Ethane
- Formula: C2H6
- Molecular weight: 30.0690
- IUPAC Standard InChIKey: OTMSDBZUPAUEDD-UHFFFAOYSA-N
- CAS Registry Number: 74-84-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Isotopologues:
- Other names: Bimethyl; Dimethyl; Ethyl hydride; Methylmethane; C2H6; UN 1035; UN 1961
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -20. ± 0.1 | kcal/mol | Review | Manion, 2002 | adopted recommendation of Gurvich, Veyts, et al., 1991; DRB |
ΔfH°gas | -20.04 ± 0.07 | kcal/mol | Ccb | Pittam and Pilcher, 1972 | ALS |
ΔfH°gas | -20.24 ± 0.12 | kcal/mol | Ccb | Prosen and Rossini, 1945 | Hf derived from Heat of Hydrogenation; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -373.01 ± 0.06 | kcal/mol | Ccb | Pittam and Pilcher, 1972 | Corresponding ΔfHºgas = -20.04 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -372.82 ± 0.11 | kcal/mol | Ccb | Prosen and Rossini, 1945 | Hf derived from Heat of Hydrogenation; Corresponding ΔfHºgas = -20.23 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -372.81 ± 0.11 | kcal/mol | Ccb | Rossini, 1934 | Corresponding ΔfHºgas = -20.24 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.533 | 100. | Gurvich, Veyts, et al., 1989 | p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamic calculations [ Pitzer K.S., 1944, Chao J., 1973, Pamidimukkala K.M., 1982].; GT |
10.11 | 200. | ||
12.55 | 298.15 | ||
12.60 | 300. | ||
15.65 | 400. | ||
18.63 | 500. | ||
21.32 | 600. | ||
23.70 | 700. | ||
25.798 | 800. | ||
27.655 | 900. | ||
29.290 | 1000. | ||
30.724 | 1100. | ||
31.979 | 1200. | ||
33.076 | 1300. | ||
34.034 | 1400. | ||
34.871 | 1500. | ||
35.607 | 1600. | ||
36.250 | 1700. | ||
36.816 | 1800. | ||
37.318 | 1900. | ||
37.763 | 2000. | ||
38.157 | 2100. | ||
38.509 | 2200. | ||
38.822 | 2300. | ||
39.104 | 2400. | ||
39.357 | 2500. | ||
39.587 | 2600. | ||
39.792 | 2700. | ||
39.981 | 2800. | ||
40.153 | 2900. | ||
40.308 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.957 ± 0.074 | 189.20 | Halford J.O., 1957 | Please also see Eucken A., 1933, Kistiakowsky G.B., 1939, Dailey B.P., 1943.; GT |
10.34 ± 0.076 | 209.30 | ||
10.77 ± 0.081 | 229.65 | ||
11.30 ± 0.084 | 249.90 | ||
11.27 ± 0.084 | 250.15 | ||
11.87 ± 0.088 | 272.00 | ||
11.83 ± 0.01 | 272.07 | ||
12.11 ± 0.10 | 279.00 | ||
12.46 ± 0.093 | 292.00 | ||
12.73 ± 0.02 | 302.70 | ||
13.72 ± 0.01 | 335.82 | ||
14.08 | 347.65 | ||
14.43 | 359.75 | ||
14.59 ± 0.024 | 364.78 | ||
14.84 ± 0.11 | 373.60 | ||
15.27 | 387.55 | ||
17.31 | 451.95 | ||
19.14 | 520.55 | ||
20.62 | 561.65 | ||
21.62 | 603.25 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 184.6 ± 0.6 | K | AVG | N/A | Average of 23 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 101. | K | N/A | Streng, 1971 | Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 89.2 | K | N/A | Timmermans, 1935 | Uncertainty assigned by TRC = 1.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 91. ± 6. | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.000011 | atm | N/A | Younglove and Ely, 1987 | Uncertainty assigned by TRC = 5.×10-9 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 305.3 ± 0.3 | K | AVG | N/A | Average of 41 out of 46 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 49. ± 1. | atm | AVG | N/A | Average of 28 out of 29 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.147 ± 0.002 | l/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 6.9 ± 0.4 | mol/l | AVG | N/A | Average of 19 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 2.33 | kcal/mol | N/A | Majer and Svoboda, 1985 |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
3.5141 | 184.1 | N/A | Witt and Kemp, 1937 | DH |
3.66 | 288. | A | Stephenson and Malanowski, 1987 | Based on data from 273. to 305. K.; AC |
3.75 | 170. | A | Stephenson and Malanowski, 1987 | Based on data from 154. to 185. K.; AC |
4.23 | 114. | A | Stephenson and Malanowski, 1987 | Based on data from 95. to 129. K.; AC |
3.56 | 214. | A | Stephenson and Malanowski, 1987 | Based on data from 185. to 229. K.; AC |
3.56 | 259. | A | Stephenson and Malanowski, 1987 | Based on data from 228. to 274. K.; AC |
4.09 | 129. | N/A | Carruth and Kobayashi, 1973 | Based on data from 91. to 144. K.; AC |
3.51 | 210. | N/A | Reid, 1972 | AC |
3.51 | 184. | N/A | Witt and Kemp, 1937 | AC |
3.66 | 185. | N/A | Loomis and Walters, 1926 | Based on data from 136. to 200. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference |
---|---|---|---|---|
289. to 301. | 7.034 | 0.3696 | 305.4 | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
19.09 | 184.1 | Witt and Kemp, 1937 | DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
91.33 to 144.13 | 4.50135 | 791.3 | -6.422 | Carruth and Kobayashi, 1973 | Coefficents calculated by NIST from author's data. |
135.74 to 199.91 | 3.93264 | 659.739 | -16.719 | Loomis and Walters, 1926 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
5.40 | 85. | N/A | Regnier, 1972 | Based on data from 80. to 90. K.; AC |
4.90 | 90. | B | Bondi, 1963 | AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.139 | 90.341 | Atake and Chihara, 1976 | Triple point.; DH |
0.667 | 89.5 | Domalski and Hearing, 1996 | AC |
0.14 | 90.3 | Atake and Chihara, 1976 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.54 | 90.341 | Atake and Chihara, 1976 | Triple; DH |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.5454 | 89.813 | crystaline, II | crystaline, I | Atake and Chihara, 1976 | DH |
0.6828 | 89.87 | crystaline, I | liquid | Witt and Kemp, 1937 | DH |
0.6675 | 89.50 | crystaline, I | liquid | Wiebe, Hubbard, et al., 1930 | DH |
0.58258 | 89.77 | crystaline, II | crystaline, I | Roder, 1976 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
6.090 | 89.813 | crystaline, II | crystaline, I | Atake and Chihara, 1976 | DH |
7.60 | 89.87 | crystaline, I | liquid | Witt and Kemp, 1937 | DH |
7.46 | 89.50 | crystaline, I | liquid | Wiebe, Hubbard, et al., 1930 | DH |
6.489 | 89.77 | crystaline, II | crystaline, I | Roder, 1976 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Co+ + C2H6 = (Co+ • C2H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 22.3 | cal/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+)CH4, ΔrS(500 K); M |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
23.9 (+1.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M | |
28.0 (+1.6,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+)CH4, ΔrS(500 K); M |
By formula: (Co+ • CH4) + C2H6 = (Co+ • C2H6 • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 25.9 | cal/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28.4 (+1.3,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M |
3 (g) + (l) = AlH3O3 (amorphous) + 3 (g)
By formula: 3H2O (g) + C6H15Al (l) = AlH3O3 (amorphous) + 3C2H6 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -154.7 ± 1.5 | kcal/mol | RSC | Fowell, 1961 | Please also see Cox and Pilcher, 1970. Liquid triethylaluminum contains a very small molar fraction of monomer at 298 K, ca. 0.1% Smith, 1967, so that the "real" liquid should be described as [Al(Et)3]2.; MS |
C2H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 420.1 ± 2.0 | kcal/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrH° | 421.0 ± 2.0 | kcal/mol | Bran | DePuy, Bierbaum, et al., 1984 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 411.7 ± 2.1 | kcal/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
By formula: (Co+ • C2H6) + CH4 = (Co+ • CH4 • C2H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 26.4 | cal/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(490 K); M |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
24.4 (+1.1,-0.) | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrS(490 K); M |
By formula: HBr (g) + C2H5Li (cr) = C2H6 (g) + BrLi (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -82.62 ± 0.48 | kcal/mol | RSC | Holm, 1974 | Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS |
By formula: C5O5W (g) + C2H6 (g) = C7H6O5W (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.4 ± 2.0 | kcal/mol | EqG | Brown, Ishikawa, et al., 1990 | Temperature range: ca. 300-350 K; MS |
ΔrH° | -9.7 ± 3.0 | kcal/mol | EqG | Ishikawa, Brown, et al., 1988 | Temperature range: 298-363 K; MS |
By formula: Fe+ + C2H6 = (Fe+ • C2H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 3. | kcal/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; M |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15.3 (+1.4,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: C2H4Cl2 + 2H2 = C2H6 + 2HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -34.18 ± 0.23 | kcal/mol | Chyd | Lacher, Amador, et al., 1967 | gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -35.32 ± 0.12 kcal/mol; At 250 C; ALS |
By formula: 2H2 + C2H4Cl2 = C2H6 + 2HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33.66 ± 0.25 | kcal/mol | Chyd | Lacher, Amador, et al., 1967 | gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -34.65 ± 0.12 kcal/mol; At 250C; ALS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -74.58 ± 0.15 | kcal/mol | Chyd | Conn, Kistiakowsky, et al., 1939 | gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -75.06 ± 0.66 kcal/mol; At 355 K; ALS |
(l) + ( • 100) (solution) = 2 (g) + ( • 100) (solution)
By formula: C4H10Zn (l) + (H2O4S • 100H2O) (solution) = 2C2H6 (g) + (O4SZn • 100H2O) (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -84.7 ± 1.0 | kcal/mol | RSC | Carson, Hartley, et al., 1949 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.6 ± 0.5 | kcal/mol | Chyd | Kistiakowsky and Nickle, 1951 | gas phase; ALS |
ΔrH° | -32.58 ± 0.06 | kcal/mol | Chyd | Kistiakowsky, Romeyn, et al., 1935 | gas phase; ALS |
2 (g) + (l) = AlCl3 (cr) + 2 (g)
By formula: 2HCl (g) + C4H10AlCl (l) = AlCl3 (cr) + 2C2H6 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -63.34 ± 0.79 | kcal/mol | RSC | Shaulov and Shmyreva, 1968 | The reaction enthalpy was derived from data in Shaulov and Shmyreva, 1968.; MS |
By formula: C2H4+ + C2H6 = (C2H4+ • C2H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.3 | kcal/mol | PHPMS | Hiraoka and Kebarle, 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21. | cal/mol*K | PHPMS | Hiraoka and Kebarle, 1980 | gas phase; M |
By formula: 2H2 + C2H3Cl = C2H6 + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -51.2 ± 0.2 | kcal/mol | Chyd | Lacher, Emery, et al., 1956 | gas phase; At 298 K, see Lacher, Kianpour, et al., 1956; ALS |
(g) + C2H5BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + C2H5BrMg (solution) = C2H6 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -71.51 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
By formula: (Co+ • 2C2H6) + C2H6 = (Co+ • 3C2H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12. | kcal/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH<; M |
By formula: Al+ + C2H6 = (Al+ • C2H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 ± 2.0 | kcal/mol | CIDC,EqG | Stockigt, Schwarz, et al., 1996 | Anchored to theory; RCD |
By formula: 2H2 + C2H3Br = HBr + C2H6
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -47.61 ± 0.46 | kcal/mol | Chyd | Lacher, Kianpour, et al., 1957 | gas phase; ALS |
By formula: H2 + 2C2H5I = 2C2H6 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -21.2 ± 0.80 | kcal/mol | Chyd | Ashcroft, Carson, et al., 1965 | liquid phase; ALS |
By formula: H2 + C2H5Br = HBr + C2H6
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -14.11 ± 0.27 | kcal/mol | Chyd | Fowell, Lacher, et al., 1965 | gas phase; ALS |
By formula: H2 + 2C2H5Br = 2C2H6 + Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.6 ± 3.0 | kcal/mol | Chyd | Ashcroft, Carson, et al., 1965 | liquid phase; ALS |
By formula: H2 + C2H5Cl = C2H6 + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -16.6 ± 0.1 | kcal/mol | Chyd | Lacher, Emery, et al., 1956 | gas phase; ALS |
By formula: Ni+ + C2H6 = (Ni+ • C2H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. ± 3. | kcal/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; M |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C2H6+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 11.52 ± 0.04 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 142.5 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 136.2 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
11. ± 1. | PI | Au, Cooper, et al., 1993 | LL |
11.52 | EST | Luo and Pacey, 1992 | LL |
11.57 | EI | Plessis and Marmet, 1987 | LBLHLM |
11.56 ± 0.02 | EI | Plessis and Marmet, 1987, 2 | LBLHLM |
11.4 ± 0.4 | EI | Chatham, Hils, et al., 1984 | LBLHLM |
11.5 ± 0.1 | EI | Suzuki and Maeda, 1977 | LLK |
11.56 ± 0.02 | PE | Bieri, Burger, et al., 1977 | LLK |
11.76 ± 0.05 | EI | Flesch and Svec, 1973 | LLK |
11.45 ± 0.05 | TE | Stockbauer and Inghram, 1971 | LLK |
11.51 | PE | Dewar and Worley, 1969 | RDSH |
11.66 ± 0.05 | EI | Williams and Hamill, 1968 | RDSH |
11.55 | CI | Cermak, 1968 | RDSH |
11.56 | PE | Baker, Baker, et al., 1968 | RDSH |
11.521 ± 0.007 | PI | Nicholson, 1965 | RDSH |
11.99 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
12.0 | PE | Bieri and Asbrink, 1980 | Vertical value; LLK |
12.1 ± 0.1 | PE | Bieri, Burger, et al., 1977 | Vertical value; LLK |
12.00 | PE | Doucet, Sauvageau, et al., 1975 | Vertical value; LLK |
Appearance energy determinations
De-protonation reactions
C2H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 420.1 ± 2.0 | kcal/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrH° | 421.0 ± 2.0 | kcal/mol | Bran | DePuy, Bierbaum, et al., 1984 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 411.7 ± 2.1 | kcal/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 23 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Manion, 2002
Manion, J.A.,
Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons,
J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703
. [all data]
Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]
Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G.,
Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane,
J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Rossini, 1934
Rossini, F.D.,
Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane,
J. Res. NBS, 1934, 12, 735-750. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Pitzer K.S., 1944
Pitzer K.S.,
Thermodynamics of gaseous paraffins. Specific heat and related properties,
Ind. Eng. Chem., 1944, 36, 829-831. [all data]
Chao J., 1973
Chao J.,
Ideal gas thermodynamic properties of ethane and propane,
J. Phys. Chem. Ref. Data, 1973, 2, 427-438. [all data]
Pamidimukkala K.M., 1982
Pamidimukkala K.M.,
Ideal gas thermodynamic properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3,
J. Phys. Chem. Ref. Data, 1982, 11, 83-99. [all data]
Halford J.O., 1957
Halford J.O.,
Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity,
J. Phys. Chem., 1957, 61, 1536-1539. [all data]
Eucken A., 1933
Eucken A.,
Molar heats and normal frequencies of ethane and ethylene,
Z. Phys. Chem., 1933, B20, 184-194. [all data]
Kistiakowsky G.B., 1939
Kistiakowsky G.B.,
Gaseous heat capacities. I. The method and the heat capacities of C2H6 and C2D6,
J. Chem. Phys., 1939, 7, 281-288. [all data]
Dailey B.P., 1943
Dailey B.P.,
The heat capacities at higher temperatures of ethane and propane,
J. Am. Chem. Soc., 1943, 65, 42-44. [all data]
Streng, 1971
Streng, A.G.,
Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature,
J. Chem. Eng. Data, 1971, 16, 357. [all data]
Timmermans, 1935
Timmermans, J.,
Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds.,
Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]
Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F.,
Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane,
J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Witt and Kemp, 1937
Witt, R.K.; Kemp, J.D.,
The heat capacity of ethane from 15°K to the boiling point. The heat of fusion and the heat of vaporization,
J. Am. Chem. Soc., 1937, 59, 273-276. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Carruth and Kobayashi, 1973
Carruth, Grant F.; Kobayashi, Riki,
Vapor pressure of normal paraffins ethane through n-decane from their triple points to about 10 mm mercury,
J. Chem. Eng. Data, 1973, 18, 2, 115-126, https://doi.org/10.1021/je60057a009
. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Loomis and Walters, 1926
Loomis, A.G.; Walters, J.E.,
THE VAPOR PRESSURE OF ETHANE NEAR THE NORMAL BOILING POINT 1,
J. Am. Chem. Soc., 1926, 48, 8, 2051-2055, https://doi.org/10.1021/ja01419a006
. [all data]
Regnier, 1972
Regnier, J.,
J. Chim. Phys. Phys.-Chim. Biol., 1972, 69, 6, 942. [all data]
Bondi, 1963
Bondi, A.,
Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.,
J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027
. [all data]
Atake and Chihara, 1976
Atake, T.; Chihara, H.,
Calorimetric study of the phase changes in solid ethane,
Chem. Lett., 1976, (7), 683-688. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Wiebe, Hubbard, et al., 1930
Wiebe, R.; Hubbard, K.H.; Brevoort, M.J.,
The heat capacity of saturated liquid ethane from the boiling point to the critical temperature and heat fusion of the solid,
J. Am. Chem. Soc., 1930, 52, 611-622. [all data]
Roder, 1976
Roder, H.M.,
The heats of transition of solid ethane,
J. Chem. Phys., 1976, 65, 1371-1373. [all data]
Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T.,
Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters,
J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016
. [all data]
Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L.,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]
Fowell, 1961
Fowell, P.A.,
Ph. D. Thesis, University of Manchester, 1961. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Smith, 1967
Smith, M.B.,
J. Phys. Chem., 1967, 71, 364. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R.,
Relative Gas-Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1984, 106, 4051. [all data]
Holm, 1974
Holm, T.,
J. Organometal. Chem., 1974, 77, 27. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W.,
In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]
Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M.,
J. Am. Chem. Soc., 1990, 112, 2530. [all data]
Ishikawa, Brown, et al., 1988
Ishikawa, Y.; Brown, C.E.; Hackett, P.A.; Rayner, D.M.,
Chem. Phys. Lett., 1988, 150, 506. [all data]
Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.M.; Bowers, M.T.,
Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone,
J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021
. [all data]
Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D.,
Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane,
Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A.,
Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes,
J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]
Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A.,
Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I.,
Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159
. [all data]
Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G.,
Ethane-ethylene and propane-propylene equilibria,
Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]
Kistiakowsky, Romeyn, et al., 1935
Kistiakowsky, G.B.; Romeyn, H., Jr.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. I. The apparatus and the heat of hydrogenation of ethylene,
J. Am. Chem. Soc., 1935, 57, 65-75. [all data]
Shaulov and Shmyreva, 1968
Shaulov, Yu.Kh.; Shmyreva, G.O.,
Russ. J. Phys. Chem., 1968, 42, 1008. [all data]
Hiraoka and Kebarle, 1980
Hiraoka, K.; Kebarle, P.,
Ion Molecule Reactions in Ethane. Thermochemistry and Structures of the Intermediate Complexes: C4H11+ and C4H10+ Formed in the Reactions of C2H5+ and C2H4+ with C2H6,
Can. J. Chem., 1980, 58, 21, 2262, https://doi.org/10.1139/v80-364
. [all data]
Lacher, Emery, et al., 1956
Lacher, J.R.; Emery, E.; Bohmfalk, E.; Park, J.D.,
Reaction heats of organic compounds. IV. A high temperature calorimeter and the hydrogenation of methyl ethyl and vinyl chlorides,
J. Phys. Chem., 1956, 60, 492-495. [all data]
Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D.,
Reaction calorimetry. The hydrogenation of organic fluorides and chlorides,
Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]
Holm, 1981
Holm, T.,
J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]
Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H.,
Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+,
J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k
. [all data]
Lacher, Kianpour, et al., 1957
Lacher, J.R.; Kianpour, A.; Montgomery, P.; Knedler, H.; Park, J.D.,
Reaction heats of organic halogen compounds. IX. The catalytic hydrogenation of vinyl and perfluorovinyl bromide,
J. Phys. Chem., 1957, 61, 1125-1126. [all data]
Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.G.,
Thermochemistry of reductions caused by lithium aluminium hydride. Part 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide,
Trans. Faraday Soc., 1965, 61, 225-229. [all data]
Fowell, Lacher, et al., 1965
Fowell, P.; Lacher, J.R.; Park, J.D.,
Reaction heats of organic compounds. Part 3.-Heats of hydrogenation of methyl bromide and ethyl bromide,
Trans. Faraday Soc., 1965, 61, 1324-1327. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Au, Cooper, et al., 1993
Au, J.W.; Cooper, G.; Brion, C.E.,
The molecular and dissociative photoionization of ethane, propane, and n-butane: Absolute oscillator strengths (10-80 eV) and breakdown pathways,
Chem. Phys., 1993, 173, 241. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Plessis and Marmet, 1987
Plessis, P.; Marmet, P.,
Electroionization study of ethane: structures in the ionization and appearance energy curves,
Can. J. Chem., 1987, 65, 2004. [all data]
Plessis and Marmet, 1987, 2
Plessis, P.; Marmet, P.,
Electroionization study of ethane: Ionization and appearance energies, ion-pair formations and negative ions,
Can. J. Chem., 1987, 65, 1424. [all data]
Chatham, Hils, et al., 1984
Chatham, H.; Hils, D.; Robertson, R.; Gallagher, A.,
Total and partial electron collisional ionization cross sections for CH4, C2H6, SiH4, and Si2H6,
J. Chem. Phys., 1984, 81, 1770. [all data]
Suzuki and Maeda, 1977
Suzuki, I.H.; Maeda, K.,
Ionization efficiency curves of ethane by electron impact,
Int. J. Mass Spectrom. Ion Phys., 1977, 24, 147. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Flesch and Svec, 1973
Flesch, G.D.; Svec, H.J.,
Fragmentation reactions in the mass spectrometer for C2-C5 alkanes,
J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all data]
Stockbauer and Inghram, 1971
Stockbauer, R.; Inghram, M.G.,
Experimental relative Franck-Condon factors for the ionization of methane, ethane, and propane,
J. Chem. Phys., 1971, 54, 2242. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H.,
Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer,
J. Chem. Phys., 1968, 49, 4467. [all data]
Cermak, 1968
Cermak, V.,
Penning ionization electron spectroscopy,
Advan. Mass Spectrom., 1968, 4, 697. [all data]
Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W.,
The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]
Nicholson, 1965
Nicholson, A.J.C.,
Photoionization-efficiency curves. II. False and genuine structure,
J. Chem. Phys., 1965, 43, 1171. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]
Doucet, Sauvageau, et al., 1975
Doucet, J.; Sauvageau, P.; Sandorfy, C.,
Photoelectron far-ultraviolet absorption spectra of chlorofluoro derivatives of ethane,
J. Chem. Phys., 1975, 62, 355. [all data]
Suzuki and Maeda, 1977, 2
Suzuki, I.H.; Maeda, K.,
Behavior of hydrogen atoms in the fragmentation of CH3CD3,
Can. J. Chem., 1977, 55, 3124. [all data]
D'Or, Collin, et al., 1966
D'Or, L.; Collin, J.E.; Longree, J.,
Ionisation et dissociation de l'ethane sous l'impact electronique. Spectres de masse et phenomenes d'echange dans C2H6, C2H5D, CH3CD3 et C2D6,
Bull. Classe Sci. Acad. Roy. Belg., 1966, 52, 518. [all data]
Bombach, Dannacher, et al., 1984
Bombach, R.; Dannacher, J.; Stadelmann, J.-P.,
The rate/energy functions for the competitive fragmentation processes of ethylene and ethane cations,
Int. J. Mass Spectrom. Ion Processes, 1984, 58, 217. [all data]
Chupka and Berkowitz, 1967
Chupka, W.A.; Berkowitz, J.,
Photoionization of ethane, propane, and n-butane with mass analysis,
J. Chem. Phys., 1967, 47, 2921. [all data]
Traeger and McLoughlin, 1981
Traeger, J.C.; McLoughlin, R.G.,
Absolute heats of formation for gas phase cations,
J. Am. Chem. Soc., 1981, 103, 3647. [all data]
Newton, Sciamanna, et al., 1970
Newton, A.S.; Sciamanna, A.F.; Thomas, G.E.,
The occurrence of the H3+ ion in the mass spectra of organic compounds,
Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 465. [all data]
Fuchs, 1972
Fuchs, R.,
Die kinetische energie ionisierter molekulfragmente VII. H3 ALS fragmention bei der elektronenstrossionisierung von kohlenwasserstoffen,
Int. J. Mass Spectrom. Ion Processes, 1972, 8, 193. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy Pc Critical pressure Ptriple Triple point pressure T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.