Argon
- Formula: Ar
- Molecular weight: 39.948
- IUPAC Standard InChIKey: XKRFYHLGVUSROY-UHFFFAOYSA-N
- CAS Registry Number: 7440-37-1
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Ar; UN 1006; UN 1951; argon atom
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 51 to 100, reactions 101 to 102
- Henry's Law data
- Ion clustering data
- Mass spectrum (electron ionization)
- Fluid Properties
- Data at other public NIST sites:
- NIST Atomic Spectra Database - Lines Holdings (on physics web site)
- NIST Atomic Spectra Database - Levels Holdings (on physics web site)
- NIST Atomic Spectra Database - Ground states and ionization energies (on physics web site)
- Gas Phase Kinetics Database
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 154.846 ± 0.003 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 154.84 | J/mol*K | Review | Chase, 1998 | Data last reviewed in March, 1982 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 6000. |
---|---|
A | 20.78600 |
B | 2.825911×10-7 |
C | -1.464191×10-7 |
D | 1.092131×10-8 |
E | -3.661371×10-8 |
F | -6.197350 |
G | 179.9990 |
H | 0.000000 |
Reference | Chase, 1998 |
Comment | Data last reviewed in March, 1982 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 87.5 | K | N/A | Streng, 1971 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tboil | 87.28 | K | N/A | Gosman, McCarty, et al., 1969 | Uncertainty assigned by TRC = 0.02 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 83.8 | K | N/A | Van't Zelfde, Omar, et al., 1968 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 87.78 | K | N/A | Angus, Armstrong, et al., 1972 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 83.8 | K | N/A | Gosman, McCarty, et al., 1969 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 83.8 | K | N/A | Ziegler, Mullins, et al., 1962 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 83.78 | K | N/A | Clark, Din, et al., 1951 | Uncertainty assigned by TRC = 0.04 K; TRC |
Ttriple | 83.78 | K | N/A | Clusius and Weigand, 1940 | Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT at triple point; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.689 | bar | N/A | Gosman, McCarty, et al., 1969 | Uncertainty assigned by TRC = 0.0001 bar; TRC |
Ptriple | 0.689 | bar | N/A | Ziegler, Mullins, et al., 1962 | Uncertainty assigned by TRC = 0.0001 bar; TRC |
Ptriple | 0.6875 | bar | N/A | Clark, Din, et al., 1951 | Uncertainty assigned by TRC = 0.0007 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 150.86 | K | N/A | Angus, Armstrong, et al., 1972 | Uncertainty assigned by TRC = 0.1 K; TRC |
Tc | 150.86 | K | N/A | Gosman, McCarty, et al., 1969 | Uncertainty assigned by TRC = 0.1 K; TRC |
Tc | 150.65 | K | N/A | McCain and Ziegler, 1967 | Uncertainty assigned by TRC = 0.03 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 4.8979 | bar | N/A | Angus, Armstrong, et al., 1972 | Uncertainty assigned by TRC = 0.002 bar; TRC |
Pc | 48.9805 | bar | N/A | Gosman, McCarty, et al., 1969 | Uncertainty assigned by TRC = 0.1013 bar; TRC |
Pc | 48.5549 | bar | N/A | McCain and Ziegler, 1967 | Uncertainty assigned by TRC = 0.0709 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 13.41 | mol/l | N/A | Angus, Armstrong, et al., 1972 | Uncertainty assigned by TRC = 0.005 mol/l; TRC |
ρc | 8.4029 | mol/l | N/A | Gosman, McCarty, et al., 1969 | Uncertainty assigned by TRC = 0.008 mol/l; TRC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
114.40 to 150.31 | 4.46903 | 481.012 | 22.156 | McCain and Ziegler, 1967 | Coefficents calculated by NIST from author's data. |
83.78 to 150.72 | 3.29555 | 215.24 | -22.233 | Drii and Rabinovich, 1966 | Coefficents calculated by NIST from author's data. |
129.33 to 147.40 | 4.97171 | 658.982 | 49.819 | van Itterbeek, Verbeke, et al., 1963 | Coefficents calculated by NIST from author's data. |
90.94 to 101.48 | 3.73479 | 302.683 | -6.083 | Clark, Din, et al., 1951, 2 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: Li+ + Ar = (Li+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 4. | kJ/mol | AVG | N/A | Average of 4 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30. | J/mol*K | DT | McKnight and Sawina, 1973 | gas phase; ΔrS approximate; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.9 | 294. | IMob | Cassidy and Elford, 1985 | gas phase; M |
7.9 | 319. | DT | Keller, Beyer, et al., 1973 | gas phase; LOW E/N; M |
11. | 215. | DT | McKnight and Sawina, 1973 | gas phase; ΔrS approximate; M |
By formula: Ar+ + Ar = (Ar+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. ± 90. | kJ/mol | AVG | N/A | Average of 5 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 53.6 | J/mol*K | PHPMS | Teng and Conway, 1973 | gas phase; switching reaction(N2+)Ar; Turner and Conway, 1979, Liu and Conway, 1975; M |
By formula: K+ + Ar = (K+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12. ± 3. | kJ/mol | AVG | N/A | Average of 9 values; Individual data points |
By formula: N2+ + Ar = (N2+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 112. | kJ/mol | PD/KERD | Kim and Bowers, 1990 | gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M |
ΔrH° | 106. | kJ/mol | PHPMS | Teng and Conway, 1973 | gas phase; switching reaction(N2+)N2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.6 | J/mol*K | PD/KERD | Kim and Bowers, 1990 | gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M |
ΔrS° | 57.3 | J/mol*K | PHPMS | Teng and Conway, 1973 | gas phase; switching reaction(N2+)N2; M |
By formula: Cs+ + Ar = (Cs+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.16 | kJ/mol | IMob | Gatland, 1984 | gas phase; M |
ΔrH° | 6.11 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 8.20 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 9.54 | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
ΔrH° | 9.6 | kJ/mol | IMob | Takebe, 1983 | gas phase; values from this reference are consistently too high; M |
By formula: Cr+ + Ar = (Cr+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. ± 2. | kJ/mol | SIDT | Kemper, Hsu, et al., 1991 | gas phase; ΔrH(0 K) = 27.4 kJ/mol, ΔrS(100 K) = 60.2 J/mol*K; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 66.1 | J/mol*K | SIDT | Kemper, Hsu, et al., 1991 | gas phase; ΔrH(0 K) = 27.4 kJ/mol, ΔrS(100 K) = 60.2 J/mol*K; M |
By formula: Na+ + Ar = (Na+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 8.8 | kJ/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 15.5 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 18.4 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 18. | kJ/mol | DT | McKnight and Sawina, 1973 | gas phase; M |
ΔrH° | 20.4 | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
By formula: H3+ + Ar = (H3+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 31. ± 3. | kJ/mol | SIFT | Bedford and Smith, 1990 | gas phase; switching reaction(H3+)H2, Hiraoka and Mori, 1989; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 56.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: Xe+ + Ar = (Xe+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. | kJ/mol | PI | Dehmer and Pratt, 1982 | gas phase; M |
ΔrH° | 25. | kJ/mol | SIFT | Jones, Lister, et al., 1980 | gas phase; M |
ΔrH° | 13. | kJ/mol | PI | Ng, Tiedemann, et al., 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.2 | J/mol*K | SIFT | Jones, Lister, et al., 1980 | gas phase; M |
By formula: (Ar+ • 2Ar) + Ar = (Ar+ • 3Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.4 | J/mol*K | PHPMS | Hiraoka and Mori, 1989, 2 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.4 | 77. | PHPMS | Teng and Conway, 1973 | gas phase; M |
By formula: (N2+ • 7Ar) + Ar = (N2+ • 8Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.40 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | N/A | Hiraoka, Mori, et al., 1992 | gas phase; Entropy change calculated or estimated; M |
By formula: (N2+ • 8Ar) + Ar = (N2+ • 9Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.36 | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | N/A | Hiraoka, Mori, et al., 1992 | gas phase; Entropy change calculated or estimated; M |
+ = ArF-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.37 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; Entropy estimated; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -16.6 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; Entropy estimated; B |
By formula: Rb+ + Ar = (Rb+ • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.49 | kJ/mol | IMob | Gatland, 1984 | gas phase; M |
ΔrH° | 8.28 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 11.9 | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
By formula: (O- • 10Ar) + Ar = (O- • 11Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2. ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 11Ar) + Ar = (O- • 12Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3. ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 12Ar) + Ar = (O- • 13Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.8 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 13Ar) + Ar = (O- • 14Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.8 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 14Ar) + Ar = (O- • 15Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2. ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 15Ar) + Ar = (O- • 16Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 16Ar) + Ar = (O- • 17Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 17Ar) + Ar = (O- • 18Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.8 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 18Ar) + Ar = (O- • 19Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 19Ar) + Ar = (O- • 20Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 20Ar) + Ar = (O- • 21Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 21Ar) + Ar = (O- • 22Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 22Ar) + Ar = (O- • 23Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 23Ar) + Ar = (O- • 24Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 24Ar) + Ar = (O- • 25Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.8 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 25Ar) + Ar = (O- • 26Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.8 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 9Ar) + Ar = (O- • 10Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3. ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 2Ar) + Ar = (O- • 3Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.7 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 3Ar) + Ar = (O- • 4Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.9 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 4Ar) + Ar = (O- • 5Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.0 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 5Ar) + Ar = (O- • 6Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.0 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 6Ar) + Ar = (O- • 7Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.2 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 7Ar) + Ar = (O- • 8Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4. ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • 8Ar) + Ar = (O- • 9Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4. ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (O- • Ar) + Ar = (O- • 2Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.4 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Ar+ • Ar) + Ar = (Ar+ • 2Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.2 ± 0.3 | kJ/mol | PHPMS | Turner and Conway, 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.9 | J/mol*K | PHPMS | Turner and Conway, 1979 | gas phase; M |
By formula: (N2+ • Ar) + Ar = (N2+ • 2Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16. | kJ/mol | PHPMS | Hiraoka, Mori, et al., 1992 | gas phase; ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71. | J/mol*K | PHPMS | Hiraoka, Mori, et al., 1992 | gas phase; ΔrH>; M |
By formula: O- + Ar = (O- • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.2 ± 8.4 | kJ/mol | N/A | Arnold, Hendricks, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Ar+ • 10Ar) + Ar = (Ar+ • 11Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.5 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1989, 2 | gas phase; M |
By formula: (Ar+ • 9Ar) + Ar = (Ar+ • 10Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.49 ± 0.84 | kJ/mol | PHPMS | Hiraoka and Mori, 1989, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71.5 | J/mol*K | PHPMS | Hiraoka and Mori, 1989, 2 | gas phase; M |
By formula: (D3+ • 2Ar) + Ar = (D3+ • 3Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.6 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.0 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 3Ar) + Ar = (D3+ • 4Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.2 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.5 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 4Ar) + Ar = (D3+ • 5Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.5 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 5Ar) + Ar = (D3+ • 6Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.1 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 6Ar) + Ar = (D3+ • 7Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.5 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (Ar+ • 3Ar) + Ar = (Ar+ • 4Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 58.2 | J/mol*K | PHPMS | Hiraoka and Mori, 1989, 2 | gas phase; M |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 15.759 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 369.2 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 346.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
15.763 | PIPECO | Weitzel, Mahnert, et al., 1994 | LL |
15.75962 | EVAL | Lide, 1992 | LL |
15.82 | EI | Wetzel, Baiocchi, et al., 1987 | LBLHLM |
15.760 | S | Kelly, 1987 | LBLHLM |
15.759 | PE | Kimura, Katsumata, et al., 1981 | LLK |
15.88 | EI | Clare and Sowerby, 1981 | LLK |
15.7 | EI | Freiser, 1980 | LLK |
15.75962 ± 0.00001 | S | Minnhagen, 1973 | LLK |
15.753 ± 0.002 | TE | Spohr, Guyon, et al., 1971 | LLK |
15.75962 ± 0.00001 | S | Yoshino, 1970 | RDSH |
15.759 | S | Yoshino, 1969 | RDSH |
15.713 ± 0.003 | CI | Hotop and Niehaus, 1969 | RDSH |
15.757 ± 0.005 | PE | Collin and Natalis, 1968 | RDSH |
15.74 ± 0.05 | EI | Gallegos and Klaver, 1967 | RDSH |
15.78 ± 0.03 | EI | Winters, Collins, et al., 1966 | RDSH |
15.79 | PE | Al-Joboury and Turner, 1963 | RDSH |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Streng, 1971
Streng, A.G.,
Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature,
J. Chem. Eng. Data, 1971, 16, 357. [all data]
Gosman, McCarty, et al., 1969
Gosman, A.L.; McCarty, R.D.; Hust, J.G.,
Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. NSRDS-NBS 27, 1969. [all data]
Van't Zelfde, Omar, et al., 1968
Van't Zelfde, P.; Omar, M.H.; LePair-Schroten, H.G.M.; Dokoupil, Z.,
Solid-liquid equilibrium diagram for the argon + methane system.,
Physica (Amsterdam), 1968, 38, 241-51. [all data]
Angus, Armstrong, et al., 1972
Angus, S.; Armstrong, B.; Gosman, A.L.; McCarty, R.D.; Hust, J.G.; Vasserman, A.A.; Rabinovich, V.A.,
International Thermodynamic Tables of the Fluid State - 1 Argon, Butterworths, London, 1972. [all data]
Ziegler, Mullins, et al., 1962
Ziegler, W.T.; Mullins, J.C.; Kirk, B.S.,
Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids, Especially Below One Atmosphere Pressure. II. Argon, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-460, Tech. Rep. No. 2, 1962. [all data]
Clark, Din, et al., 1951
Clark, A.M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, Th.N.,
The Vapor Pressure of Argon,
Physica (Amsterdam), 1951, 17, 876. [all data]
Clusius and Weigand, 1940
Clusius, K.; Weigand, K.,
Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting,
Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]
McCain and Ziegler, 1967
McCain, W.D., Jr.; Ziegler, W.T.,
The Critical Temperature, Critical Pressure, and Vapor Pressure of Argon,
J. Chem. Eng. Data, 1967, 12, 2, 199-202, https://doi.org/10.1021/je60033a012
. [all data]
Drii and Rabinovich, 1966
Drii, L.I.; Rabinovich, V.A.,
Dependence of Vapor Pressure of Argon,
Zh. Fiz. Khim., 1966, 40, 709-711. [all data]
van Itterbeek, Verbeke, et al., 1963
van Itterbeek, A.; Verbeke, O.; Staes, K.,
Measurements on the Equation of State of Liquid Argon and Methane Up to 300 kg cm-2 at Low Temperatures,
Physica (Amsterdam), 1963, 29, 6, 742-754, https://doi.org/10.1016/S0031-8914(63)80231-1
. [all data]
Clark, Din, et al., 1951, 2
Clark, A.M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, Th.,
The Vapour Pressure of Argon,
Physica (Amsterdam), 1951, 17, 10, 876-884, https://doi.org/10.1016/0031-8914(51)90041-9
. [all data]
McKnight and Sawina, 1973
McKnight, L.G.; Sawina, J.M.,
Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases,
Bull. Am. Phys. Soc., 1973, 18, 804. [all data]
Cassidy and Elford, 1985
Cassidy, R.A.; Elford, M.T.,
The Mobility of Li+ Ions in Helium and Argon,
Aust. J. Phys., 1985, 38, 4, 587, https://doi.org/10.1071/PH850587
. [all data]
Keller, Beyer, et al., 1973
Keller, C.E.; Beyer, R.A.; Colonna-Romano, L.M.,
Clustering of Ar to Li+ and a Comparison of Drift - Tube Models,
Phys. Rev. A, 1973, 8, 3, 1446, https://doi.org/10.1103/PhysRevA.8.1446
. [all data]
Teng and Conway, 1973
Teng, H.H.; Conway, D.C.,
Ion - Molecule Equilibria in Mixtures of N2 and Ar,
J. Chem. Phys., 1973, 59, 5, 2316, https://doi.org/10.1063/1.1680338
. [all data]
Turner and Conway, 1979
Turner, D.L.; Conway, D.C.,
Study of the 2Ar + Ar2+ = Ar + Ar3+ Reaction,
J. Chem. Phys., 1979, 71, 4, 1899, https://doi.org/10.1063/1.438544
. [all data]
Liu and Conway, 1975
Liu, W.F.; Conway, D.C.,
Ion - Molecule Reactions in Ar at 296, 195, and 77 K,
J. Chem. Phys., 1975, 62, 8, 3070, https://doi.org/10.1063/1.430906
. [all data]
Kim and Bowers, 1990
Kim, H.S.; Bowers, M.T.,
Energetics, Structure and Photodissociation Dynamics of the Cluster Ar.N2+,
J. Chem. Phys., 1990, 93, 2, 1158, https://doi.org/10.1063/1.459179
. [all data]
Hiraoka and Nakajima, 1988
Hiraoka, K.; Nakajima, G.,
A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria,
J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285
. [all data]
Gatland, 1984
Gatland, I.R.,
Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]
Gislason, 1984
Gislason, E.A.,
Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]
Viehland, 1984
Viehland, L.A.,
Interaction Potentials for Li+ - Rare - Gas Systems,
Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3
. [all data]
Takebe, 1983
Takebe, M.,
The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves,
J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763
. [all data]
Kemper, Hsu, et al., 1991
Kemper, P.R.; Hsu, M.T.; Bowers, M.T.,
Transition - Metal Ion - Rare Gas Clusters: Bond Strengths and Molecular Parameters for Co+(He/Ne)n, Ni+(He/Ne)n, and Cr+(He/Ne/Ar),
J. Phys. Chem., 1991, 95, 26, 10600, https://doi.org/10.1021/j100179a022
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T.,
Isotope Effect and Nature of Bonding in the Cluster Ions H3+(Ar)n and D3+(Ar)n,
J. Chem. Phys., 1989, 91, 8, 4821, https://doi.org/10.1063/1.456720
. [all data]
Bedford and Smith, 1990
Bedford, D.K.; Smith, D.,
Variable-temperature selected ion flow tube studies of the reactions of Ar+, Ar2+ and ArHn+ (n=1-3) ions with H2, HD and D2 at 300 K and 80 K,
Int. J. Mass Spectrom. Ion Proc., 1990, 98, 2, 179, https://doi.org/10.1016/0168-1176(90)85017-V
. [all data]
Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T.,
Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions,
J. Chem. Phys., 1982, 77, 4804. [all data]
Jones, Lister, et al., 1980
Jones, J.D.C.; Lister, D.G.; Twiddy, N.D.,
Equilibrium Constant for the Reaction Xe+ + 2Ar ---> XeAr+ + Ar in the Temperature Range 150 - 300 K and the Dissociation Energy of XeAr+,
Chem. Phys. Lett., 1980, 70, 3, 575, https://doi.org/10.1016/0009-2614(80)80128-X
. [all data]
Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T.,
Photoionization Studies of the Diatomic Internuclear Rare Gas Molecules XeKr, XeAr, and KrAr,
J. Chem. Phys., 1977, 66, 12, 5737, https://doi.org/10.1063/1.433848
. [all data]
Hiraoka and Mori, 1989, 2
Hiraoka, K.; Mori, T.,
Formation and Stabilities of Cluster Ions Arn+,
J. Chem. Phys., 1989, 90, 12, 7143, https://doi.org/10.1063/1.456245
. [all data]
Hiraoka, Mori, et al., 1992
Hiraoka, K.; Mori, T.; Yamabe, S.,
Gas-Phase Solvation of N2+ with Ar Atoms - A Charge Switch in the Reaction N2+(Ar)...Ar+(N2),
Chem. Phys. Lett., 1992, 189, 1, 7, https://doi.org/10.1016/0009-2614(92)85144-Y
. [all data]
Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K.,
Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms,
Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053
. [all data]
Arnold, Hendricks, et al., 1995
Arnold, S.T.; Hendricks, J.H.; Bowen, K.H.,
Photoelectron spectroscopy of the solvated anion clusters O-(Ar)(n=1-26,34): Energetics and structure,
J. Chem. Phys., 1995, 102, 1, 39, https://doi.org/10.1063/1.469415
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Weitzel, Mahnert, et al., 1994
Weitzel, K.-M.; Mahnert, J.; Penno, M.,
ZEKE-PEPICO investigations of dissociation energies in ionic reactions,
Chem. Phys. Lett., 1994, 224, 371. [all data]
Lide, 1992
Lide, D.R. (Editor),
Ionization potentials of atoms and atomic ions
in Handbook of Chem. and Phys., 1992, 10-211. [all data]
Wetzel, Baiocchi, et al., 1987
Wetzel, R.C.; Baiocchi, F.A.; Hayes, T.R.; Freund, R.S.,
Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method,
Phys. Rev. A, 1987, 35, 559. [all data]
Kelly, 1987
Kelly, R.L.,
Atomic and ionic spectrum lines of hydrogen through kryton,
J. Phys. Chem. Ref. Data, 1987, 16. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Clare and Sowerby, 1981
Clare, P.; Sowerby, D.B.,
Electron impact ionisation energies of some halo-cyclotriphosphazenes,
J. Inorg. Nucl. Chem., 1981, 43, 477. [all data]
Freiser, 1980
Freiser, B.S.,
Electron impact ionization of argon ions by trapped ion cyclotron resonanace spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1980, 33, 263. [all data]
Minnhagen, 1973
Minnhagen, L.,
Spectrum and the energy levels of neutral argon, Ar I,
J. Opt. Soc. Am., 1973, 63, 1185. [all data]
Spohr, Guyon, et al., 1971
Spohr, R.; Guyon, P.M.; Chupka, W.A.; Berkowitz, J.,
Threshold photoelectron detector for use in the vacuum ultraviolet,
Rev. Sci. Instrum., 1971, 42, 1872. [all data]
Yoshino, 1970
Yoshino, K.,
Absorption spectrum of the argon atom in the vacuum-ultraviolet region,
J. Opt. Soc. Am., 1970, 60, 1220. [all data]
Yoshino, 1969
Yoshino, K.,
Absorption spectrum of the argon atom in the vacuum-ultraviolet region,
J. Opt. Soc. Am., 1969, 59, 1525. [all data]
Hotop and Niehaus, 1969
Hotop, H.; Niehaus, A.,
Reactions of excited atoms molecules with atoms and molecules. II. Energy analysis of penning electrons,
Z. Phys., 1969, 228, 68. [all data]
Collin and Natalis, 1968
Collin, J.E.; Natalis, P.,
Vibrational and electronic ionic states of nitric oxide. An accurate method for measuring ionization potentials by photoelectron spectroscopy,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 483. [all data]
Gallegos and Klaver, 1967
Gallegos, E.J.; Klaver, R.F.,
Automatic voltage scanner for a peak switching mass spectrometer,
J.Sci. Instr., 1967, 44, 427. [all data]
Winters, Collins, et al., 1966
Winters, R.E.; Collins, J.H.; Courchene, W.L.,
Resolution of fine structure in ionization-efficiency curves,
J. Chem. Phys., 1966, 45, 1931. [all data]
Al-Joboury and Turner, 1963
Al-Joboury, M.I.; Turner, D.W.,
Molecular photo-electron spectroscopy. Part I. The hydrogen and nitrogen molecules,
J. Chem. Soc., 1963, 5141. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
IE (evaluated) Recommended ionization energy Pc Critical pressure Ptriple Triple point pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.