981, 59, 80. [all data]

Holmes and Lossing, 1980
Holmes, J.L.; Lossing, F.P., Thermochemistry and unimolecular reactions of ionized acetic acid and its enol in the gas phase., J. Am. Chem. Soc., 1980, 102, 3732. [all data]

Holmes and Lossing, 1980, 2
Holmes, J.L.; Lossing, F.P., Gas-phase heats of formation of keto and enol ions of carbonyl compounds., J. Am. Chem. Soc., 1980, 102, 1591. [all data]

Akopyan and Villem, 1976
Akopyan, M.E.; Villem, Ya.Ya., Ion-molecule reactions in the photoionization of formic and acetic acid vapors, High Energy Chem., 1976, 10, 24. [all data]

Watanabe, Yokoyama, et al., 1974
Watanabe, I.; Yokoyama, Y.; Ikeda, S., Vibrational structures in the He(I) photoelectron spectra of carboxylic acids, Bull. Chem. Soc. Jpn., 1974, 47, 627. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Watanabe, Yokoyama, et al., 1973
Watanabe, I.; Yokoyama, Y.; Ikeda, S., Lone pair ionization potentials of carboxylic acids determined by He(I) photoelectron spectroscopy, Bull. Chem. Soc. Jpn., 1973, 46, 1959. [all data]

Thomas, 1972
Thomas, R.K., Photoelectron spectroscopy of hydrogen-bonded systems: spectra of monomers, dimers and mixed complexes of carboxylic acides, Proc. R. Soc. London A:, 1972, 331, 249. [all data]

Sweigart and Turner, 1972
Sweigart, D.A.; Turner, D.W., Lone pair orbitals and their interactions studied by photoelectron spectroscopy. I. Carboxylic acids and their derivatives, J. Am. Chem. Soc., 1972, 94, 5592. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Vilesov, 1960
Vilesov, F.I., The photoionization of vapors of compounds whose molecules contain carbonyl groups, Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L., 30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O), J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]

Carnovale, Gan, et al., 1980
Carnovale, F.; Gan, T.H.; Peel, J.B., Photoelectron spectroscopic studies of the monomers and dimers of acetic and trifluoracetic acids, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 53. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

Green and Hayes, 1975
Green, J.C.; Hayes, A.J., Ionization energies of an Mo-Mo quadruple bond; a He(I) photoelectron study of some molybdenum-dycarboxylate dimers, Chem. Phys. Lett., 1975, 31, 306. [all data]

Stepanov, Perov, et al., 1988
Stepanov, A.N.; Perov, A.A.; Kabanov, S.P.; Simonov, A.P., Formation of long-lived, highly excited atoms during dissociative excitation of CH3CN, CH3CH2OH, CH3COOH, HCOOH, and C4H4S molecules on electron impact, Russ. J. Phys. Chem., 1988, 22, 81. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Shigorin, Filyugina, et al., 1966
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K., Ionization and dissociation of molecules of acetaldehyde, acetone, and acetic acid on electron impact, Teor. i Eksperim. Khim., 1966, 2, 554, In original 417. [all data]

Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I., Heat of formation of CH2=OH+ fragment ion, Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]

Majer, Patrick, et al., 1961
Majer, J.R.; Patrick, C.R.; Robb, J.C., Appearance potentials of the acetyl radical-ion, J. Chem. Soc. Faraday Trans., 1961, 57, 14. [all data]

Briegleb and Strohmeier, 1946
Briegleb, G.; Strohmeier, W., Einfluss einer Wasserstoff-Bruckenbindung auf die lichtabsorption der COOH-Gruppe, Naturwissenschaften, 1946, 33, 344-345. [all data]

Viani, Müggler-Chavan, et al., 1965
Viani, R.; Müggler-Chavan, F.; Reymond, D.; Egli, R.H., 196. Sur la composition de l'arôme de café, Helv. Chim. Acta, 1965, 48, 195-196, 1809-1815, https://doi.org/10.1002/hlca.19650480743 . [all data]

Riu-Aumatell, Castellari, et al., 2004
Riu-Aumatell, M.; Castellari, M.; López-Tamames, E.; Galassi, S.; Buxaderas, S., Characterisation of volatile compounds of fruit juices and nectars by HS/SPME and GC/MS, Food Chem., 2004, 87, 4, 627-637, https://doi.org/10.1016/j.foodchem.2003.12.033 . [all data]

Nishimura, Yamaguchi, et al., 1989
Nishimura, O.; Yamaguchi, K.; Mihara, S.; Shibamoto, T., Volatile Constituents of Guava Fruits (Psidium guajava L.) and Canned Puree, J. Agric. Food Chem., 1989, 37, 1, 139-142, https://doi.org/10.1021/jf00085a033 . [all data]

Shibamoto, Kamiya, et al., 1981
Shibamoto, T.; Kamiya, Y.; Mihara, S., Isolation and identification of volatile compounds in cooked meat: sukiyaki, J. Agric. Food Chem., 1981, 29, 1, 57-63, https://doi.org/10.1021/jf00103a015 . [all data]

Garruti, Franco, et al., 2001
Garruti, D.S.; Franco, M.R.B.; da Silva, M.A.A.A.P.; Janzantti, N.S.; Alves, G.L., Compostos voláteis do sabor de pseudofrutos de cajueiro anão precoce (Anacardium occidentale L.) CCP-76, Boletim de Pesquisa e Desenvolvimento 4, Empresa Brasileira de Pesquisa Agropecuária, Fortaleza, Brazil, 2001, 29, retrieved from http://www.cnpat.embrapa.br/publica/pub/BolPesq/pd4.pdf. [all data]

Engel and Ratel, 2007
Engel, E.; Ratel, J., Correction of the data generated by mass spectrometry analyses of biological tissues: Application to food authentication, J. Chromatogr. A, 2007, 1154, 1-2, 331-341, https://doi.org/10.1016/j.chroma.2007.02.012 . [all data]

Lozano P.R., Drake M., et al., 2007
Lozano P.R.; Drake M.; Benitez D.; Cadwallader K.R., Instrumental and sensory characterization of heat-induced odorants in aseptically packaged soy milk, J. Agric. Food Chem., 2007, 55, 8, 3018-3026, https://doi.org/10.1021/jf0631225 . [all data]

Steinhaus and Schieberle, 2007
Steinhaus, P.; Schieberle, P., Characterization of the key aroma compounds in soy sauce using approaches of molecular sensory science, J. Agric. Food Chem., 2007, 55, 15, 6262-6269, https://doi.org/10.1021/jf0709092 . [all data]

Bylaite and Meyer, 2006
Bylaite, E.; Meyer, A.S., · Characterisation of volatile aroma compounds of orange juices by three dynamic and static headspace gas chromatography techniques, Eur. Food Res. Technol., 2006, 222, 1-2, 176-184, https://doi.org/10.1007/s00217-005-0141-8 . [all data]

Condurso, Verzera, et al., 2006
Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Trozzi, A.; Ragusa, S., The leaf volatile constituents of Isatis tinctoria by solid-phase microextraction and gas chromatography/mass spectrometry, Planta Medica, 2006, 72, 10, 924-928, https://doi.org/10.1055/s-2006-946679 . [all data]

Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L., Key Odor Impact Compounds in Three Yeast Extract Pastes, J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x . [all data]

Whetstine, Cadwallader, et al., 2005
Whetstine, M.E.C.; Cadwallader, K.R.; Drake, M.A., Characterization of aroma compounds responsible for the rosy/floral flavor in cheddar cheese, J. Agric. Food Chem., 2005, 53, 8, 3126-3132, https://doi.org/10.1021/jf048278o . [all data]

Avsar, Karagul-Yuceer, et al., 2004
Avsar, Y.K.; Karagul-Yuceer, Y.; Drake, M.A.; Singh, T.K.; Yoon, Y.; Cadwallader, K.R., Characterization of nutty flavor in cheddar cheese, J. Dairy Sci., 2004, 87, 7, 1999-2010, https://doi.org/10.3168/jds.S0022-0302(04)70017-X . [all data]

Hierro, de la Hoz, et al., 2004
Hierro, E.; de la Hoz, L.; Ordóñez, J.A., Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species, Food Chem., 2004, 85, 4, 649-657, https://doi.org/10.1016/j.foodchem.2003.07.001 . [all data]

Píno, Marbot, et al., 2004
Píno, J.A.; Marbot, R.; Vázquez, C., Volatile components of the fruits of Vangueria madagascariensis J. F. Gmel. from Cuba, J. Essent. Oil Res., 2004, 16, 4, 302-304, https://doi.org/10.1080/10412905.2004.9698727 . [all data]

Karagül-Yüceer, Cadwallader, et al., 2002
Karagül-Yüceer, Y.; Cadwallader, K.R.; Drake, M.A., Volatile flavor components of stored nonfat dry milk, J. Agric. Food Chem., 2002, 50, 2, 305-312, https://doi.org/10.1021/jf010648a . [all data]

Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Hierro, E., Two-fibre solid-phase microextraction combined with gas chromatography-mass spectrometry for the analysis of volatile aroma compounds in cooked pork, J. Chromatogr. A, 2000, 905, 1-2, 233-240, https://doi.org/10.1016/S0021-9673(00)00990-0 . [all data]

Helmig, Klinger, et al., 1999
Helmig, D.; Klinger, L.F.; Guenther, A.; Vierling, L.; Geron, C.; Zimmerman, P., Biogenic volatile organic compound emissions (BVOCs). I. Identifications from three continental sites in the U.S., Chemosphere, 1999, 38, 9, 2163-2187, https://doi.org/10.1016/S0045-6535(98)00425-1 . [all data]

Verdier-Metz., Coulon, et al., 1998
Verdier-Metz., I.; Coulon, J.-B.; PPradel, P.; Viallon, C.; Berdague, J.-L., Effect of forage conservation (hay or silage) and cow breed on the coagulation properties of milks and on the characteristics of ripened cheeses, J. Dairy Res., 1998, 65, 1, 9-21, https://doi.org/10.1017/S0022029997002616 . [all data]

Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P., Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii, J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212 . [all data]

Özel, Gögüs, et al., 2006
Özel, M.Z.; Gögüs, F.; Lewis, A.C., Determination of Teucrium chamaedrys volatiles by using direct thermal desorption-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry, J. Chromatogr. A, 2006, 1114, 1, 164-169, https://doi.org/10.1016/j.chroma.2006.02.036 . [all data]

Klesk and Qian, 2003
Klesk, K.; Qian, M., Aroma extract dilution analysis of Cv. Marion (Rubus spp. hyb) and Cv. Evergreen (R. Iaciniatus L.) blackberries, J. Agric. Food Chem., 2003, 51, 11, 3436-3441, https://doi.org/10.1021/jf0262209 . [all data]

Place, Imhof, et al., 2003
Place, R.B.; Imhof, M.; Teuber, M.; Olivier Bosset, J., Distribution of the volatile (flavour) compounds in Raclette cheese produced with different staphylococci in the smear, Mitt. Lebensmittelunters. Hyg., 2003, 94, 192-211. [all data]

Jezussek, Juliano, et al., 2002
Jezussek, M.; Juliano, B.O.; Schieberle, P., Comparison of key aroma compounds in cooked brown rice varieties based on aroma extract dilution analysis, J. Agric. Food Chem., 2002, 50, 5, 1101-1105, https://doi.org/10.1021/jf0108720 . [all data]

Tairu, Hofmann, et al., 2000
Tairu, A.O.; Hofmann, T.; Schieberle, P., Studies on the key odorants formed by roasting of wild mango seeds (Irvingia gabonensis), J. Agric. Food Chem., 2000, 48, 6, 2391-2394, https://doi.org/10.1021/jf990765u . [all data]

Buettner and Schieberle, 1999
Buettner, A.; Schieberle, P., Characterization of the most odor-active volatiles in fresh, hand squeezed juice of grapefruit (Citrus paradise Macfayden), J. Agric. Food Chem., 1999, 47, 12, 5189-5193, https://doi.org/10.1021/jf990071l . [all data]

Bredie, Mottram, et al., 1998
Bredie, W.L.P.; Mottram, D.S.; Guy, R.C.E., Aroma volatiles generated during extrusion cooking of maize flour, J. Agric. Food Chem., 1998, 46, 4, 1479-1487, https://doi.org/10.1021/jf9708857 . [all data]

Fickert and Schieberle, 1998
Fickert, B.; Schieberle, P., Identification of the key odorants in barley malt (caramalt) using GC/MS techniques and odour dilution analyses, Nahrung, 1998, 42, 6, 371-375, https://doi.org/10.1002/(SICI)1521-3803(199812)42:06<371::AID-FOOD371>3.0.CO;2-V . [all data]

Hinterholzer, Lemos, et al., 1998
Hinterholzer, A.; Lemos, T.; Schieberle, P., Identification of the key odorants in raw French beans and changes during cooking, Z. Lebensm. Unters. Forsch. A, 1998, 207, 3, 219-222, https://doi.org/10.1007/s002170050322 . [all data]

Hinterholzer and Schieberie, 1998
Hinterholzer, A.; Schieberie, P., Identification of the most odour-active volatiles in fresh, hand-extracted juice of valencia late oranges by odour dilution techniques, Flavour Fragr. J., 1998, 13, 1, 49-55, https://doi.org/10.1002/(SICI)1099-1026(199801/02)13:1<49::AID-FFJ691>3.0.CO;2-S . [all data]

Münch, Hofmann, et al., 1997
Münch, P.; Hofmann, T.; Schieberle, P., Comparison of key odorants generated by thermal treatment of commercial and self-prepared yeast extracts: influence of the amino acid composition on odorant formation, J. Agric. Food Chem., 1997, 45, 4, 1338-1344, https://doi.org/10.1021/jf960658p . [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Maltby, D., Prediction of retention indexes. III. Silylated derivatives of polar compounds, J. Chromatogr., 1991, 586, 1, 113-129, https://doi.org/10.1016/0021-9673(91)80029-G . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Jarunrattanasri, Theerakulkait, et al., 2007
Jarunrattanasri, A.; Theerakulkait, C.; Cadwallader, K.R., Aroma Components of Acid-Hydrolyzed Vegetable Protein Made by Partial Hydrolysis of Rice Bran Protein, J. Agric. Food Chem., 2007, 55, 8, 3044-3050, https://doi.org/10.1021/jf0631474 . [all data]

Lozano P.R., Miracle E.R., et al., 2007
Lozano P.R.; Miracle E.R.; Krause A.J.; Drake M.; Cadwallader K.R., Effect of cold storage and packaging material on the major aroma components of sweet cream butter, J. Agric. Food Chem., 2007, 55, 19, 7840-7846, https://doi.org/10.1021/jf071075q . [all data]

Politeo, Jukic, et al., 2007
Politeo, O.; Jukic, M.; Milos, M., Chemical Composition and Antioxidant Activity of Free Volatile Aglycones from Laurel (Laurus nobilis L.) Compared to Its Essential Oil, Croatica Chem. Acta, 2007, 80, 1, 121-126. [all data]

Pozo-Bayon M.A., Ruiz-Rodriguez A., et al., 2007
Pozo-Bayon M.A.; Ruiz-Rodriguez A.; Pernin K.; Cayot N., Influence of eggs on the aroma composition of a sponge cake and on the aroma release in model studies on flavored sponge cakes, J. Agric. Food Chem., 2007, 55, 4, 1418-1426, https://doi.org/10.1021/jf062203y . [all data]

Quijano, Linares, et al., 2007
Quijano, C.E.; Linares, D.; Pino, J.A., Changes in volatile compounds of fermented cereza agria [Phyllanthus acidus (L.) Skeels] fruit, Flavour Fragr. J., 2007, 22, 5, 392-394, https://doi.org/10.1002/ffj.1810 . [all data]

Ruiz Perez-Cacho, Mahattanatawee, et al., 2007
Ruiz Perez-Cacho, P.; Mahattanatawee, K.; Smoot, J.M.; Rouseff, R., Identification of Sulfur Volatiles in Canned Orange Juices Lacking Orange Flavor, J. Agric. Food Chem., 2007, 55, 14, 5761-5767, https://doi.org/10.1021/jf0703856 . [all data]

Gurbuz O., Rouseff J.M., et al., 2006
Gurbuz O.; Rouseff J.M.; Rouseff R.L., Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography - Olfactometry and gas chromatography - Mass spectrometry, J. Agric. Food Chem., 2006, 54, 11, 3990-3996, https://doi.org/10.1021/jf053278p . [all data]

Osorio, Alarcon, et al., 2006
Osorio, C.; Alarcon, M.; Moreno, C.; Bonilla, A.; Barrios, J.; Garzon, C.; Duque, C., Characterization of Odor-Active Volatiles in Champa ( Campomanesia lineatifolia R. P.), J. Agric. Food Chem., 2006, 54, 2, 509-516, https://doi.org/10.1021/jf052098c . [all data]

Petka, Ferreira, et al., 2006
Petka, J.; Ferreira, V.; González-Viñas, M.A.; Cacho, J., Sensory and Chemical Characterization of the Aroma of a White Wine Made with Devín Grapes, J. Agric. Food Chem., 2006, 54, 3, 909-915, https://doi.org/10.1021/jf0518397 . [all data]

Pinto, Guedes, et al., 2006
Pinto, A.B.; Guedes, C.M.; Moreira, R.F.A.; de Maria, C.A.B., Volatile constituents from headspace and aqueous solution of genipap (Genipa americana) fruit isolated by the solid-phase extraction method, Flavour Fragr. J., 2006, 21, 3, 488-491, https://doi.org/10.1002/ffj.1623 . [all data]

Whetstine M.E.C., Drake M.A., et al., 2006
Whetstine M.E.C.; Drake M.A.; Nelson B.K.; Barbano D.M., Flavor profiles of full-fat and reduced-fat cheese and cheese fat made from aged cheddar with the fat removed using a novel process, J. Dairy Res., 2006, 89, 2, 505-517, https://doi.org/10.3168/jds.S0022-0302(06)72113-0 . [all data]

Alasalvar, Taylor, et al., 2005
Alasalvar, C.; Taylor, K.D.A.; Shahidi, F., Comparison of volatiles of cultured and wild sea bream (Sparus aurata) during storage in ice by dynamic headspace analysis/gas chromatography-mass spectrometry, J. Agric. Food Chem., 2005, 53, 7, 2616-2622, https://doi.org/10.1021/jf0483826 . [all data]

Bonvehí, 2005
Bonvehí, J.S., Investigation of aromatic compounds in roasted cocoa powder, Eur. Food Res. Technol., 2005, 221, 1-2, 19-29, https://doi.org/10.1007/s00217-005-1147-y . [all data]

Carunchia Whetstine, Croissant, et al., 2005
Carunchia Whetstine, M.E.; Croissant, A.E.; Drake, M.A., Characterization of Dried Whey Protein Concentrate and Isolate Flavor, J. Dairy Sci., 2005, 88, 11, 3826-3839, https://doi.org/10.3168/jds.S0022-0302(05)73068-X . [all data]

Cros, Lignot, et al., 2005
Cros, S.; Lignot, B.; Bourseau, P.; Jaouen, P.; Prost, C., Desalination of mussel cooking juices by electrodialysis: effect on the aroma profile, J. Food Eng., 2005, 69, 4, 425-436, https://doi.org/10.1016/j.jfoodeng.2004.08.036 . [all data]

Fang and Qian, 2005
Fang, Y.; Qian, M., Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA), Flavour Fragr. J., 2005, 20, 1, 22-29, https://doi.org/10.1002/ffj.1551 . [all data]

Gancel, Ollitrault, et al., 2005
Gancel, A.-L.; Ollitrault, P.; Froelicher, Y.; Tomi, F.; Jacquemond, C.; Luro, F.; Brillouet, J.-M., Leaf volatile compounds of six citrus somatic allotetraploid hybrids originating from various combinations of lime, lemon, citron, sweet orange, and grapefruit, J. Agric. Food Chem., 2005, 53, 6, 2224-2230, https://doi.org/10.1021/jf048315b . [all data]

Lee, Lee, et al., 2005
Lee, J.-G.; Lee, C.-G.; Kwag, J.-J.; Buglass, A.J.; Lee, G.-H., Determination of optimum conditions for the analysis of volatile components in pine needles by double-shot pyrolysis-gas chromatography-mass spectrometry, J. Chromatogr. A, 2005, 1089, 1-2, 227-234, https://doi.org/10.1016/j.chroma.2005.06.060 . [all data]

Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O., Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses, Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007 . [all data]

Pena, Barciela, et al., 2005
Pena, R.M.; Barciela, J.; Herrero, C.; Garcia-Martin, S., Optimization of solid-phase microextraction methods for GC-MS determination of terpenes in wine, J. Sci. Food Agric., 2005, 85, 7, 1227-1234, https://doi.org/10.1002/jsfa.2121 . [all data]

Riu-Aumatell, Lopez-Tamames, et al., 2005
Riu-Aumatell, M.; Lopez-Tamames, E.; Buxaderas, S., Assessment of the Volatile Composition of Juices of Apricot, Peach, and Pear According to Two Pectolytic Treatments, J. Agric. Food Chem., 2005, 53, 20, 7837-7843, https://doi.org/10.1021/jf051397z . [all data]

Verzera, Campisi, et al., 2005
Verzera, A.; Campisi, S.; Zappalá, M., SUPELCO. Using SPME-GC-MS to characterize volatile components of honey as indicators of botanical origin, 2005, retrieved from http://www.sigmaaldrich.com/Brands/SupelcoHome/TheReporter.html. [all data]

Wu, Zorn, et al., 2005
Wu, S.; Zorn, H.; Krings, U.; Berger, R.G., Characteristic Volatiles from Young and Aged Fruiting Bodies of Wild Polyporus sulfureus (Bull.:Fr.) Fr., J. Agric. Food Chem., 2005, 53, 11, 4524-4528, https://doi.org/10.1021/jf0478511 . [all data]

Ledauphin, Saint-Clair, et al., 2004
Ledauphin, J.; Saint-Clair, J.-F.; Lablanquie, O.; Guichard, H.; Founier, N.; Guichard, E.; Barillier, D., Identification of trace volatile compounds in freshly distilled calvados and cognac using preparative separations coupled with gas chromatography-mass spectrometry, J. Agric. Food Chem., 2004, 52, 16, 5124-5134, https://doi.org/10.1021/jf040052y . [all data]

Mahajan, Goddik, et al., 2004
Mahajan, S.S.; Goddik, L.; Qian, M.C., Aroma Compounds in Sweet Whey Powder, J. Dairy Sci., 2004, 87, 12, 4057-4063, https://doi.org/10.3168/jds.S0022-0302(04)73547-X . [all data]

Varming, Petersen, et al., 2004
Varming, C.; Petersen, M.A.; Poll, L., Comparison of isolation methods for the determination of important aroma compounds in black currant (Ribes nigrum L.) juice, using nasal impact frequency profiling, J. Agric. Food Chem., 2004, 52, 6, 1647-1652, https://doi.org/10.1021/jf035133t . [all data]

Aubert, Günata, et al., 2003
Aubert, C.; Günata; Ambid, C.; Baumes, R., Changes in physicochemical characteristics and volatile constituents of yellow- and white-fleshed nectarines during maturation and artificial ripening, J. Agric. Food Chem., 2003, 51, 10, 3083-3091, https://doi.org/10.1021/jf026153i . [all data]

Brat, Rega, et al., 2003
Brat, P.; Rega, B.; Alter, P.; Reynes, M.; Brillouet, J.-M., Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice, J. Agric. Food Chem., 2003, 51, 11, 3442-3447, https://doi.org/10.1021/jf026226y . [all data]

Cros, Vandanjon, et al., 2003
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P., Processing of industrial mussel cooking juices by reverse osmosis: pollution abatement and aromas recovery, 2003, retrieved from http://www.membrane.unsw.edu.au/imstec03/content/papers/DAI/imstec064.pdf. [all data]

Gancel, Ollitrault, et al., 2003
Gancel, A.-L.; Ollitrault, P.; Froelicher, Y.; Tomi, F.; Jacquemond, C.; Luro, F.; Brillouet, J.-M., Leaf volatile compounds of seven citrus somatic tetraploid hybrids sharing willow leaf mandarin (Citrus deliciosa Ten.) as their common parent, J. Agric. Food Chem., 2003, 51, 20, 6006-6013, https://doi.org/10.1021/jf0345090 . [all data]

Pino, Almora, et al., 2003
Pino, J.; Almora, K.; Marbot, R., Volatile components of papaya (Carica papaya L., maradol variety) fruit, Flavour Fragr. J., 2003, 18, 6, 492-496, https://doi.org/10.1002/ffj.1248 . [all data]

Valim, Rouseff, et al., 2003
Valim, M.F.; Rouseff, R.L.; Lin, J., Gas chromatographic-olfactometric characterization of aroma compounds in two types of cashew apple nectar, J. Agric. Food Chem., 2003, 51, 4, 1010-1015, https://doi.org/10.1021/jf025738+ . [all data]

Claudela, Dirningera, et al., 2002
Claudela, P.; Dirningera, N.; Etievant, P., Effects of water on gas chromatographic column efficiency measurements applied to on-column injections of volatile aroma compounds, J. Sep. Sci., 2002, 25, 5-6, 365-370, https://doi.org/10.1002/1615-9314(20020401)25:5/6<365::AID-JSSC365>3.0.CO;2-Y . [all data]

Pino, Marbot, et al., 2002
Pino, J.A.; Marbot, R.; Vázquez, C., Characterization of volatile in Cosa Rican Guava [Psidium friedrichsthalianum (Berg) Niedenzu] fruit, J. Agric. Food Chem., 2002, 50, 21, 6023-6026, https://doi.org/10.1021/jf011456i . [all data]

Karagül-Yüceer, Drake, et al., 2001
Karagül-Yüceer, Y.; Drake, M.; Cadwallader, K.R., Aroma-active components of nonfat dry milk, J. Agric. Food Chem., 2001, 49, 6, 2948-2953, https://doi.org/10.1021/jf0009854 . [all data]

Pino, Marbot, et al., 2001
Pino, J.A.; Marbot, R.; Vázquez, C., Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit, J. Agric. Food Chem., 2001, 49, 12, 5883-5887, https://doi.org/10.1021/jf010414r . [all data]

Shimoda, Yoshimura, et al., 2001
Shimoda, M.; Yoshimura, Y.; Yoshimura, T.; Noda, K.; Osajima, Y., Volatile flavor compounds of sweetened condensed milk, J. Food Sci., 2001, 66, 6, 804-807, https://doi.org/10.1111/j.1365-2621.2001.tb15176.x . [all data]

Verzera, Campisi, et al., 2001
Verzera, A.; Campisi, S.; Zappalá, M.; Bonaccorsi, I., SPME-GC-MS analysis of honey volatile components for the characterization of different floral origin, Am. Lab. Fairfield Conn., 2001, 33, 15, 18-21. [all data]

Charles, Martin, et al., 2000
Charles, M.; Martin, B.; Ginies, C.; Etievant, P.; Coste, G.; Guichard, E., Potent aroma compounds of two red wine vinegars, J. Agric. Food Chem., 2000, 48, 1, 70-77, https://doi.org/10.1021/jf9905424 . [all data]

Chung, 2000
Chung, H.Y., Volatile flavor components in red fermented soybean (Glycine max) curds, J. Agric. Food Chem., 2000, 48, 5, 1803-1809, https://doi.org/10.1021/jf991272s . [all data]

Moio, Piombino, et al., 2000
Moio, L.; Piombino, P.; Addeo, F., Odour-impact compounds of Gorgonzola cheese, J. Dairy Res., 2000, 67, 2, 273-285, https://doi.org/10.1017/S0022029900004106 . [all data]

Peng, 2000
Peng, C.T., Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index, J. Chromatogr. A, 2000, 903, 1-2, 117-143, https://doi.org/10.1016/S0021-9673(00)00901-8 . [all data]

Chevance and Farmer, 1999
Chevance, F.F.V.; Farmer, L.J., Identification of major volatile odor compounds in frankfurters, J. Agric. Food Chem., 1999, 47, 12, 5151-5160, https://doi.org/10.1021/jf990515d . [all data]

Chung, 1999
Chung, H.Y., Volatile components in crabmeats of Charybdis feriatus, J. Agric. Food Chem., 1999, 47, 6, 2280-2287, https://doi.org/10.1021/jf981027t . [all data]

Stephan and Steinhart, 1999
Stephan, A.; Steinhart, H., Identification of character impact odorants of different soybean lecithins, J. Agric. Food Chem., 1999, 47, 7, 2854-2859, https://doi.org/10.1021/jf981387g . [all data]

Cha, Kim, et al., 1998
Cha, Y.J.; Kim, H.; Cadwallader, K.R., Aroma-active compounds in Kimchi during fermentation, J. Agric. Food Chem., 1998, 46, 5, 1944-1953, https://doi.org/10.1021/jf9706991 . [all data]

Moio and Addeo, 1998
Moio, L.; Addeo, F., Grana Padano cheese aroma, J. Dairy Res., 1998, 65, 2, 317-333, https://doi.org/10.1017/S0022029997002768 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Shimoda, Peralta, et al., 1996
Shimoda, M.; Peralta, R.R.; Osajima, Y., Headspace gas analysis of fish sauce, J. Agric. Food Chem., 1996, 44, 11, 3601-3605, https://doi.org/10.1021/jf960345u . [all data]

Shimoda, Shiratsuchi, et al., 1996
Shimoda, M.; Shiratsuchi, H.; Nakada, Y.; Wu, Y.; Osajima, Y., Identification and sensory characterization of volatile flavor compounds in sesame seed oil, J. Agric. Food Chem., 1996, 44, 12, 3909-3912, https://doi.org/10.1021/jf960115f . [all data]

Shimoda, Wu, et al., 1996
Shimoda, M.; Wu, Y.; Osajima, Y., Aroma compounds from aqueous solution of Haze (Rhus succedanea) honey determined by adsorptive column chromatography, J. Agric. Food Chem., 1996, 44, 12, 3913-3918, https://doi.org/10.1021/jf9601168 . [all data]

Shimoda, Shigematsu, et al., 1995
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y., Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion, J. Agric. Food Chem., 1995, 43, 6, 1616-1620, https://doi.org/10.1021/jf00054a037 . [all data]

Shimoda, Shigematsu, et al., 1995, 2
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y., Comparison of volatile compounds among different grades of green tea and their relations to odor attributes, J. Agric. Food Chem., 1995, 43, 6, 1621-1625, https://doi.org/10.1021/jf00054a038 . [all data]

Shiratsuchi, Shimoda, et al., 1994
Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y., Volatile flavor compounds in spray-dried skim milk powder, J. Agric. Food Chem., 1994, 42, 4, 984-988, https://doi.org/10.1021/jf00040a028 . [all data]

Sumitani, Suekane, et al., 1994
Sumitani, H.; Suekane, S.; Nakatani, A.; Tatsuka, K., Changes in composition of volatile compounds in high pressure treated peach, J. Agric. Food Chem., 1994, 42, 3, 785-790, https://doi.org/10.1021/jf00039a037 . [all data]

Chung, Eiserich, et al., 1993
Chung, T.Y.; Eiserich, J.P.; Shibamoto, T., Volatile compounds isolated from edible Korean chamchwi (Aster scaber Thunb), J. Agric. Food Chem., 1993, 41, 10, 1693-1697, https://doi.org/10.1021/jf00034a033 . [all data]

Shiratsuchi, Shimoda, et al., 1993
Shiratsuchi, H.; Shimoda, M.; Minegishi, Y.; Osajima, Y., Isolation and identification of volatile flavor compounds in nonfermented coarse-cut sausage. Flavor as a quality factor of nonfermented sausage. 1, J. Agric. Food Chem., 1993, 41, 4, 647-652, https://doi.org/10.1021/jf00028a027 . [all data]

Umano, Hagi, et al., 1992
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T., Volatile constituents of green and ripened pineapple (Aanas comosus [L.] Merr.), J. Agric. Food Chem., 1992, 40, 4, 599-603, https://doi.org/10.1021/jf00016a014 . [all data]

Humpf and Schreier, 1991
Humpf, H.-U.; Schreier, P., Bound aroma compounds from the fruit and the leaves of blackberry (Rubus laciniata L.), J. Agric. Food Chem., 1991, 39, 10, 1830-1832, https://doi.org/10.1021/jf00010a028 . [all data]

Krammer, Winterhalter, et al., 1991
Krammer, G.; Winterhalter, P.; Schwab, M.; Schreier, P., Glycosidically bound aroma compounds in the fruits of Prunus species: Apricot (P. armeniaca, L.) peach (P. persica, L.) yellow plum (P. domestica, L. ssp. Syriaca), J. Agric. Food Chem., 1991, 39, 4, 778-781, https://doi.org/10.1021/jf00004a032 . [all data]

Pabst, Barron, et al., 1991
Pabst, A.; Barron, D.; Etiévant, P.; Schreier, P., Studies on the enzymatic hydrolysis of bound aroma constituents from raspberry fruit pulp, J. Agric. Food Chem., 1991, 39, 1, 173-175, https://doi.org/10.1021/jf00001a034 . [all data]

Suárez and Duque, 1991
Suárez, M.; Duque, C., Volatile constituents of lulo (Salanum vestissimum D.) fruit, J. Agric. Food Chem., 1991, 39, 8, 1498-1500, https://doi.org/10.1021/jf00008a026 . [all data]

Suárez, Duque, et al., 1991
Suárez, M.; Duque, C.; Wintoch, H.; Schreier, P., Glycosidically bound aroma compounds from the pulp and the peelings of lulo fruit (Solanum vestissimum D.), J. Agric. Food Chem., 1991, 39, 9, 1643-1645, https://doi.org/10.1021/jf00009a022 . [all data]

Frohlich and Schreier, 1990
Frohlich, O.; Schreier, P., Volatile Constituents of Loquat (Eriobotrya japonica Lindl.) Fruit, J. Food Sci., 1990, 55, 1, 176-180, https://doi.org/10.1111/j.1365-2621.1990.tb06046.x . [all data]

Fröhlich, Duque, et al., 1989
Fröhlich, O.; Duque, C.; Schreier, P., Volatile constituents of curuba (Passiflora mollissima) fruit, J. Agric. Food Chem., 1989, 37, 2, 421-425, https://doi.org/10.1021/jf00086a033 . [all data]

Schwab, Mahr, et al., 1989
Schwab, W.; Mahr, C.; Schreier, P., Studies on the enzymic hydrolysis of bound aroma components from Carica papaya fruit, J. Agric. Food Chem., 1989, 37, 4, 1009-1012, https://doi.org/10.1021/jf00088a042 . [all data]

Chen, Kuo, et al., 1986
Chen, C.-C.; Kuo, M.-C.; Liu, S.-E.; Wu, C.-M., Volatile components of salted and pickled prunes (Prunus mume Sieb. et Zucc.), J. Agric. Food Chem., 1986, 34, 1, 140-144, https://doi.org/10.1021/jf00067a038 . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Escudero, Campo, et al., 2007
Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V., Analytical Characterization of the Aroma of Five Premium Red Wines. Insights into the Role of Odor Families and the Concept of Fruitiness of Wines, J. Agric. Food Chem., 2007, 55, 11, 4501-4510, https://doi.org/10.1021/jf0636418 . [all data]

Romeo, Ziino, et al., 2007
Romeo, V.; Ziino, M.; Giuffrrida, D.; Condurso, C.; Verzera, A., Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC?MS, Food Chem., 2007, 101, 3, 1272-1278, https://doi.org/10.1016/j.foodchem.2005.12.029 . [all data]

Frauendorfer and Schieberle, 2006
Frauendorfer, F.; Schieberle, P., Identification of the key aroma compounds in Cocoa powder based on molecular sensoly correlations, J. Agr. Food Chem., 2006, 54, 15, 5521-5529, https://doi.org/10.1021/jf060728k . [all data]

Guillot, Peytavi, et al., 2006
Guillot, S.; Peytavi, L.; Bureau, S.; Boulanger, R.; Lepoutre, J.-P.; Crouzet, J.; Schorr-Galindo, S., Aroma characterization of various apricot varieties using headspace-solid phase microextraction combined with gas chromatography-mass spectrometry and gas chromatography-olfactometry, Food Chem., 2006, 96, 1, 147-155, https://doi.org/10.1016/j.foodchem.2005.04.016 . [all data]

Natali N., Chinnici F., et al., 2006
Natali N.; Chinnici F.; Riponi C., Characterization of volatiles in extracts from oak chips obtained by accelerated solvent extraction (ASE), J. Agric. Food Chem., 2006, 54, 21, 8190-8198, https://doi.org/10.1021/jf0614387 . [all data]

Campo, Ferreira, et al., 2005
Campo, E.; Ferreira, V.; Escudero, A.; Cacho, J., Prediction of the wine sensory properties related to grape variety from dynamic-headspace gas chromatography-olfactometry data, J. Agric. Food Chem., 2005, 53, 14, 5682-5690, https://doi.org/10.1021/jf047870a . [all data]

Fritsch and Schieberle, 2005
Fritsch, H.T.; Schieberle, P., Identification based on quantitative measurements and aroma recombination of the character impact odorants in a Bavarian Pilsner-type beer, J. Agric. Food Chem., 2005, 53, 19, 7544-7551, https://doi.org/10.1021/jf051167k . [all data]

Ranau, Kleeberg, et al., 2005
Ranau, R.; Kleeberg, K.K.; Schlegelmilch, M.; Streese, J.; Stegmann, R.; Steinhart, H., Analytical determination of the suitability of different processes for the treatment of odorous waste gas, Waste Management, 2005, 25, 9, 908-916, https://doi.org/10.1016/j.wasman.2005.07.004 . [all data]

Ranau and Steinhart, 2005
Ranau, R.; Steinhart, H., Identification and evaluation of volatile odor-active pollutants from different odor emission sources in the food industry, Eur. Food Res. Technol., 2005, 220, 2, 226-231, https://doi.org/10.1007/s00217-004-1073-4 . [all data]

Schuh and Schieberle, 2005
Schuh, C.; Schieberle, P., Characterization of ( E, E, Z)-2,4,6-Nonatrienal as a character impact aroma compound of oat flakes, J. Agric. Food Chem., 2005, 53, 22, 8699-8705, https://doi.org/10.1021/jf051601i . [all data]

Wang, Finn, et al., 2005
Wang, Y.; Finn, C.; Qian, M.C., Impact of Growing Environment on Chickasaw Blackberry ( Rubus L.) Aroma Evaluated by Gas Chromatography Olfactometry Dilution Analysis, J. Agric. Food Chem., 2005, 53, 9, 3563-3571, https://doi.org/10.1021/jf048102m . [all data]

Ferrari, Lablanquie, et al., 2004
Ferrari, G.; Lablanquie, O.; Cantagrel, R.; Ledauphin, J.; Payot, T.; Fournier, N.; Guichard, E., Determination of key odorant compounds in freshly distilled cognac using GC-O, GC-MS, and sensory evaluation, J. Agric. Food Chem., 2004, 52, 18, 5670-5676, https://doi.org/10.1021/jf049512d . [all data]

Klesk, Qian, et al., 2004
Klesk, K.; Qian, M.; Martin, R.R., Aroma extract dilution analysis of cv. meeker (Rubus idaeus L.) red raspberries from Oregon and Washington, J. Agric. Food Chem., 2004, 52, 16, 5155-5161, https://doi.org/10.1021/jf0498721 . [all data]

Verzera, Ziino, et al., 2004
Verzera, A.; Ziino, M.; Condurso, C.; Romeo, V.; Zappala, M., Solid-phase microextraction and gas chromatography-mass spectrometry for rapid characterisation of semi-hard cheeses, Anal. Bioanal. Chem., 2004, 380, 7-8, 930-936, https://doi.org/10.1007/s00216-004-2879-4 . [all data]

Alasalvar, Shahidi, et al., 2003
Alasalvar, C.; Shahidi, F.; Cadwallader, K.R., Comparison of natural and roasted Turkish Tombul hazelnut (Corylus avellana L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis, J. Agric. Food Chem., 2003, 51, 17, 5067-5072, https://doi.org/10.1021/jf0300846 . [all data]

Huynh-Ba, Matthey-Doret, et al., 2003
Huynh-Ba, T.; Matthey-Doret, W.; Fay, L.B.; Rhlid, R.B., Generation of thiols by biotransformation of cysteine-aldehyde conjugates with Baker's yeast, J. Agric. Food Chem., 2003, 51, 12, 3629-3635, https://doi.org/10.1021/jf026198j . [all data]

Engel and Schieberle, 2002
Engel, W.; Schieberle, P., Identification and quantitation of key aroma compounds formed in Maillard-type reactions of fructose with cysteamine or isothiaproline (1,3-thiazolidine-2-carboxylic acid), J. Agric. Food Chem., 2002, 50, 19, 5394-5399, https://doi.org/10.1021/jf0203186 . [all data]

Fuhrmann and Grosch, 2002
Fuhrmann, E.; Grosch, W., Character impact odorants of the apple cultivars Elstar and Cox Orange, Nahrung/Food, 2002, 46, 3, 187-193, https://doi.org/10.1002/1521-3803(20020501)46:3<187::AID-FOOD187>3.0.CO;2-5 . [all data]

Kirchhoff and Schieberle, 2002
Kirchhoff, E.; Schieberle, P., Quantitation of odor-active compounds in rye flour and rye sourdough using stable isotope dilution assays, J. Agric. Food Chem., 2002, 50, 19, 5378-5385, https://doi.org/10.1021/jf020236h . [all data]

Koprivnjak, Conte, et al., 2002
Koprivnjak, O.; Conte, L.; Totis, N., Influence of olive fruit storage in bags on oil quality and composition of volatile compounds, Food Technol. Biotechnol., 2002, 40, 2, 129-134. [all data]

Zehentbauer and Reineccius, 2002
Zehentbauer, G.; Reineccius, G.A., Determination of key aroma components of cheddar cheese using dynamic headspace dilution assay, Flavour Fragr. J., 2002, 17, 4, 300-305, https://doi.org/10.1002/ffj.1102 . [all data]

Kirchhoff and Schieberle, 2001
Kirchhoff, E.; Schieberle, P., Determination of key aroma compounds in the crumb of a three-stage sourdough rye bread by stable isotope dilution assays and sensory studies, J. Agric. Food Chem., 2001, 49, 9, 4304-4311, https://doi.org/10.1021/jf010376b . [all data]

Boulanger and Crouzet, 2000
Boulanger, R.; Crouzet, J., Free and bound flavour components of Amazonian fruits: 3-glycosidically bound components of cupuacu, Food Chem., 2000, 70, 4, 463-470, https://doi.org/10.1016/S0308-8146(00)00112-6 . [all data]

Munk, Munch, et al., 2000
Munk, S.; Munch, P.; Stahnke, L.; Adler-Nissen., J.; Schieberle, P., Primary odorants of laundry soiled with sweat/sebum: influence of lipase on the odor profile, Journal of Surfactants and Detergents, 2000, 3, 4, 505-515, https://doi.org/10.1007/s11743-000-0150-z . [all data]

Derail, Hofmann, et al., 1999
Derail, C.; Hofmann, T.; Schieberle, P., Differences in key odorants of handmade juice of yellow-flesh peaches (Prunus persica L.) induced by the workup procedure, J. Agric. Food Chem., 1999, 47, 11, 4742-4745, https://doi.org/10.1021/jf990459g . [all data]

Yang, Chyau, et al., 1998
Yang, M.-S.; Chyau, C.-C.; Horng, D.-T.; Yang, J.-S., Effects of Irradiation and Drying on Volatile Components of Fresh Shiitake edodes (Lentinus Sing), J. Sci. Food Agric., 1998, 76, 1, 72-76, https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<72::AID-JSFA921>3.0.CO;2-0 . [all data]

Kubícková and Grosch, 1997
Kubícková, J.; Grosch, W., Evaluation of potent odorants of camembert cheese by dilution and concentration techniques, Int. Dairy J., 1997, 7, 1, 65-70, https://doi.org/10.1016/S0958-6946(96)00044-1 . [all data]

Yasuhara, 1987
Yasuhara, A., Identification of Volatile Compounds in Poultry Manure by Gas Chromatography-Mass Spectrometry, J. Chromatogr., 1987, 387, 371-378, https://doi.org/10.1016/S0021-9673(01)94539-X . [all data]

Goeminne, Vandendriessche, et al., 2012
Goeminne, P.C.; Vandendriessche, T.; Van Eldere, J.; Nicolai, B.M.; Hertog, M.L.; Dupont, L.J., Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis, Respiratory Res., 2012, 13, 87, 1-9. [all data]

Cais-Sokolinska, Majcher, et al., 2011
Cais-Sokolinska, D.; Majcher, M.; Pikul, J.; Bielinska, S.; Czauderma, M.; Wojtowski, J., The effect of Camelia sativa cake diet supplementation on sensory and volatile profiles of ewe's milk, African J. Biotechnol., 2011, 10, 37, 7245-7252. [all data]

Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D., Volatile constituents of the giant pufball mushroom (Calvatia gigantea), Leffingwell Rep., 2011, 4, 1-17. [all data]

Majcher, Lawrowski, et al., 2010
Majcher, M.; Lawrowski, P.; Jelen, H., Comparison of original and adulterated oscypek cheese based on volatile and sensory profiles, Acta Sci. Pol. Technol. Aliment., 2010, 9, 3, 265-275. [all data]

Pino, Marquez, et al., 2010
Pino, J.A.; Marquez, E.; Quijano, C.E.; Castro, D., Volatile compounds in noni (Morinda citrifolia L.) at two ripening stages, Ciencia e Technologia de Alimentos, 2010, 30, 1, 183-187, https://doi.org/10.1590/S0101-20612010000100028 . [all data]

Mildner-Szkudlarz and Jelen, 2008
Mildner-Szkudlarz, S.; Jelen, H.H., The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil, Food Chem., 2008, 110, 3, 751-761, https://doi.org/10.1016/j.foodchem.2008.02.053 . [all data]

Pham, Schilling, et al., 2008
Pham, A.J.; Schilling, M.W.; Yoon, Y.; Kamadia, V.V.; Marshall, D.L., Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-Osme-GCO, and Stevens' power law exponents, J. Food. Sci., 2008, 73, 4, c268-c274, https://doi.org/10.1111/j.1750-3841.2008.00709.x . [all data]

Berdague, Tournayre, et al., 2007
Berdague, J.L.; Tournayre, P.; Cambou, S., Novel multi-gas chromatography?olfactometry device and software for the identification of odour-active compounds, J. Chromatogr. A, 2007, 1146, 1, 85-92, https://doi.org/10.1016/j.chroma.2006.12.102 . [all data]

Gogus, Ozel, et al., 2007
Gogus, F.; Ozel, M.Z.; Lewis, A.C., The Effect of Various Drying Techniques on Apricot Volatiles Analysed Using Direct Desorption-GC-TOF/MS, Talanta, 2007, 73, 2, 321-325, https://doi.org/10.1016/j.talanta.2007.03.048 . [all data]

Ramirez R. and Cava R., 2007
Ramirez R.; Cava R., Volatile profiles of dry-cured meat products from three different Iberian x Duroc genotypes, J. Agric. Food Chem., 2007, 55, 5, 1923-1931, https://doi.org/10.1021/jf062810l . [all data]

Fadel, Mageed, et al., 2006
Fadel, H.H.M.; Mageed, M.A.A.; Lotfy, S.N., Quality and flavour stability of coffee substitute prepared by extrusion of wheat germ and chicory roots, Amino Acids, 2006, https://doi.org/10.1007/s007260200008 . [all data]

Fadel, Mageed, et al., 2006, 2
Fadel, H.H.M.; Mageed, M.A.A.; Samad, A.K.M.E.A.; Lotfy, S.N., Cocoa substitute: Evaluation of sensory qualities and flavour stability, Eur. Food Res. Technol., 2006, 223, 1, 125-131, https://doi.org/10.1007/s00217-005-0162-3 . [all data]

Ozel, Gogus, et al., 2006
Ozel, M.Z.; Gogus, F.; Lewis, A.C., Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. using GCxGC-TOF/MS, Anal. Chim. Acta., 2006, 566, 2, 172-177, https://doi.org/10.1016/j.aca.2006.03.014 . [all data]

Krist, Stuebiger, et al., 2005
Krist, S.; Stuebiger, G.; Unterweger, H.; Bandion, F.; Buchbauer, G., Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaver somniferum L.), J. Agric. Food Chem., 2005, 53, 21, 8310-8316, https://doi.org/10.1021/jf0580869 . [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Ramírez, Estévez, et al., 2004
Ramírez, M.R.; Estévez, M.; Morcuende, D.; Cava, R., Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS, J. Agric. Food Chem., 2004, 52, 25, 7637-7643, https://doi.org/10.1021/jf049207s . [all data]

Mildner-Szkudlarz, Jelen, et al., 2003
Mildner-Szkudlarz, S.; Jelen, H.H.; Zawirska-Wojtasiak, R.; Wasowicz, E., Application of headspace - solid phase microextraction and multivariate analysis for plant oils differentiation, Food Chem., 2003, 83, 4, 515-522, https://doi.org/10.1016/S0308-8146(03)00147-X . [all data]

Pino, Marbot, et al., 2003
Pino, J.A.; Marbot, R.; Fuentes, V., Characterization of volatiles in Bullock's heart (Annona reticulata L.) fruit cultivars from Cuba, J. Agric. Food Chem., 2003, 51, 13, 3836-3839, https://doi.org/10.1021/jf020733y . [all data]

Vichi, Castellote, et al., 2003
Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E., Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection, J. Chromatogr. A, 2003, 983, 1-2, 19-33, https://doi.org/10.1016/S0021-9673(02)01691-6 . [all data]

Vichi, Pizzale, et al., 2003
Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E., Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin olive oils from two distinct geographical areas of Northern Italy, J. Agric. Food Chem., 2003, 51, 22, 6572-6577, https://doi.org/10.1021/jf030269c . [all data]

Jirovetz, Buchbauer, et al., 2002
Jirovetz, L.; Buchbauer, G.; Ngassoum, M.B.; Geissler, M., Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction-gas chromatography, solid-phase microextraction-gas chromatography-mass spectrometry and olfactometry, J. Chromatogr. A, 2002, 976, 1-2, 265-275, https://doi.org/10.1016/S0021-9673(02)00376-X . [all data]

Jirovetz, Smith, et al., 2002
Jirovetz, L.; Smith, D.; Buchbauer, G., Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry, J. Agric. Food Chem., 2002, 50, 16, 4643-4646, https://doi.org/10.1021/jf020129n . [all data]

Joffraud, Leroi, et al., 2001
Joffraud, J.J.; Leroi, F.; Roy, C.; Berdagué, J.L., Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon, Int. J. Food Microbiol., 2001, 66, 3, 175-184, https://doi.org/10.1016/S0168-1605(00)00532-8 . [all data]

Kelling, 2001
Kelling, F.J., Olfaction in houseflies: morphology and electrophysiology. Chapter 7. Chemical and electrophysiological analysis of components, present in natural products that attract houseflies, Dissertation, University of Groningen, The Netherlands, 2001. [all data]

Suriyaphan, Drake, et al., 2001
Suriyaphan, O.; Drake, M.; Chen, X.Q.; Cadwallader, K.R., Characteristic aroma components of British farmhouse cheddar cheese, J. Agric. Food Chem., 2001, 49, 3, 1382-1387, https://doi.org/10.1021/jf001121l . [all data]

Kotseridis and Baumes, 2000
Kotseridis, Y.; Baumes, R., Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine, J. Agric. Food Chem., 2000, 48, 2, 400-406, https://doi.org/10.1021/jf990565i . [all data]

Tamura, Boonbumrung, et al., 2000
Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W., Volatile components of the essential oil in the pulp of four yellow mangoes (Mangifera indica L.) in Thailand, Food Sci. Technol. Res., 2000, 6, 1, 68-73, https://doi.org/10.3136/fstr.6.68 . [all data]

Baraldi, Rapparini, et al., 1999
Baraldi, R.; Rapparini, F.; Rossi, F.; Latella, A.; Ciccioli, P., Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees, Phys. Chem. Earth, 1999, 24, 6, 729-732, https://doi.org/10.1016/S1464-1909(99)00073-8 . [all data]

Ding, Deng, et al., 1998
Ding, Q.; Deng, Y.; Sun, Y.; Huagn, A.; Sun, Y., Analysis of volatile components in ox feces by capillary gas chromatography, Beijing Daxue Xuebao Ziran Kexueban, 1998, 34, 6, 720-725. [all data]

Tai and Ho, 1998
Tai, C.-Y.; Ho, C.-T., Influence of glutathione oxidation and pH on thermal formation of Maillard-type volatile compounds, J. Agric. Food Chem., 1998, 46, 6, 2260-2265, https://doi.org/10.1021/jf971111t . [all data]

Kondjoyan, Viallon, et al., 1997
Kondjoyan, N.; Viallon, C.; Berdagué, J.L.; Daridan, D.; Simon, M.-N.; Legault, C., Analyse comparative de la fraction volatile de jambons secs de porcs Gascon et Large-White x Landrace Français, J. Rech. C.N.R.S., 1997, 29, 405-410, retrieved from http://www.rennes.inra.fr/srp/jrp/1997/97txtQualite/Q9704.pdf. [all data]

King, Matthews, et al., 1995
King, M.-F.; Matthews, M.A.; Rule, D.C.; Field, R.A., Effect of beef packaging method on volatile compounds developed by oven roasting or microwave cooking, J. Agric. Food Chem., 1995, 43, 3, 773-778, https://doi.org/10.1021/jf00051a039 . [all data]

Yu, Wu, et al., 1994
Yu, T.-H.; Wu, C.-M.; Ho, C.-T., Meat-like flavor generated from thermal interactions of glucose and alliin or deoxyalliin, J. Agric. Food Chem., 1994, 42, 4, 1005-1009, https://doi.org/10.1021/jf00040a032 . [all data]

Yu, Wu, et al., 1994, 2
Yu, T.-H.; Wu, C.-M.; Rosen, R.T.; Hartman, T.G.; Ho, C.-T., Volatile compounds in generated from thermal degradation of alliin and deoxyalliin in an aqueous solution, J. Agric. Food Chem., 1994, 42, 1, 146-153, https://doi.org/10.1021/jf00037a026 . [all data]

Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A., Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation, J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205 . [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

Mondello, 2012
Mondello, L., HS-SPME-GCxGC-MS analysis of Yerba Mate (Ilex paraguariensis) in Shimadzu GC-GC application compendium of comprehensive 2D GC, Vol. 1-5, Shimadzu Corp., 2012, 1-29. [all data]

Grzeszczuk, Wesolowska, et al., 2011
Grzeszczuk, M.; Wesolowska, A.; Jadczak, D.; Jakubowska, B., Nutritional value of Chili edible flowers, Acta Sci. Pol. Hortorum Cultus, 2011, 10, 2, 85-94. [all data]

Karimi, Farmany, et al., 2011
Karimi, H.; Farmany, A.; Noorizadeh, H., Prediction of linear retention index of Teucrium chamaedrys volatiles in GCxGC-TOF/MS by linear model, World Appl. Sci. J., 2011, 15, 8, 1086-1088. [all data]

San-Juan, Petka, et al., 2010
San-Juan, F.; Petka, J.; Cacho, J.; Ferreira, V.; Escudero, A., Producing headspace extracts for the gas chromatography - olphactometric evaluation of wine aroma, Food Chemistry, 2010, 123, 1, 188-195, https://doi.org/10.1016/j.foodchem.2010.03.129 . [all data]

Christlbauer and Schieberle, 2009
Christlbauer, M.; Schieberle, P., Characterization of the key aroma compounds in beef and pork vegetable gravies a la chef by application of the aroma extract dilution analysis, J. Agric. Food Chem., 2009, 57, 19, 9114-9112, https://doi.org/10.1021/jf9023189 . [all data]

Mebazaa, Mahmoudi, et al., 2009
Mebazaa, R.; Mahmoudi, A.; Fouchet, M.; Dos Santos, M.; Kamissoko, F.; Nafti, A.; Ben Cheikh, R.; Rega, B.; Camel, V., Characterization of volatile compounds in Tunisian fenugreek seeds, Food Chem., 2009, 115, 4, 1326-1336, https://doi.org/10.1016/j.foodchem.2009.01.066 . [all data]

Pugliese, Sirtori, et al., 2009
Pugliese, C.; Sirtori, F.; Ruiz, J.; Martin, D.; Parenti, S.; Franci, O., Effect of pasture on chestnut or acorn on fatty acid composition and aromatic profile of fat of China Senece dry-cured ham, Gracas y Aceites, 2009, 60, 3, 271-276, https://doi.org/10.3989/gya.130208 . [all data]

Rotsatschakul, Visesanguan, et al., 2009
Rotsatschakul, P.; Visesanguan, W.; Smitinont, T.; Chaiseri, S., Changes in volatile compounds during fermentation of nham (Thai fermented sausage), Int. Food Res. J., 2009, 16, 391-414. [all data]

Buettner, 2007
Buettner, A., A selective and sensitive approach to characterize odour-active and volatile constituents in small-scale human milk samples, Flavour Fragr. J., 2007, 22, 6, 465-473, https://doi.org/10.1002/ffj.1822 . [all data]

Greger and Schieberle, 2007
Greger, V.; Schieberle, P., Characterization of the Key Aroma Compounds in Apricots (Prunus armeniaca) by Application of the Molecular Sensory Science Concept, J. Agric. Food Chem., 2007, 55, 13, 5221-5228, https://doi.org/10.1021/jf0705015 . [all data]

Lasekan, Buettner, et al., 2007
Lasekan, O.; Buettner, A.; Christlbauer, M., Investigation of important odorants of palm wine (Elaeis guineensis), Food Chem., 2007, 105, 1, 15-23, https://doi.org/10.1016/j.foodchem.2006.12.052 . [all data]

Liu, Xu, et al., 2007
Liu, Y.; Xu, X.-L.; Zhou, G.-H., Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques, Int. J. Food Sci. Technol., 2007, 42, 5, 543-550, https://doi.org/10.1111/j.1365-2621.2006.01264.x . [all data]

Pellicer, 2007
Pellicer, L.V., Comparison of Sensory Characteristics, and Instrumental flavor Compounds Analysis of Milk Produced by Three Proction Methods. A Thesis presented to the Faculty of the Graduate School University of Missouri-Columbia, 2007, retrieved from http://edit.missouri,edu/Winter2007/Theses/ValverdePellicerL-053107-T6722/research.pdf. [all data]

Helsper, Bücking, et al., 2006
Helsper, J.P.F.G.; Bücking, M.; Muresan, S.; Blaas, J.; Wietsma, W.A., Identification of the volatile component(s) causing the characteristic foxy odor in various cultivars of Fritillaria imperialis L. (Liliaceae), J. Agric. Food Chem., 2006, 54, 14, 5087-5091, https://doi.org/10.1021/jf0605594 . [all data]

Duflos, Moine, et al., 2005
Duflos, G.; Moine, F.; Coin, V.M.; Malle, P., Determination of volatile compounds in whiting (Merlangius merlangus) using headspace-solid-phase microextraction-gas chromatography-mass spectrometry, J. Chromatogr. Sci., 2005, 43, 6, 304-312, https://doi.org/10.1093/chromsci/43.6.304 . [all data]

Himanen, Vuorinen, et al., 2005
Himanen, S.; Vuorinen, T.; Tuovinen, T.; Holopainen, J.K., Effects of Cyclamen Mite (Phytonemus pallidus) and Leaf Beetle (Galerucella tenella) Damage on Volatile Emission from Strawberry (Fragaria ´ ananassa Duch.) Plants and Orientation of Predatory Mites (Neoseiulus cucumeris, N. californicus, and Euseius finlandicus), J. Agric. Food Chem., 2005, 53, 8624-8630. [all data]

Buettner and Welle, 2004
Buettner, A.; Welle, F., Intra-oral detection of potent odorants using a modified stir-bar sorptive extraction system in combination with HRGC-O, known as the buccal odour screening system (BOSS), Flavour Fragr. J., 2004, 19, 6, 505-514, https://doi.org/10.1002/ffj.1473 . [all data]

Buettner, 2004
Buettner, A., Investigation of potent odorants and afterodor development in two chardonnay wines using the Buccal Odor Screening System (BOSS), J. Agric. Food Chem., 2004, 52, 8, 2339-2346, https://doi.org/10.1021/jf035322b . [all data]

Garcia-Estaban, Ansorena, et al., 2004
Garcia-Estaban, M.; Ansorena, D.; Astiasaran, I.; Martin, D.; Ruiz, J., Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham, J. Sci. Food Agric., 2004, 84, 11, 1364-1370, https://doi.org/10.1002/jsfa.1826 . [all data]

Garcia-Estaban, Ansorena, et al., 2004, 2
Garcia-Estaban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J., Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME), Talanta, 2004, 64, 2, 458-466, https://doi.org/10.1016/j.talanta.2004.03.007 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Poligne, Collignan, et al., 2002
Poligne, I.; Collignan, A.; Trystram, G., Effects of salting, drying, cooking, and smoking operations on volatile compound formation and collor patterns in pork, Food Eng. Physical Properties, 2002, 67, 8, 2976-2986. [all data]

Dittmann and Nitz, 2000
Dittmann, B.; Nitz, S., Strategies for the development of reliable QArQC methods when working with mass spectrometry-based chemosensory systems, Sens. Actuators B, 2000, 69, 3, 253-257, https://doi.org/10.1016/S0925-4005(00)00504-9 . [all data]

Timón, Ventanas, et al., 1998
Timón, M.L.; Ventanas, J.; Martín, L.; Tejeda, J.F.; García, C., Volatile compounds in supercritical carbon dioxide extracts of Iberian ham, J. Agric. Food Chem., 1998, 46, 12, 5143-5150, https://doi.org/10.1021/jf980652v . [all data]

Mateo, Aguirrezábal, et al., 1997
Mateo, J.; Aguirrezábal, M.; Domínguez, C.; Zumalacárregui, J.M., Volatile compounds in Spanish paprika, J. Food Comp. Anal., 1997, 10, 3, 225-232, https://doi.org/10.1006/jfca.1997.0535 . [all data]

Schermann and Schieberle, 1997
Schermann, P.; Schieberle, P., Evaluation of key odorants in milk chocolate and cocoa mass by aroma extract dilution analyses, J. Agric. Food Chem., 1997, 45, 3, 867-872, https://doi.org/10.1021/jf960670h . [all data]

Mateo and Zumalacárregui, 1996
Mateo, J.; Zumalacárregui, J.M., Volatile compounds in chorizo and their changes during ripening, Meat Sci., 1996, 44, 4, 255-273, https://doi.org/10.1016/S0309-1740(96)00028-9 . [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M., Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry, J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F . [all data]

Um, Bailey, et al., 1992
Um, K.W.; Bailey, M.E.; Clarke, A.D.; Chao, R.R., Concentration and identification of volatile compounds from heated beef fat using supercritical CO2 extraction-gas liquid chromatography/mass spectrometry, J. Agric. Food Chem., 1992, 40, 9, 1641-1646, https://doi.org/10.1021/jf00021a033 . [all data]

Suzuki and Bailey, 1985
Suzuki, J.; Bailey, M.E., Direct sampling capillary GLC analysis of flavor volatiles from ovine fat, J. Agric. Food Chem., 1985, 33, 3, 343-347, https://doi.org/10.1021/jf00063a006 . [all data]

Wanakhachornkrai and Lertsiri, 9999
Wanakhachornkrai, P.; Lertsiri, S., Comparison of determination method for volatile compounds in Thai soy sauce, Analytical, Nutritional and Clinical Methods, 9999, 1-11. [all data]

Onishi, Inoue, et al., 2011
Onishi, M.; Inoue, M.; Araki, T.; Iwabuchi, H.; Sagara, Y., Odorant transfer characteristics of white bread during baking, Biosci Biotechnol. Biochem., 2011, 75, 2, 261-267, https://doi.org/10.1271/bbb.100572 . [all data]

Osorio, Carriazo, et al., 2011
Osorio, C.; Carriazo, J.G.; Barbosa, H., Thermal and structural study of Guava (Psidium guajava L.) powders obtained by two dehydration methods, Quim. Nova, 2011, 34, 4, 636-640, https://doi.org/10.1590/S0100-40422011000400016 . [all data]

Piyachaiseth, Jirapakkul, et al., 2011
Piyachaiseth, T.; Jirapakkul, W.; Chaiseri, S., Aroma compounds of flash-fried rice, Kasetsart J. (Nat. Sci.), 2011, 45, 717-729. [all data]

Kumazawa, Sakai, et al., 2010
Kumazawa, K.; Sakai, N.; Amma, H.; Sakamoto, S.; Kodama, M.; Wada, Y.; Nishimura, O., Identification and formation of volatile components responsible for the characteristic aroma of Mat Rush (Igusa), Biosci. Biotechnol. Biochem., 2010, 74, 6, 1231-1236, https://doi.org/10.1271/bbb.100053 . [all data]

Miyazawa, Fujita, et al., 2010
Miyazawa, N.; Fujita, A.; Kubota, K., Aroma character impact compounds in Kinokuni Mandarin Orange (Citrus kinikuni) compared with Satsuma Mandarin Orange, Biosci. Biotechnol. Biochem., 2010, 74, 4, 835-842, https://doi.org/10.1271/bbb.90937 . [all data]

Moon and Shibamoto, 2010
Moon, J.-K.; Shibamoto, T., Formation of volatile chemicals from thermal degradation of less volatile cofee components: quinic acid, caffeic acid, and chlorogenic acid, J. Agric. Food Chem., 2010, 58, 9, 5465-5470, https://doi.org/10.1021/jf1005148 . [all data]

Laselan, Buettner, et al., 2009
Laselan, P.; Buettner, A.; Christlbauer, M., Investigation of the retronasal perseption of palm wine (Elaeis guineensis) aroma by application of sensory analysis and exhaled odorant measurement (EXOM), African J. of Food, Agriculture, Nutrition and development, 2009, 9, 2, 793-813. [all data]

Mo, Fan, et al., 2009
Mo, X.; Fan, W.; Xu, Y., Changes in volatile compounds of Chinese rice wine wheat qu during fermentation and storage, J. of the Institute of Brewing, 2009, 115, 4, 300-307, https://doi.org/10.1002/j.2050-0416.2009.tb00385.x . [all data]

Moon and Shibamoto, 2009
Moon, J.-K.; Shibamoto, T., Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans, J. Agric. Food Chem., 2009, 57, 13, 5823-5831, https://doi.org/10.1021/jf901136e . [all data]

Zhao, Xu, et al., 2009
Zhao, Y.; Xu, Y.; Li, J.; Fan, W.; Jiang, W., Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry, J. Food. Sci., 2009, 74, 2, c90-c99, https://doi.org/10.1111/j.1750-3841.2008.01029.x . [all data]

Caldeira, de Sousa, et al., 2008
Caldeira, I.; de Sousa, R.B.; Balchior, A.P.; Climaco, M.C., A sensory and chemical approach to the aroma of wooden aged Lourinha wine brandy, Ciencia Tec. Vitiv., 2008, 23, 2, 97-110. [all data]

Guo, Wu, et al., 2008
Guo, L.; Wu, J.-Z.; Han, T.; Cao, T.; Rahman, K.; Qin, L.-P., Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme, Molecules, 2008, 13, 9, 2114-2125, https://doi.org/10.3390/molecules13092114 . [all data]

Soria, Sanz, et al., 2008
Soria, A.C.; Sanz, J.; Martinez-Castro, I., SPME followed by GC-MS: a powerful technique for qualitative analysis of honey volatiles, Eur. Food Res. Technol., 2008, 1-12. [all data]

Thakeow, Angeli, et al., 2008
Thakeow, P.; Angeli, S.; Weissbecker, B.; Schutz, S., Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa, Chem. Senses, 2008, 33, 4, 379-387, https://doi.org/10.1093/chemse/bjn005 . [all data]

Chen, Chyau, et al., 2007
Chen, C.-C.; Chyau, C.-C.; Hseu, TY.-H., Production of a COX-2 inhibitor, 2,4,5-trimethoxybenzaldehyde, with submerged cultured Antrodia camphorata, Lett. Appl. Microbiol., 2007, 44, 4, 387-392, https://doi.org/10.1111/j.1472-765X.2006.02087.x . [all data]

Cros, Vandanjon, et al., 2007
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P., Processing of Industrial Mussel Cooking Juices by Reverse Osmotis: Pollution Abatement and Aromas Recovery, 2007, retrieved from title of Internet file: [imstec064]. [all data]

Dury-Brun, Fournier, et al., 2007
Dury-Brun, C.; Fournier, N.; Pernin, K.; Guichard, E.; Voilley, A., A new approach to studying sponge cake aroma after storage in treated paper and plastic packaging by direct gas chromatography?olfactometry (D-GC-O), Flavour Fragr. J., 2007, 22, 4, 255-264, https://doi.org/10.1002/ffj.1788 . [all data]

Nebesny, Budryn, et al., 2007
Nebesny, E.; Budryn, G.; Kula, J.; Majda, T., The effect of roasting method on headspace composition of robusta coffee bean aroma, Eur. Food Res. Technol., 2007, 225, 1, 9-19, https://doi.org/10.1007/s00217-006-0375-0 . [all data]

Povolo, Contarini, et al., 2007
Povolo, M.; Contarini, G.; Mele, M.; Secchiari, P., Study on the influence of pasture on volatile fraction of Ewes' dairy products by solid-phase microextraction and gas chromatography-mass spectrometry, J. Dairy Sci., 2007, 90, 2, 556-569, https://doi.org/10.3168/jds.S0022-0302(07)71539-4 . [all data]

Prososki, Etzel, et al., 2007
Prososki, R.A.; Etzel, M.R.; Rankin, S.A., Solvent type affects the number, distribution, and relative quantities of volatile compounds found in sweet whey powder, J. Dairy Sci., 2007, 90, 2, 523-531, https://doi.org/10.3168/jds.S0022-0302(07)71535-7 . [all data]

Xu, Fan, et al., 2007
Xu, Y.; Fan, W.; Qian, M.C., Characterization of Aroma Compounds in Apple Cider Using Solvent-Assisted Flavor Evaporation and Headspace Solid-Phase Microextraction, J. Agric. Food Chem., 2007, 55, 8, 3051-3057, https://doi.org/10.1021/jf0631732 . [all data]

Cai, Lin, et al., 2006
Cai, J.; Lin, P.; Zhu, X.; Su, Q., Comparative analysis of clary sage (S. sclarea L.) oil volatiles by GC-FTIR and GC-MS, Food Chem., 2006, 99, 2, 401-407, https://doi.org/10.1016/j.foodchem.2005.07.041 . [all data]

Fan and Qian, 2006
Fan, W.; Qian, M.C., Characterization of Aroma Compounds of Chinese Wuliangye and Jiannanchun Liquors by Aroma Extract Dilution Analysis, J. Agric. Food Chem., 2006, 54, 7, 2695-2704, https://doi.org/10.1021/jf052635t . [all data]

Fan and Qian, 2006, 2
Fan, W.; Qian, M.C., Identification of aroma compounds in Chinese 'Yanghe Daqu' liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry, Flavour Fragr. J., 2006, 21, 2, 333-342, https://doi.org/10.1002/ffj.1621 . [all data]

Komes, Ulrich, et al., 2006
Komes, D.; Ulrich, D.; Lovric, T., Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje, Eur. Food Res. Technol., 2006, 222, 1-2, 1-7, https://doi.org/10.1007/s00217-005-0094-y . [all data]

Lan Phi N.T., Nishiyama C., et al., 2006
Lan Phi N.T.; Nishiyama C.; Choi H.-S.; Sawamura M., Evaluation of aroma characteristic compounds of Citrus natsudaidai Hayata (Natsudaidai) cold-pressed peel oil, Biosci. Biotechnol. Biochem., 2006, 70, 8, 1832-1838, https://doi.org/10.1271/bbb.50705 . [all data]

Perestrelo, Fernandes, et al., 2006
Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Camara, J.S., Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds, Anal. Chim. Acta., 2006, 563, 1-2, 154-164, https://doi.org/10.1016/j.aca.2005.10.023 . [all data]

Wierda R.L., Fletcher G., et al., 2006
Wierda R.L.; Fletcher G.; Xu L.; Dufour J.P., Analysis of volatile compounds as spoilage indicators in fresh king salmon (Oncorhynchus tshawytscha) during storage using SPME-GC-MS, J. Agric. Food Chem., 2006, 54, 22, 8480-8490, https://doi.org/10.1021/jf061377c . [all data]

Fan and Qian, 2005
Fan, W.; Qian, M.C., Headspace Solid Phase Microextraction and Gas Chromatography-Olfactometry Dilution Analysis of Young and Aged Chinese Yanghe Daqu Liquors, J. Agric. Food Chem., 2005, 53, 20, 7931-7938, https://doi.org/10.1021/jf051011k . [all data]

de la Fuente, Martinez-Castro, et al., 2005
de la Fuente, E.; Martinez-Castro, I.; Sanz, J., Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography-mass spectrometry, J. Sep. Sci., 2005, 28, 9-10, 1093-1100, https://doi.org/10.1002/jssc.200500018 . [all data]

Jirovetz, Buchbauer, et al., 2005
Jirovetz, L.; Buchbauer, G.; Stoyanova, A.; Balinova, A.; Guangjiun, Z.; Xihan, M., Solid phase microextraction/gas chromatographic and olfactory analysis of the scent and fixative properties of the essential oil of Rosa damascena L. from China, Flavour Fragr. J., 2005, 20, 1, 7-12, https://doi.org/10.1002/ffj.1375 . [all data]

Nogueira, Lubachevsky, et al., 2005
Nogueira, M.C.L.; Lubachevsky, G.; Rankin, S.A., A study of the volatile composition of Minas cheese, Lebensm. Wiss. Technol., 2005, 38, 5, 555-563, https://doi.org/10.1016/j.lwt.2004.07.019 . [all data]

Qian and Wang, 2005
Qian, M.C.; Wang, Y., Seasonal Variations of Volatile Composition and Odor Activity Value of Marion (Rubus spp. hyb) and Thornless Evergreen (R.laciniatus L.) Blackberries, J. Food. Sci., 2005, 70, 1, c13-c20, https://doi.org/10.1111/j.1365-2621.2005.tb09013.x . [all data]

Yao, Guo, et al., 2005
Yao, S.-S.; Guo, W.-F.; Lu, Y.; Jiang, Y.-X., Flavor Characteristics of Lapsang Souchong and Smoked Lapsang Souchong, a Special Chinese Black Tea with Pine Smoking Process, J. Agric. Food Chem., 2005, 53, 22, 8688-8693, https://doi.org/10.1021/jf058059i . [all data]

Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H., Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system, J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p . [all data]

Culleré, Escudero, et al., 2004
Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V., Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium auality Spanish aged red wines, J. Agric. Food Chem., 2004, 52, 6, 1653-1660, https://doi.org/10.1021/jf0350820 . [all data]

Ishikawa, Ito, et al., 2004
Ishikawa, M.; Ito, O.; Ishizaki, S.; Kurobayashi, Y.; Fujita, A., Solid-phase aroma concentrate extraction (SPACE ): a new headspace technique for more sensitive analysis of volatiles, Flavour Fragr. J., 2004, 19, 3, 183-187, https://doi.org/10.1002/ffj.1322 . [all data]

Jiang and Kubota, 2004
Jiang, L.; Kubota, K., Differences in the volatile components and their odor characteristics of green and ripe fruits and dried pericarp of Japanese pepper (Xanthoxylum piperitum DC.), J. Agric. Food Chem., 2004, 52, 13, 4197-4203, https://doi.org/10.1021/jf030663a . [all data]

López, Ezpeleta, et al., 2004
López, R.; Ezpeleta, E.; Sánchez, I.; Cacho, J.; Ferreira, V., Analysis of the aroma intensities of volatile compounds released from mild acid hydrolysates of odourless precursors extracted from Tempranillo and Grenache grapes using gas chromatography-olfactometry, Food Chem., 2004, 88, 1, 95-103, https://doi.org/10.1016/j.foodchem.2004.01.025 . [all data]

López, Guzmán, et al., 2004
López, M.G.; Guzmán, G.R.; Dorantes, A.L., Solid-phase microextraction and gas chromatography-mass spectrometry of volatile compounds from avocado puree after microwave processing, J. Chromatogr. A, 2004, 1036, 1, 87-90, https://doi.org/10.1016/j.chroma.2004.03.020 . [all data]

Soria, Gonzalez, et al., 2004
Soria, A.C.; Gonzalez, M.; de Lorenzo, C.; Martinez-Castro, I.; Sanza, J., Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data, Food Chem., 2004, 85, 1, 121-130, https://doi.org/10.1016/j.foodchem.2003.06.012 . [all data]

Yanagimoto, Ochi, et al., 2004
Yanagimoto, K.; Ochi, H.; Lee, K.-G.; Shibamoto, T., Antioxidative activities of fractions obtained from brewed coffee, J. Agric. Food Chem., 2004, 52, 3, 592-596, https://doi.org/10.1021/jf030317t . [all data]

Alves and Franco, 2003
Alves, G.L.; Franco, M.R.B., Headspace gas chromatography-mass spectrometry of volatile compounds in murici (Byrsonima crassifolia L. Rich), J. Chromatogr. A, 2003, 985, 1-2, 297-301, https://doi.org/10.1016/S0021-9673(02)01398-5 . [all data]

Cros, Vandanjon, et al., 2003, 2
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P., IMSTEC'03 Conference Proceedings, Processing of industrial mussel cooking juices by reverse osmosis: pollution abatement and aromas recovery, Universoty of New South Wales, Sydney, Australia, 2003, 6. [all data]

Dregus and Engel, 2003
Dregus, M.; Engel, K.-H., Volatile constituents of uncooked Rhubarb (Rheum rhabarbarum L.) stalks, J. Agric. Food Chem., 2003, 51, 22, 6530-6536, https://doi.org/10.1021/jf030399l . [all data]

Kumazawa and Masuda, 2003
Kumazawa, K.; Masuda, H., Investigation of the change in the flavor of a coffee drink during heat processing, J. Agric. Food Chem., 2003, 51, 9, 2674-2678, https://doi.org/10.1021/jf021025f . [all data]

Lee and Noble, 2003
Lee, S.-J.; Noble, A.C., Characterization of odor-active compounds in Californian Chardonnay wines using GC-olfactometry and GC-mass spectrometry, J. Agric. Food Chem., 2003, 51, 27, 8036-8044, https://doi.org/10.1021/jf034747v . [all data]

Lin, Cai, et al., 2003
Lin, P.; Cai, J.; Li, J.; Sang, W.; Su, Q., Constituents of the essential oil of Hemerocallis flava day lily, Flavour Fragr. J., 2003, 18, 6, 539-541, https://doi.org/10.1002/ffj.1264 . [all data]

López, Ortín, et al., 2003
López, R.; Ortín, N.; Pérez-Trujillo, J.P.; Cacho, J.; Ferreira, V., Impact odorants of different young white wines from the Canary islands, J. Agric. Food Chem., 2003, 51, 11, 3419-3425, https://doi.org/10.1021/jf026045w . [all data]

Miyazawa and Okuno, 2003
Miyazawa, M.; Okuno, Y., Volatile components from the roots of Scrophularia ningpoensis Hemsl., Flavour Fragr. J., 2003, 18, 5, 398-400, https://doi.org/10.1002/ffj.1232 . [all data]

Suleimenov, Atazharova, et al., 2003
Suleimenov, E.M.; Atazharova, G.A.; Demirchi, B.; Baser, K.H.C.; Adekenov, S.M., Essential oil composition of Artemisia Lercheana and A. Sieversiana of Kazakhstan flora in Recent problems of development of new medicines of natural origin, Proceedings of symposium, St.Petersburg - Pushkin, 2003, 382-385. [all data]

Tanaka, Yamauchi, et al., 2003
Tanaka, T.; Yamauchi, T.; Katsumata, R.; Kiuchi, K., Comparison of volatile components in commercial Itohiki-Natto by solid phase microextraction and gas chromatography, Nippon Shokuhin Kagaku Kogaku Kaishi, 2003, 50, 6, 278-285, https://doi.org/10.3136/nskkk.50.278 . [all data]

Wanakhachornkrai and Lertsiri, 2003
Wanakhachornkrai, P.; Lertsiri, S., Analytical, nutritional, and clinical methods. Comparison of determination method for volatile compounds in Thai soy sauce, Food Chem., 2003, 83, 4, 619-629, https://doi.org/10.1016/S0308-8146(03)00256-5 . [all data]

Czerny and Schieberle, 2002
Czerny, M.; Schieberle, P., Important aroma compounds in freshly ground wholemeal and white wheat flour-identification and quantitative changes during sourdough fermentation, J. Agric. Food Chem., 2002, 50, 23, 6835-6840, https://doi.org/10.1021/jf020638p . [all data]

Darriet, Pons, et al., 2002
Darriet, P.; Pons, M.; Henry, R.; Dumont, O.; Findeling, V.; Cartolaro, P.; Calonnec, A.; Dubourdieu, D., Impact odorants contributing to the fungus type aroma from grape berries contaminated by powdery mildew (Uncinula necator); incidence of enzymatic activities of the yeast Saccharomyces cerevisiae, J. Agric. Food Chem., 2002, 50, 11, 3277-3282, https://doi.org/10.1021/jf011527d . [all data]

Ferreira, Ortín, et al., 2002
Ferreira, V.; Ortín, N.; Escudero, A.; López, R.; Cacho, J., Chemical characterization of the aroma of grenache Rosé wines: aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies, J. Agric. Food Chem., 2002, 50, 14, 4048-4054, https://doi.org/10.1021/jf0115645 . [all data]

Fu, Yoon, et al., 2002
Fu, S.-G.; Yoon, Y.; Basemore, R., Aroma-actie components in fermented bamboo shoots, J. Agric. Food Chem., 2002, 50, 3, 549-554, https://doi.org/10.1021/jf010883t . [all data]

Galindo-Cuspinera, Lubran, et al., 2002
Galindo-Cuspinera, V.; Lubran, M.B.; Rankin, S.A., Comparison of volatile compounds in water- and oil-soluble annatto (Bixa orellana L.) extracts, J. Agric. Food Chem., 2002, 50, 7, 2010-2015, https://doi.org/10.1021/jf011325h . [all data]

Lecanu, Ducruet, et al., 2002
Lecanu, L.; Ducruet, V.; Jouquand, C.; Gratadoux, J.J.; Feigenbaum, A., Optimization of headspace solid-phase microextraction (SPME) for the odor analysis of surface-ripened cheese, J. Agric. Food Chem., 2002, 50, 13, 3810-3817, https://doi.org/10.1021/jf0117107 . [all data]

Miyazawa, Maehara, et al., 2002
Miyazawa, M.; Maehara, T.; Kurose, K., Composition of the essential oil from the leaves of Eruca sativa, Flavour Fragr. J., 2002, 17, 3, 187-190, https://doi.org/10.1002/ffj.1079 . [all data]

Osorio, Duque, et al., 2002
Osorio, C.; Duque, C.; Suarez, M.; Salamanca, L.E.; Uruena, F., Free, glycosidically bound, and phosphate bound flavor constituents of badea (Passiflora quadrangularis) fruit pulp, J. Sep. Sci., 2002, 25, 3, 147-154, https://doi.org/10.1002/1615-9314(20020201)25:3<147::AID-JSSC147>3.0.CO;2-G . [all data]

Qian and Reineccius, 2002
Qian, M.; Reineccius, G., Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry, J. Dairy Sci., 2002, 85, 6, 1362-1369, https://doi.org/10.3168/jds.S0022-0302(02)74202-1 . [all data]

Sanz, Maeztu, et al., 2002
Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C., Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar, J. Sci. Food Agric., 2002, 82, 8, 840-847, https://doi.org/10.1002/jsfa.1110 . [all data]

Suhardi, Suzuki, et al., 2002
Suhardi, S.; Suzuki, M.; Yoshida, K.; Muto, T.; Fujita, A.; Watanbe, N., Changes in the volatile compounds and in the chemical and physical properties of snake fruit (Salacca edulis Reinw) Cv. Pondoh during maturation, J. Agric. Food Chem., 2002, 50, 26, 7627-7633, https://doi.org/10.1021/jf020620e . [all data]

Umano, Hagi, et al., 2002
Umano, K.; Hagi, Y.; Shibamoto, T., Volatile chemicals identified in extracts from newly hybrid citrus, dekopon (Shiranuhi mandarin Suppl. J.), J. Agric. Food Chem., 2002, 50, 19, 5355-5359, https://doi.org/10.1021/jf0203951 . [all data]

Aznar, López, et al., 2001
Aznar, M.; López, R.; Cacho, J.F.; Ferreira, V., Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions, J. Agric. Food Chem., 2001, 49, 6, 2924-2929, https://doi.org/10.1021/jf001372u . [all data]

Bendall, 2001
Bendall, J.G., Aroma compounds of fresh milk from New Zealand cows fed different diets, J. Agric. Food Chem., 2001, 49, 10, 4825-4832, https://doi.org/10.1021/jf010334n . [all data]

Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S., Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix, Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8 . [all data]

Ferreira, Aznar, et al., 2001
Ferreira, V.; Aznar, M.; López, R.; Cacho, J., Quantitative gas chromatography-olfactometry carried out at different dilutions of an extract. Differences in the odor profiles of four high-quality spanish aged red wines, J. Agric. Food Chem., 2001, 49, 10, 4818-4824, https://doi.org/10.1021/jf010283u . [all data]

Maeztu, Sanz, et al., 2001
Maeztu, L.; Sanz, C.; Andueza, S.; de Peña, M.P.; Bello, J.; Cid, C., Characterization of espresso coffee aroma by static headspace GC-MS and sensory flavor profile, J. Agric. Food Chem., 2001, 49, 11, 5437-5444, https://doi.org/10.1021/jf0107959 . [all data]

Miyazawa, Kurose, et al., 2001
Miyazawa, M.; Kurose, K.; Itoh, A.; Hiraoka, N., Comparison of the essential oils of Glehnia littoralis from Northern and Southern Japan, J. Agric. Food Chem., 2001, 49, 11, 5433-5436, https://doi.org/10.1021/jf010219c . [all data]

Sanz, Ansorena, et al., 2001
Sanz, C.; Ansorena, D.; Bello, J.; Cid, C., Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee, J. Agric. Food Chem., 2001, 49, 3, 1364-1369, https://doi.org/10.1021/jf001100r . [all data]

Weckerle, Bastl-Borrmann, et al., 2001
Weckerle, B.; Bastl-Borrmann, R.; Richling, E.; Hör, K.; Ruff, C.; Schreier, P., Cactus pear (Opuntia ficus indica) flavour constituents - chiral evaluation (MDGC-MS) and isotope ratio (HRGC-IRMS) analysis, Flavour Fragr. J., 2001, 16, 5, 360-363, https://doi.org/10.1002/ffj.1012 . [all data]

Wei, Mura, et al., 2001
Wei, A.; Mura, K.; Shibamoto, T., Antioxidative activity of volatile chemicals extracted from beer, J. Agric. Food Chem., 2001, 49, 8, 4097-4101, https://doi.org/10.1021/jf010325e . [all data]

Buttery, Light, et al., 2000
Buttery, R.G.; Light, D.M.; Nam, Y.; Merrill, G.B.; Roitman, J.N., Volatile components of green walnut husks, J. Agric. Food Chem., 2000, 48, 7, 2858-2861, https://doi.org/10.1021/jf000288b . [all data]

Franco and Shibamoto, 2000
Franco, M.R.B.; Shibamoto, T., Volatile composition of some Brazilian fruits: umbu-caja (Spondias citherea), camu-camu (Myrciaria dubia), araca-boi (Eugenia stipitata), and cupuacu (Theobroma grandiflorum), J. Agric. Food Chem., 2000, 48, 4, 1263-1265, https://doi.org/10.1021/jf9900074 . [all data]

Parada, Duque, et al., 2000
Parada, F.; Duque, C.; Fujimoto, Y., Free and bound volatile composition and characterization of some glucoconjugates as aroma precursors in Melón de olor fruit pulp (Sicana odorifera), J. Agric. Food Chem., 2000, 48, 12, 6200-6204, https://doi.org/10.1021/jf0007232 . [all data]

Xue, Ye, et al., 2000
Xue, C.; Ye, M.; Li, Z.; Cai, Y.; Tan, L.; Lin, H.; Sakaguchi, M., Changes in the volatile compounds of Yellowtail (Seriola aureovitata) during refrigerated storage, Asian Fisheries Sciences, 2000, 13, 263-270. [all data]

Hwan and Chou, 1999
Hwan, C.-H.; Chou, C.-C., Volatile components of the Chinese fermented soya bean curd as affected by the addition of ethanol in ageing solution, J. Sci. Food Agric., 1999, 79, 2, 243-248, https://doi.org/10.1002/(SICI)1097-0010(199902)79:2<243::AID-JSFA179>3.0.CO;2-I . [all data]

Iwatsuki, Mizota, et al., 1999
Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M., Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis, Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46, 9, 587-597, https://doi.org/10.3136/nskkk.46.587 . [all data]

Lopez, Ferreira, et al., 1999
Lopez, R.; Ferreira, V.; Hernandez, P.; Cacho, J.F., Identification of impact odorants of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: a comparative study, J. Sci. Food Agric., 1999, 79, 11, 1461-1467, https://doi.org/10.1002/(SICI)1097-0010(199908)79:11<1461::AID-JSFA388>3.0.CO;2-K . [all data]

Ngassoum, Yonkeu, et al., 1999
Ngassoum, M.B.; Yonkeu, S.; Jirovetz, L.; Buchbauer, G.; Schmaus, G.; Hammerschmidt, F.-J.H., Chemical composition of essential oils of Lantana camara leaves and flowers from Cameroon and Madagascar, Flavour Fragr. J., 1999, 14, 4, 245-250, https://doi.org/10.1002/(SICI)1099-1026(199907/08)14:4<245::AID-FFJ819>3.0.CO;2-X . [all data]

Buttery and Ling, 1998
Buttery, R.G.; Ling, L.C., Additional studies on flavor components of corn tortilla chips, J. Agric. Food Chem., 1998, 46, 7, 2764-2769, https://doi.org/10.1021/jf980125b . [all data]

Campeanu, Burcea, et al., 1998
Campeanu, G.; Burcea, M.; Doneanu, C.; Namolosanu, I.; Visan, L., GC/MS characterization of the volatiles isolated from the wines obtained from the indigenous cultivar Feteasca Regala, Analusis, 1998, 26, 2, 93-97, https://doi.org/10.1051/analusis:1998117 . [all data]

Chatonnet and Dubourdieu, 1998
Chatonnet, P.; Dubourdieu, D., Identification of Substances Responsible for the sundust Aroma in Oak Wood, J. Sci. Food Agric., 1998, 76, 2, 179-188, https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<179::AID-JSFA924>3.0.CO;2-6 . [all data]

Parada and Duque, 1998
Parada, F.; Duque, C., Studies on the aroma of piñuela fruit pulp (Bromelia plumieri): Free and bound volatile composition and characterization of some glucoconjugates as aroma precursors, J. Hi. Res. Chromatogr., 1998, 21, 10, 577-581, https://doi.org/10.1002/(SICI)1521-4168(19981001)21:10<577::AID-JHRC577>3.0.CO;2-V . [all data]

Petersen, Poll, et al., 1998
Petersen, M.A.; Poll, L.; Larsen, L.M., Comparison of volatiles in raw and boiled potatoes using a mild extraction technique combined with GC odour profiling and GC-MS, Food Chem., 1998, 61, 4, 461-466, https://doi.org/10.1016/S0308-8146(97)00119-2 . [all data]

Awano, Honda, et al., 1997
Awano, K.; Honda, T.; Ogawa, T.; Suzuki, S.; Matsunaga, Y., Volatile components of Phalaenopsis schilleriana Rehb. f., Flavour Fragr. J., 1997, 12, 5, 341-344, https://doi.org/10.1002/(SICI)1099-1026(199709/10)12:5<341::AID-FFJ657>3.0.CO;2-L . [all data]

Sekiwa, Kubota, et al., 1997
Sekiwa, Y.; Kubota, K.; Kobayashi, A., Characteristic flavor components in the brew of cooked clam (Meretrix lusoria) and the effect of storage on flavor formation, J. Agric. Food Chem., 1997, 45, 3, 826-830, https://doi.org/10.1021/jf960433e . [all data]

Wada and Shibamoto, 1997
Wada, K.; Shibamoto, T., Isolation and identification of volatile compounds from a wine using solid phase extraction, gas chromatography, and gas chromatography/mass spectrometry, J. Agric. Food Chem., 1997, 45, 11, 4362-4366, https://doi.org/10.1021/jf970157j . [all data]

Kubota, Matsujage, et al., 1996
Kubota, K.; Matsujage, Y.; Sekiwa, Y.; Kobayashi, A., Identification of the characteristic volatile flavor compounds formed by cooking squid (Todarodes pacificus Steenstrup), Food Sci. Technol., 1996, 2, 3, 163-166. [all data]

Shuichi, Masazumi, et al., 1996
Shuichi, H.; Masazumi, N.; Hiromu, K.; Kiyoshi, F., Comparison of volatile compounds berween the crude drugs, Onji-tsutsu and Onji-niki, Nippon nogei kagaku kaishi, 1996, 70, 2, 151-160. [all data]

Wong and Lai, 1996
Wong, K.C.; Lai, F.Y., Volatile constituents from the fruits of four Syzygium species grown in Malaysia, Flavour Fragr. J., 1996, 11, 1, 61-66, https://doi.org/10.1002/(SICI)1099-1026(199601)11:1<61::AID-FFJ539>3.0.CO;2-1 . [all data]

Christensen and Reineccius, 1995
Christensen, K.R.; Reineccius, G.A., Aroma extract dilution analysis of aged cheddar cheese, J. Food Sci., 1995, 60, 2, 218-220, https://doi.org/10.1111/j.1365-2621.1995.tb05641.x . [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Kawakami, Kobayashi, et al., 1993
Kawakami, M.; Kobayashi, A.; Kator, K., Volatile constituents of Rooibos tea (Aspalathus linearis) as affected by extraction process, J. Agric. Food Chem., 1993, 41, 4, 633-636, https://doi.org/10.1021/jf00028a023 . [all data]

Hatsuko, Kazuko, et al., 1992
Hatsuko, S.; Kazuko, H.; Masayoshi, K.; Yoshiaki, I., Improvement of quality of likorine extract by heat treatment, J. Food Sci. Technol., 1992, 39, 11, 976-983, https://doi.org/10.3136/nskkk1962.39.976 . [all data]

Vernin, Metzger, et al., 1992
Vernin, G.; Metzger, J.; Boniface, C.; Murello, M.-H.; Siouffi, A.; Larice, J.-L.; Parkanyi, C., Kinetics and thermal degradation of the fructose-methionine Amadori intermediates. GC-MS/SPECMA data bank identification of volatile aroma compounds, Carbohyd. Res., 1992, 230, 1, 15-29, https://doi.org/10.1016/S0008-6215(00)90510-X . [all data]

Kawakami and Kobayashi, 1991
Kawakami, M.; Kobayashi, A., Volatitle constituents of greem mate and roasted mate, J. Agric. Food Chem., 1991, 39, 7, 1275-1279, https://doi.org/10.1021/jf00007a016 . [all data]

Kubota, Nakamoto, et al., 1991
Kubota, K.; Nakamoto, A.; Moriguchi, M.; Kobayashi, A.; Ishii, H., Formation of pyrrolidino[1,2-e]-4H-2,4-dimethyl-1,3,5-dithiazine in the volatiles of boiled short-necked clam, clam, and corbicula, J. Agric. Food Chem., 1991, 39, 6, 1127-1130, https://doi.org/10.1021/jf00006a027 . [all data]

Binder, Flath, et al., 1989
Binder, R.G.; Flath, R.A.; Mon, T.R., Volatile components of bittermelon, J. Agric. Food Chem., 1989, 37, 2, 418-420, https://doi.org/10.1021/jf00086a032 . [all data]

Hsieh, Williams, et al., 1989
Hsieh, T.C.Y.; Williams, S.S.; Vejaphan, W.; Meyers, S.P., Characterization of Volatile Components of Menhaden Fish (Brevoortia tyrannus) Oil, J. Amer. Oil Chem. Soc., 1989, 66, 1, 114-117, https://doi.org/10.1007/BF02661797 . [all data]

Mihara, Tateba, et al., 1988
Mihara, S.; Tateba, H.; Nishimura, O.; Machii, Y.; Kishino, K., The volatile components of Chinese quince (Pseudocydonia sinensis Schneid) in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 537-550. [all data]

Vernin, Metzger, et al., 1988
Vernin, G.; Metzger, J.; Obretenov, T.; Suon, K.-N.; Fraisse, D., GC/MS (EI,PCI,SIM)-data bank analysis of volatile compounds arising from thermal degradation of glucose-valine amadori intermediates in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 999-1028. [all data]

Mihara, Tateba, et al., 1987
Mihara, S.; Tateba, H.; Nishimura, O.; Machii, Y.; Kishino, K., Volatile components of Chinese quince (Pseudocydonia sinensis Schneid), J. Agric. Food Chem., 1987, 35, 4, 532-537, https://doi.org/10.1021/jf00076a023 . [all data]

Buttery, Kamm, et al., 1984
Buttery, R.G.; Kamm, J.A.; Ling, L.C., Volatile components of red clover leaves, flowers, and seed pods: possible insect attractants, J. Agric. Food Chem., 1984, 32, 2, 254-256, https://doi.org/10.1021/jf00122a019 . [all data]

Buttery, Ling, et al., 1983
Buttery, R.G.; Ling, L.C.; Teranishi, R.; Mon, T.R., Insect attractants: volatiles of hydrolizyed protein insect baits, J. Agric. Food Chem., 1983, 31, 4, 689-692, https://doi.org/10.1021/jf00118a003 . [all data]

Gyawali and Kim, 2012
Gyawali, R.; Kim, K.-S., Bioactive volatile compounds of three medicinal plants from Nepal, Kathmandu Univ. J. Sci., Engineering and Technol., 2012, 8, 1, 51-62. [all data]

Lee, Chong, et al., 2012
Lee, P.-R.; Chong, I.S.-M.; Yu, B.; Curran, P.; Liu, S.-Q., Effect of precursors on volatile compounds in Papaya wine fermented by mixed yeasts, Uncorrected proof, 2012, 000-000. [all data]

Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A., Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection, J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002 . [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Povolo, Cabassi, et al., 2011
Povolo, M.; Cabassi, G.; Profaizer, M.; Lanteri, S., Study on the use of evolved gas analysis FT-IR (EGA FT-IR) for the evaluation of cheese volatile fraction, The Open Food Sci. J., 2011, 5, 1, 10-16, https://doi.org/10.2174/1874256401105010010 . [all data]

Sampaio, Garruti, et al., 2011
Sampaio, K.S.; Garruti, D.S.; Franco, M.R.B.; Janzantti, N.S.; Da Silva, M.A.AP., Aroma volatiles recovered in the water phase of cashew apple (Anacardium occidentale L.) juice during concentration, J. Sci. Food Agric., 2011, 91, 10, 1801-1809, https://doi.org/10.1002/jsfa.4385 . [all data]

Xiao, Dai, et al., 2011
Xiao, Z.; Dai, S.; Niu, Y.; Yu, H.; Zhu, J.; Tian, H.; Gu, Y., Discrimination of Chinese vinegars based on headspace solid-phase microextraction - gas chromatography mass spectrometry of volatile compounds and multivariate analysis, J. Food Sci., 2011, 76, 8, c1125-c1135, https://doi.org/10.1111/j.1750-3841.2011.02356.x . [all data]

Cajka, Riddellova, et al., 2010
Cajka, T.; Riddellova, K.; Klimankova, E.; Carna, M.; Pudil, F.; Hajslova, J., Traceability of olive oil based on volatiles pattern and multivariante analysis, Food Chem., 2010, 121, 1, 282-289, https://doi.org/10.1016/j.foodchem.2009.12.011 . [all data]

Ferreira, Juan, et al., 2009
Ferreira, V.; Juan, F.S.; Escudero, A.; Cullere, L.; Fernandez-Zurbano, P.; Saenz-Navajas, M.P.; Cacho, J., Modeling quality of premium Spanish red wines from gas chromatography-olfactometry data, J. Agr. Food. Chem., 2009, 57, 16, 7490-7498, https://doi.org/10.1021/jf9006483 . [all data]

Harraca, Syed, et al., 2009
Harraca, V.; Syed, Z.; Guerin, P.M., Olfactory and behavioural responces of tsetse flies, Glossina spp., to rumen metabolites, J. Comp. Physiol. A, 2009, 195, 9, 815-824, https://doi.org/10.1007/s00359-009-0459-y . [all data]

Frauendorfer and Schieberle, 2008
Frauendorfer, F.; Schieberle, P., Changes in key aroma compounds of criollo cocoa beans during roasting, J. Agric. Food Chem., 2008, 56, 21, 10244-10251, https://doi.org/10.1021/jf802098f . [all data]

Shu and Shen, 2008
Shu, N.; Shen, H., Aroma-impact compounds in Lysimachia foenum-graecum extracts, Flavour Fragr. J., 2008, 24, 1, 1-6, https://doi.org/10.1002/ffj.1908 . [all data]

Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Some aspects of dynamic headspace analysis of volatile components in honey, Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010 . [all data]

Tao, Wenlai, et al., 2008
Tao, L.; Wenlai, F.; Yan, X., Characterization of volatile and semi-volatile compounds in Chinese rica wines by headspace solid phase microextraction followed by gas chromatography - mass spectrometry, J. Inst. Brew., 2008, 114, 2, 172-179, https://doi.org/10.1002/j.2050-0416.2008.tb00323.x . [all data]

Zhang, Zhang, et al., 2008
Zhang, C.; Zhang, H.; Wang, L.; Guo, X., Effect of carrot (Daucus carota) antifreeze proteins on texture preperties of frozen dough and volatile compounds of crumb, Food. Sci. Technol. (Lebesmittel-Wissenschaft und Technologie), 2008, 41, 6, 1029-1036, https://doi.org/10.1016/j.lwt.2007.07.010 . [all data]

Berard, Bianchi, et al., 2007
Berard, J.; Bianchi, F.; Careri, M.; Chatel, A.; Mangia, A.; Musci, M., Characterization of the volatile fraction and of free fatty acids of Fontina Valle d'Aosta, a protected designation of origin Italian cheese, Food Chem., 2007, 105, 1, 293-300, https://doi.org/10.1016/j.foodchem.2006.11.041 . [all data]

Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S., Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee., J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004 . [all data]

Pontes, Marques, et al., 2007
Pontes, M.; Marques, J.C.; Camara, J.S., Screening of volatile composition from Portuguese multifloral honeys using headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometry, Talanta, 2007, 74, 1, 91-103, https://doi.org/10.1016/j.talanta.2007.05.037 . [all data]

Selli, 2007
Selli, S., Volatile constituents of orange obtained from moro oranges (Citrus Sinensis L. Osbeck), J. Food Quality, 2007, 30, 3, 330-341, https://doi.org/10.1111/j.1745-4557.2007.00124.x . [all data]

Tian, Zhang, et al., 2007
Tian, Y.; Zhang, X.; Huang, T.; Zou, K.; Zhou, J., Research advances on the essential oils from leaves of Eucalyptus, Food Fermentation Ind. (Chinese), 2007, 33, 10, 143-147. [all data]

Viegas and Bassoli, 2007
Viegas, M.C.; Bassoli, D.G., Utilizacao do indice de retencao linear para caracterizacao de compostos volateis em cafe soluvel utilizando GC-MS e coluna HP-Innowax, Quim. Nova, 2007, 30, 8, 2031-2034, https://doi.org/10.1590/S0100-40422007000800040 . [all data]

Weldegergis B.T., Tredoux A.G.J., et al., 2007
Weldegergis B.T.; Tredoux A.G.J.; Crouch A.M., Application of a headspace sorptive extraction method for the analysis of volatile components in South African wines, J. Agric. Food Chem., 2007, 55, 21, 8696-8702, https://doi.org/10.1021/jf071554p . [all data]

Zhang C., Zhang H., et al., 2007
Zhang C.; Zhang H.; Wang L.; Gao H.; Guo X.N.; Yao H.Y., Improvement of texture properties and flavor of frozen dough by carrot (Daucus carota) antifreeze protein supplementation, J. Agric. Food Chem., 2007, 55, 23, 9620-9626, https://doi.org/10.1021/jf0717034 . [all data]

Gyawalia, Seo, et al., 2006
Gyawalia, R.; Seo, H.-Y.; Lee, H.-J.; Song, H.-P.; Kim, D.-H.; Byun, M.-W.; Kim, K.-S., Effect of γ-irradiation on volatile compounds of dried Welsh onion (Allium fistulosum L.), Radiat. Phys. Chem., 2006, 75, 2, 322-328, https://doi.org/10.1016/j.radphyschem.2005.07.001 . [all data]

Kourkoutas, Bosnea, et al., 2006
Kourkoutas, Y.; Bosnea, L.; Taboukos, S.; Baras, C.; Lambrou, D.; Kanellaki, M., Probiotic Cheese Production Using Lactobacillus casei Cells Immobilized on Fruit Pieces, J. Dairy Sci., 2006, 89, 5, 1439-1451, https://doi.org/10.3168/jds.S0022-0302(06)72212-3 . [all data]

Krings, Zelena, et al., 2006
Krings, U.; Zelena, K.; Wu, S.; Berger, R.G., Thin-layer high-vacuum distillation to isolate volatile flavour compounds of cocoa powder, Eur. Food Res. Technol., 2006, 223, 5, 675-681, https://doi.org/10.1007/s00217-006-0252-x . [all data]

Quijano and Pino, 2006
Quijano, C.E.; Pino, J.A., Changes in volatile constituents during the ripening of cocona (Solanum sessiliflorum Dunal) fruit, Revista CENIC Ciencias Quimicas, 2006, 37, 3, 133-136. [all data]

Editorial paper, 2005
Editorial paper, Solid Phase Microextraction (SPME) Application Guide, The Reporter Europe (Supelco), 2005, 16, 5, 12-12. [all data]

Mattheis, Fan, et al., 2005
Mattheis, J.P.; Fan, X.; Argenta, L.C., Interactive Responses of Gala Apple Fruit Volatile Production to Controlled Atmosphere Storage and Chemical Inhibition of Ethylene Action, J. Agric. Food Chem., 2005, 53, 11, 4510-4516, https://doi.org/10.1021/jf050121o . [all data]

Escudero, Gogorza, et al., 2004
Escudero, A.; Gogorza, B.; Melús, M.A.; Ortín, N.; Cacho, J.; Ferreira, V., Characterization of the aroma of a wine from Maccabeo. Key role played by compounds with low odor activity values, J. Agric. Food Chem., 2004, 52, 11, 3516-3524, https://doi.org/10.1021/jf035341l . [all data]

Kim. J.H., Ahn, et al., 2004
Kim. J.H.; Ahn, H.J.; Yook, H.S.; Kim, K.S.; Rhee, M.S.; Ryu, G.H.; Byun, M.W., Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce, Radiation Phys. Chem., 2004, 69, 2, 179-187, https://doi.org/10.1016/S0969-806X(03)00400-6 . [all data]

Salinas, Zalacain, et al., 2004
Salinas, M.; Zalacain, A.; Pardo, F.; Alonso, G.L., Stir bar sorptive extraction applied to volatile constituents evolution during Vitis vinifera ripening, J. Agric. Food Chem., 2004, 52, 15, 4821-4827, https://doi.org/10.1021/jf040040c . [all data]

Garruti, Franco, et al., 2003
Garruti, D.S.; Franco, M.R.B.; da Silva, M.A.A.P.; Janzantti, N.S.; Alves, G.L., Evaluation of volatile flavour compounds from cashew apple (Anacardium occidentale L) juice by the Osme gas chromatography/olfactometry technique, J. Sci. Food Agric., 2003, 83, 14, 1455-1462, https://doi.org/10.1002/jsfa.1560 . [all data]

Triqui and Bouchriti, 2003
Triqui, R.; Bouchriti, N., Freshness assessments of Moroccan sardine (Sardina pilchardus): comparison of overall sensory changes to instrumentally determined volatiles, J. Agric. Food Chem., 2003, 51, 26, 7540-7546, https://doi.org/10.1021/jf0348166 . [all data]

Escalona, Birkmyre, et al., 2002
Escalona, H.; Birkmyre, L.; Piggott, J.R.; Paterson, A., Effect of maturation in small oak casks on the volatility of red wine aroma compounds, Anal. Chim. Acta., 2002, 458, 1, 45-54, https://doi.org/10.1016/S0003-2670(01)01538-0 . [all data]

Torrens, 2002
Torrens, J., El análisis del aroma aplicado al control de calidad del cava [CS2002 Análisis sensorial (vino)], 2002, retrieved from http://www.percepnet.com/documenta/CS0203.pdf. [all data]

Buettner and Schieberle, 2001
Buettner, A.; Schieberle, P., Application of a comparative aroma extract dilution analysis to monitor changes in orange juice aroma compounds during processing, Am. Chem. Soc. Symp. Ser., 2001, 782, 33-45. [all data]

Escalona, Birkmyre, et al., 2001
Escalona, H.; Birkmyre, L.; Piggott, J.R.; Paterson, A., Relationship between sensory perception volatile and phenolic components in commercial Spanish red wines from different regions, J. Inst. Brew., 2001, 107, 3, 157-166, https://doi.org/10.1002/j.2050-0416.2001.tb00087.x . [all data]

López and Dufour, 2001
López, M.G.; Dufour, J.P., Chapter 6. Tequilas: charm analysis of Blanco, Teposado, and Anejo tequilas, Am. Chem. Soc. Symp. Ser., 2001, 782, 62-72. [all data]

Mayorga, Knapp, et al., 2001
Mayorga, H.; Knapp, H.; Winterhalter, P.; Duque, C., Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.), J. Agric. Food Chem., 2001, 49, 4, 1904-1908, https://doi.org/10.1021/jf0011743 . [all data]

Özcan, Akgül, et al., 2001
Özcan, M.; Akgül, A.; Bascr, K.H.C.; Özck, T.; Tabanca, N., Essential oil composition of sea fennel (Crithmum maritimum) form Turkey, Nahrung/Food, 2001, 45, 5, 353-356, https://doi.org/10.1002/1521-3803(20011001)45:5<353::AID-FOOD353>3.0.CO;2-4 . [all data]

Teai, Claude-Lafontaine, et al., 2001
Teai, T.; Claude-Lafontaine, A.; Schippa, C.; Cozzolino, F., Volatile compounds in fresh pulp of pineapple (Ananas comosus [L.] Merr.) from French Polynesia, J. Essent. Oil Res., 2001, 13, 5, 314-318, https://doi.org/10.1080/10412905.2001.9712222 . [all data]

Tucker, Maciarello, et al., 2001
Tucker, A.O.; Maciarello, M.J.; Alkire, B.H., Essential oil of Aeollanthus suaveolens Mart. ex Spreng. (Lamiaceae), J. Essent. Oil Res., 2001, 13, 3, 198-199, https://doi.org/10.1080/10412905.2001.9699662 . [all data]

Muresan, Eillebrecht, et al., 2000
Muresan, S.; Eillebrecht, M.A.J.L.; de Rijk, T.C.; de Jonge, H.G.; Leguijt, T.; Nijhuis, H.H., Aroma profile development of intermediate chocolate products. I. Volatile constituents of block-milk, Food Chem., 2000, 68, 2, 167-174, https://doi.org/10.1016/S0308-8146(99)00171-5 . [all data]

Reiners and Grosch, 1998
Reiners, J.; Grosch, W., Odorants of virgin olive oils with different flavor profiles, J. Agric. Food Chem., 1998, 46, 7, 2754-2763, https://doi.org/10.1021/jf970940b . [all data]

Vas, Gal, et al., 1998
Vas, G.; Gal, L.; Harangi, J.; Dobo, A.; Vekey, K., Determination of volatile aroma compounds of Blaeufrankisch wines extracted by solid-phase microextraction, J. Chromatogr. Sci., 1998, 36, 10, 505-510, https://doi.org/10.1093/chromsci/36.10.505 . [all data]

Zehentbauer and Grosch, 1998
Zehentbauer, G.; Grosch, W., Crust aroma of baguettes. I. Key odorants of baguettes prepared in two different ways, J. Cereal Science, 1998, 28, 1, 81-92, https://doi.org/10.1006/jcrs.1998.0184 . [all data]

Guth, 1997
Guth, H., Identification of character impact odorants of different white wine varieties, J. Agric. Food Chem., 1997, 45, 8, 3022-3026, https://doi.org/10.1021/jf9608433 . [all data]

Guth and Grosch, 1994
Guth, H.; Grosch, W., Identification of the character impact odorants of stewed beef juice by instrumental analyses and sensory studies, J. Agric. Food Chem., 1994, 42, 12, 2862-2866, https://doi.org/10.1021/jf00048a039 . [all data]

Schieberle and Grosch, 1994
Schieberle, P.; Grosch, W., Potent odorants of rye bread crust - differences from the crumb and from wheat bread crust, Z. Lebensm. Unters. Forsch., 1994, 198, 4, 292-296, https://doi.org/10.1007/BF01193177 . [all data]

Blank and Schieberle, 1993
Blank, I.; Schieberle, P., Analysis of the seasoning-like flavour substances of a commercial lovage extract (Levisticum officinale Koch.), Flavour Fragr. J., 1993, 8, 4, 191-195, https://doi.org/10.1002/ffj.2730080405 . [all data]

Guth and Grosch, 1993
Guth, H.; Grosch, W., 12-Methyltridecanal, a species-specific odorant of stewed beef, Lebensm. Wiss. Technol., 1993, 26, 2, 171-177, https://doi.org/10.1006/fstl.1993.1035 . [all data]

Mattheis, Buchanan, et al., 1992
Mattheis, J.P.; Buchanan, D.A.; Fellman, J.K., Volatile compounds emitted by sweet cherries (Prunus avium Cv. Bing) during fruit development and ripening, J. Agric. Food Chem., 1992, 40, 3, 471-474, https://doi.org/10.1021/jf00015a022 . [all data]

Peng, Yang, et al., 1991, 2
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References