Acetylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas226.73kJ/molReviewChase, 1998Data last reviewed in March, 1961
Δfgas227.4 ± 0.8kJ/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Δfgas226.7 ± 0.79kJ/molCcbWagman, Kilpatrick, et al., 1945Unpublished work of E. J. Prosen; ALS
Quantity Value Units Method Reference Comment
gas,1 bar200.93J/mol*KReviewChase, 1998Data last reviewed in March, 1961

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
29.35100.Gurvich, Veyts, et al., 1989p=1 bar.; GT
35.57200.
44.04298.15
44.17300.
50.39400.
54.75500.
58.12600.
60.97700.
63.51800.
65.83900.
67.961000.
69.911100.
71.691200.
73.301300.
74.761400.
76.081500.
77.271600.
78.351700.
79.321800.
80.211900.
81.012000.
81.742100.
82.412200.
83.032300.
83.602400.
84.122500.
84.612600.
85.062700.
85.492800.
85.892900.
86.263000.

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1100.1100. to 6000.
A 40.6869767.47244
B 40.7327911.75110
C -16.17840-2.021470
D 3.6697410.136195
E -0.658411-9.806418
F 210.7067185.4550
G 235.0052253.5337
H 226.7314226.7314
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in March, 1961 Data last reviewed in March, 1961

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil189.KN/ABuckingham and Donaghy, 1982BS
Tboil189.6KN/AMaass and Wright, 1921Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tfus171.65KN/AMorehouse and Maass, 1931Uncertainty assigned by TRC = 0.5 K; TRC
Tfus191.4KN/AMaass and Russell, 1918Uncertainty assigned by TRC = 1. K; TRC
Tfus191.65KN/AMcIntosh, 1907Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple192.4KN/AClark and Din, 1950Uncertainty assigned by TRC = 0.5 K; TRC
Ttriple191.35KN/AMaass and Wright, 1921Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ptriple1.2825barN/AClark and Din, 1950Uncertainty assigned by TRC = 0.0039 bar; TRC
Quantity Value Units Method Reference Comment
Tc308.3 ± 0.1KN/ATsonopoulos and Ambrose, 1996 
Tc308.35KN/AGoloborod'ko and Khodeeva, 1972Visual, as Goloborod'ko and Khodeeva Zh.Fiz.Khim. 1969,43,1340; TRC
Tc308.66KN/AKhodeeva, 1966TRC
Tc309.7KN/AMaass and Wright, 1921Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Pc61.38 ± 0.10barN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Vc0.1122l/molN/ATsonopoulos and Ambrose, 1996 
Vc0.113l/molN/AKhodeeva, 1966Visual, samples thoroughly purified; TRC
Quantity Value Units Method Reference Comment
ρc8.91 ± 0.010mol/lN/ATsonopoulos and Ambrose, 1996 

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
16.3273.AStephenson and Malanowski, 1987Based on data from 258. to 308. K.; AC
16.7207.AStephenson and Malanowski, 1987Based on data from 192. to 308. K.; AC
16.7210.AStephenson and Malanowski, 1987Based on data from 192. to 225. K.; AC
17.0214.N/AReid, 1972AC
16.4230.N/AAmbrose and Townsend, 1964Based on data from 215. to 308. K.; AC
16.8200.N/AAmbrose, 1956Based on data from 193. to 207. K. See also Boublik, Fried, et al., 1984.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
214.64 to 308.334.66141909.0797.947Ambrose and Townsend, 1964, 2Coefficents calculated by NIST from author's data.
192.59 to 206.304.19598699.53-21.47Ambrose, 1956, 2Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
23.5130.AStephenson and Malanowski, 1987Based on data from 98. to 145. K.; AC
21.8162.N/AJones, 1960Based on data from 133. to 191. K.; AC
25.2193.N/AAmbrose, 1956Based on data from 151. to 193. K.; AC
22.7160.AStull, 1947Based on data from 130. to 189. K.; AC
22.1129.ABurbo, 1943Based on data from 89. to 169. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
3.76192.4Miskiewicz, Rieser, et al., 2010AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
17.8142.7Miskiewicz, Rieser, et al., 1976CAL
19.5192.4

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C2H- + Hydrogen cation = Acetylene

By formula: C2H- + H+ = C2H2

Quantity Value Units Method Reference Comment
Δr1580. ± 20.kJ/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1550. ± 20.kJ/molAVGN/AAverage of 7 values; Individual data points

COS+ + Acetylene = (COS+ • Acetylene)

By formula: COS+ + C2H2 = (COS+ • C2H2)

Quantity Value Units Method Reference Comment
Δr116.kJ/molPD/KERDGraul S.T. and Bowers, 1991gas phase; ΔrH>=; M
Δr140.kJ/molPDissOrlando, Friedman, et al., 1990gas phase; M
Δr140.kJ/molPDissOrlando, Friedman, et al., 1990gas phase; M
Δr141. ± 22.kJ/molPDissOrlando, Friedman, et al., 1990gas phase; ΔrH<; M

Cobalt ion (1+) + Acetylene = (Cobalt ion (1+) • Acetylene)

By formula: Co+ + C2H2 = (Co+ • C2H2)

Quantity Value Units Method Reference Comment
Δr180. ± 7.9kJ/molIRMPDSurya, Ranatunga, et al., 1997RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
27. (+13.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH >=, guided ion beam CID; M

Nickel ion (1+) + Acetylene = (Nickel ion (1+) • Acetylene)

By formula: Ni+ + C2H2 = (Ni+ • C2H2)

Quantity Value Units Method Reference Comment
Δr188. ± 7.9kJ/molIRMPDSurya, Ranatunga, et al., 1997RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
7. (+18.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

2Hydrogen + Acetylene = Ethane

By formula: 2H2 + C2H2 = C2H6

Quantity Value Units Method Reference Comment
Δr-312.0 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -314.1 ± 2.8 kJ/mol; At 355 K; ALS

2,5-Norbornadiene = 1,3-Cyclopentadiene + Acetylene

By formula: C7H8 = C5H6 + C2H2

Quantity Value Units Method Reference Comment
Δr117.2 ± 2.1kJ/molKinWalsh and Wells, 1975gas phase; Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 118.7 ± 1.3 kJ/mol; ALS

C2Na2 (cr) + 2Water (l) = 2(Sodium hydroxide • 1418Water) (solution) + Acetylene (g)

By formula: C2Na2 (cr) + 2H2O (l) = 2(HNaO • 1418H2O) (solution) + C2H2 (g)

Quantity Value Units Method Reference Comment
Δr-161.8 ± 1.5kJ/molRSCJohnson, van Deventer, et al., 1973Please also see Pedley and Rylance, 1977.; MS

C2HCs (cr) + Water (l) = (Cesium hydroxide • 1031Water) (solution) + Acetylene (g)

By formula: C2HCs (cr) + H2O (l) = (HCsO • 1031H2O) (solution) + C2H2 (g)

Quantity Value Units Method Reference Comment
Δr-54.0 ± 0.8kJ/molRSCAder and Hubbard, 1973Please also see Pedley and Rylance, 1977.; MS

C2HNa (cr) + Water (l) = (Sodium hydroxide • 1418Water) (solution) + Acetylene (g)

By formula: C2HNa (cr) + H2O (l) = (HNaO • 1418H2O) (solution) + C2H2 (g)

Quantity Value Units Method Reference Comment
Δr-54.2 ± 0.8kJ/molRSCJohnson, van Deventer, et al., 1973Please also see Pedley and Rylance, 1977.; MS

Copper ion (1+) + Acetylene = (Copper ion (1+) • Acetylene)

By formula: Cu+ + C2H2 = (Cu+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
10. (+10.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

2Acetylene = 1-Buten-3-yne

By formula: 2C2H2 = C4H4

Quantity Value Units Method Reference Comment
Δr233.kJ/molCmReppe, Schlichting, et al., 1948liquid phase; ALS
Δr208.kJ/molCmReppe, Schlichting, et al., 1948gas phase; ALS

Rh+ + Acetylene = (Rh+ • Acetylene)

By formula: Rh+ + C2H2 = (Rh+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
129. CIDChen and Armetrout, 1995gas phase; ΔrH>=, guided ion beam CID; M

Chromium ion (1+) + Acetylene = (Chromium ion (1+) • Acetylene)

By formula: Cr+ + C2H2 = (Cr+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
184. (+20.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Titanium ion (1+) + Acetylene = (Titanium ion (1+) • Acetylene)

By formula: Ti+ + C2H2 = (Ti+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
253. (+20.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Lanthanum ion (1+) + Acetylene = (Lanthanum ion (1+) • Acetylene)

By formula: La+ + C2H2 = (La+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
262. (+30.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Scandium ion (1+) + Acetylene = (Scandium ion (1+) • Acetylene)

By formula: Sc+ + C2H2 = (Sc+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
240. (+20.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Vanadium ion (1+) + Acetylene = (Vanadium ion (1+) • Acetylene)

By formula: V+ + C2H2 = (V+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
205. (+20.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Yttrium ion (1+) + Acetylene = (Yttrium ion (1+) • Acetylene)

By formula: Y+ + C2H2 = (Y+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
253. (+30.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Bromine anion + Acetylene = C2H2Br-

By formula: Br- + C2H2 = C2H2Br-

Quantity Value Units Method Reference Comment
Δr36.0kJ/molLPESWild, Milley, et al., 2000gas phase; Given: 8.635±0.009 kcal/mol(0 K); B

C2Ag2 (cr) + 2(Hydrogen chloride • 12.3Water) (solution) = Acetylene (aq) + 2Silver chloride (cr)

By formula: C2Ag2 (cr) + 2(HCl • 12.3H2O) (solution) = C2H2 (aq) + 2AgCl (cr)

Quantity Value Units Method Reference Comment
Δr-77.8 ± 0.6kJ/molRSCFinch, Gardner, et al., 1991MS

(CAS Reg. No. 25012-81-1 • 4294967295Acetylene) + Acetylene = CAS Reg. No. 25012-81-1

By formula: (CAS Reg. No. 25012-81-1 • 4294967295C2H2) + C2H2 = CAS Reg. No. 25012-81-1

Quantity Value Units Method Reference Comment
Δr138.2 ± 3.0kJ/molN/AErvin, Gronert, et al., 1990gas phase; B

Aluminum ion (1+) + Acetylene = (Aluminum ion (1+) • Acetylene)

By formula: Al+ + C2H2 = (Al+ • C2H2)

Quantity Value Units Method Reference Comment
Δr54.4 ± 8.4kJ/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

Ethylene, 1,2-dichloro-, (Z)- = Acetylene + Chlorine

By formula: C2H2Cl2 = C2H2 + Cl2

Quantity Value Units Method Reference Comment
Δr21.kJ/molKinLaursen and Pimentel, 1989gas phase; Photolyses; ALS

Ethene, chloro- = Acetylene + Hydrogen chloride

By formula: C2H3Cl = C2H2 + HCl

Quantity Value Units Method Reference Comment
Δr100.7 ± 1.2kJ/molCmLacher, Gottlieb, et al., 1962gas phase; ALS

1,3-Cyclopentadiene + Acetylene = 2,5-Norbornadiene

By formula: C5H6 + C2H2 = C7H8

Quantity Value Units Method Reference Comment
Δr-117. ± 2.kJ/molEqkWalsh and Wells, 1975gas phase; ALS

C2H2+ + Acetylene = (C2H2+ • Acetylene)

By formula: C2H2+ + C2H2 = (C2H2+ • C2H2)

Quantity Value Units Method Reference Comment
Δr94.6kJ/molPIOno and Ng, 1982gas phase; M

Iron ion (1+) + Acetylene = (Iron ion (1+) • Acetylene)

By formula: Fe+ + C2H2 = (Fe+ • C2H2)

Quantity Value Units Method Reference Comment
Δr151. ± 7.9kJ/molIRMPDSurya, Ranatunga, et al., 1997RCD

(Z)-1,2-Diiodoethylene = Acetylene + Iodine

By formula: C2H2I2 = C2H2 + I2

Quantity Value Units Method Reference Comment
Δr83.3kJ/molEqkFuruyama, Golden, et al., 1968gas phase; ALS

C2H2I2 = Acetylene + Iodine

By formula: C2H2I2 = C2H2 + I2

Quantity Value Units Method Reference Comment
Δr83.3kJ/molEqkFuruyama, Golden, et al., 1968gas phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman

View reactions leading to C2H2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)11.400 ± 0.002eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)641.4kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity616.7kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
11.41 ± 0.01EIPlessis and Marmet, 1986LBLHLM
11.40PIHayaishi, Iwata, et al., 1982LBLHLM
11.4EVALRosmus, Botschwina, et al., 1981LLK
11.40PEKimura, Katsumata, et al., 1981LLK
11.40PEBieri, Schmelzer, et al., 1980LLK
11.4 ± 0.1EISuzuki and Maeda, 1978LLK
11.4 ± 0.1EISuzuki and Maeda, 1977LLK
11.40 ± 0.02PEBieri, Burger, et al., 1977LLK
~11.3EIVan Veen and Plantenga, 1976LLK
11.37 ± 0.05EIReeher, Flesch, et al., 1976LLK
11.403 ± 0.0003PECarlier, Dubois, et al., 1975LLK
11.394 ± 0.005PIParr and Taylor, 1973LLK
11.398 ± 0.005PIDibeler and Walker, 1973LLK
11.40PEBrogli, Heilbronner, et al., 1973LLK
11.39 ± 0.02EILossing, 1970RDSH
11.395 ± 0.015PIOmura, Kaneko, et al., 1969RDSH
11.39 ± 0.05EIWilliams and Hamill, 1968RDSH
11.41 ± 0.01EICollins, Winters, et al., 1968RDSH
11.40 ± 0.01PEBaker and Turner, 1968RDSH
11.400 ± 0.005PIBrehm, 1966RDSH
11.396 ± 0.003PINicholson, 1965RDSH
11.40 ± 0.02EIMelton and Hamill, 1964RDSH
11.406 ± 0.006PIDibeler and Reese, 1964RDSH
11.41 ± 0.01PIWatanabe and Namioka, 1956RDSH
11.2 ± 0.1EIKusch, Hustrulid, et al., 1937RDSH
11.41SPrice, 1935RDSH
11.49PEBieri and Asbrink, 1980Vertical value; LLK
11.43PECavell and Allison, 1978Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+21.20 ± 0.05CH2EILocht and Davister, 1995LL
C+24. ± 1.?PICooper, Ibuki, et al., 1988LL
C+20.43 ± 0.05CH2EIPlessis and Marmet, 1986LBLHLM
C+22.5 ± 0.3C+2HEISuzuki and Maeda, 1977LLK
C+23.6?EIBloch, 1963RDSH
C+24.5 ± 1.0C+2HEIKusch, Hustrulid, et al., 1937RDSH
CH+20.85 ± 0.05CHEIDavister and Locht, 1995LL
CH+20.54 ± 0.05CHEIPlessis and Marmet, 1986LBLHLM
CH+23.9 ± 0.2C+HEIPlessis and Marmet, 1986LBLHLM
CH+24.1C+HPIHayaishi, Iwata, et al., 1982LBLHLM
CH+20.7 ± 0.1CHPIHayaishi, Iwata, et al., 1982LBLHLM
CH+20.9 ± 0.2CHEISuzuki and Maeda, 1977LLK
CH+21.5 ± 0.2CHEIKloster-Jensen, Pascual, et al., 1970RDSH
CH+21.9CHEIHaney and Franklin, 1968RDSH
CH+22.2 ± 0.5CHEIKusch, Hustrulid, et al., 1937RDSH
CH2+19.74 ± 0.20CEILocht and Davister, 1995LL
CH2+18.17 ± 0.09C-EIPlessis and Marmet, 1986LBLHLM
CH2+19.40 ± 0.12CEIPlessis and Marmet, 1986LBLHLM
CH2+19.4 ± 0.1CPIHayaishi, Iwata, et al., 1982LBLHLM
CH2+20.5 ± 0.2?EISuzuki and Maeda, 1977LLK
CH2+21.CEIFranklin and Munson, 1965RDSH
C2+19. ± 1.H2CIELReid, Ballantine, et al., 1995LL
C2+18.44 ± 0.07H2EILocht and Davister, 1995LL
C2+22.60 ± 0.122HEIPlessis and Marmet, 1986LBLHLM
C2+18.16 ± 0.05H2EIPlessis and Marmet, 1986LBLHLM
C2+18.1 ± 0.1H2PIHayaishi, Iwata, et al., 1982LBLHLM
C2+22.7 ± 0.12HPIHayaishi, Iwata, et al., 1982LBLHLM
C2+19.2 ± 0.2?EISuzuki and Maeda, 1977LLK
C2+23.62H?EIMomigny and Derouane, 1968RDSH
C2+19.5H2EIBloch, 1963RDSH
C2+23.82H?EIBloch, 1963RDSH
C2+22.72H?EIField, Franklin, et al., 1957RDSH
C2+18.2H2EIField, Franklin, et al., 1957RDSH
C2+23.3 ± 0.52H?EICoats and Anderson, 1957RDSH
C2+23.8 ± 0.32HEIKusch, Hustrulid, et al., 1937RDSH
C2H+17.35 ± 0.04HPIPECOServais and Locht, 1995LL
C2H+17.360HPIPECOWeitzel, Mahnert, et al., 1994LL
C2H+17.30 ± 0.08HEIDavister and Locht, 1994LL
C2H+17.33 ± 0.05HPIPECONorwood and Ng, 1989LL
C2H+16.70 ± 0.10HEIPlessis and Marmet, 1986LBLHLM
C2H+16.8 ± 0.1HPIHayaishi, Iwata, et al., 1982LBLHLM
C2H+16.79 ± 0.03HPIOno and Ng, 1981LLK
C2H+17.3HPIPECOEland, 1979LLK
C2H+17.5 ± 0.1HEISuzuki and Maeda, 1977LLK
C2H+17.36 ± 0.01HPIDibeler, Walker, et al., 1973LLK
C2H+17.22HPIBotter, Dibeler, et al., 1966RDSH
C2H+17.3HEIField, Franklin, et al., 1957RDSH
C2H+17.8 ± 0.2HEIKusch, Hustrulid, et al., 1937RDSH
H+18.83 ± 0.23C2HEIDavister and Locht, 1994LL
H+23. ± 1.?PICooper, Ibuki, et al., 1988LL
H+19.35 ± 0.05C2HPIShiromaru, Achiba, et al., 1987LBLHLM
H+20.6 ± 0.3?EISuzuki and Maeda, 1977LLK
H+21.7 ± 1.0C2+HEIKusch, Hustrulid, et al., 1937RDSH
H+25.6 ± 1.0CH+CEIKusch, Hustrulid, et al., 1937RDSH

De-protonation reactions

C2H- + Hydrogen cation = Acetylene

By formula: C2H- + H+ = C2H2

Quantity Value Units Method Reference Comment
Δr1580. ± 20.kJ/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1550. ± 20.kJ/molAVGN/AAverage of 7 values; Individual data points

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSqualane27.155.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.157.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.156.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.156.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1195.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH182.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryOV-101176.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone156.Chen and Feng, 2007Program: not specified
CapillaryPorapack Q182.Zenkevich and Rodin, 2004Program: not specified
CapillaryMethyl Silicone155.N/AProgram: not specified
CapillarySPB-1165.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1165.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Wagman, Kilpatrick, et al., 1945
Wagman, D.D.; Kilpatrick, J.E.; Pitzer, K.S.; Rossini, F.D., Heats, equilibrium constants, and free energies of formation of the acetylene hydrocarbons through the pentynes, to 1,500° K, J. Res. NBS, 1945, 35, 467-496. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M., Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]

Maass and Wright, 1921
Maass, O.; Wright, C.H., SOME PHYSICAL PROPERTIES OF HYDROCARBONS CONTAINING TWO AND THREE CARBON ATOMS., J. Am. Chem. Soc., 1921, 43, 5, 1098-1111, https://doi.org/10.1021/ja01438a013 . [all data]

Morehouse and Maass, 1931
Morehouse, F.R.; Maass, O., The Preparationa and Physical Properties of Ethyl and Methyl Acetylene, Can. J. Res., 1931, 5, 306. [all data]

Maass and Russell, 1918
Maass, O.; Russell, J., Unsaturation and molecular compound formation, J. Am. Chem. Soc., 1918, 40, 1561-1573. [all data]

McIntosh, 1907
McIntosh, D., The physical properties of liquid and solid acetylene., J. Phys. Chem., 1907, 11, 306-17. [all data]

Clark and Din, 1950
Clark, A.M.; Din, F., Equilibria Between Solid, Liquid, and Gaseous Phases at Low Temperature binary systems acetylene - carbon dioxide, acetylene - ethylene and acetylene - ethane, Trans. Faraday Soc., 1950, 46, 901. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Goloborod'ko and Khodeeva, 1972
Goloborod'ko, N.P.; Khodeeva, S.M., Russ. J. Phys. Chem. (Engl. Transl.), 1972, 46, 235-7. [all data]

Khodeeva, 1966
Khodeeva, S.M., Visual Observation of Gas-Gas Mixture, Russ. J. Phys. Chem. (Engl. Transl.), 1966, 40, 1061-3. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Ambrose and Townsend, 1964
Ambrose, D.; Townsend, R., Vapour pressure of acetylene, Trans. Faraday Soc., 1964, 60, 1025, https://doi.org/10.1039/tf9646001025 . [all data]

Ambrose, 1956
Ambrose, D., The vapour pressures and critical temperatures of acetylene and carbon dioxide, Trans. Faraday Soc., 1956, 52, 772, https://doi.org/10.1039/tf9565200772 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Ambrose and Townsend, 1964, 2
Ambrose, D.; Townsend, R., Vapour Pressure of Acetylene, Trans. Faraday Soc., 1964, 60, 1025-1029, https://doi.org/10.1039/tf9646001025 . [all data]

Ambrose, 1956, 2
Ambrose, D., The Vapour Pressures and Critical Temperatures of Acetylene and Carbon Dioxide, Trans. Faraday Soc., 1956, 52, 772-781, https://doi.org/10.1039/tf9565200772 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Burbo, 1943
Burbo, P.Z., Russ. J. Phys. Chem., 1943, 7, 286. [all data]

Miskiewicz, Rieser, et al., 2010
Miskiewicz, Stefan; Rieser, Klaus; Dorfmüller, Thomas, Thermodynamische Untersuchungen an kondensierten Phasen, Berichte der Bunsengesellschaft für physikalische Chemie, 2010, 80, 5, 395-405, https://doi.org/10.1002/bbpc.19760800504 . [all data]

Miskiewicz, Rieser, et al., 1976
Miskiewicz, S.; Rieser, K.; Dorfmuller, T., Thermodynamische Untersuchungen an kondensierten Phasen, Ber. Bunsen-Ges. Physik. Chem., 1976, 80, 5, 395, https://doi.org/10.1002/bbpc.19760800504 . [all data]

Graul S.T. and Bowers, 1991
Graul S.T.; Bowers, M.T., Dynamics of Metastable Dissociation and Photodissociation of the Gas Phase Cluster Ion (OCS.C2H2)+, J. Phys. Chem., 1991, 95, 21, 8328, https://doi.org/10.1021/j100174a055 . [all data]

Orlando, Friedman, et al., 1990
Orlando, T.M.; Friedman, A.; Maier, J.P., Photodissociation Spectroscopy of the [OCS C2H2]+ Cluster, J. Chem. Phys., 1990, 92, 12, 7365, https://doi.org/10.1063/1.458222 . [all data]

Surya, Ranatunga, et al., 1997
Surya, P.I.; Ranatunga, D.R.A.; Freiser, B.S., Infrared Multiphoton Dissociation of MC4H6+ [M=Fe, Co or Ni: C4H6=1,3-butadiene or (C2H2)(C2H4), J. Am. Chem. Soc., 1997, 119, 14, 3351, https://doi.org/10.1021/ja963200c . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Walsh and Wells, 1975
Walsh, R.; Wells, J.M., The enthalpy of formation of bicyclo[2,2,1]hepta-2,5-diene. Thermodynamic functions of bicyclo[2,2,1]heptane and bicyclo[2,2,1]hepta-2,5-diene, J. Chem. Thermodyn., 1975, 7, 149-154. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Johnson, van Deventer, et al., 1973
Johnson, G.K.; van Deventer, E.H.; Ackerman, J.P.; Hubbard, W.N.; Osborne, D.W.; Flotow, H.L., J. Chem. Thermodyn., 1973, 5, 57. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Ader and Hubbard, 1973
Ader, M.; Hubbard, W.N., J. Chem. Thermodyn., 1973, 5, 607. [all data]

Reppe, Schlichting, et al., 1948
Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T., Cyclisierende Polymerisation von Acetylen I Uber Cyclooctatetraen, Justus Liebigs Ann. Chem., 1948, 1-93. [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]

Wild, Milley, et al., 2000
Wild, D.A.; Milley, P.J.; Loh, Z.M.; Wolynec, P.P.; Weiser, P.S.; Bieske, E.J., Structural and Energetic Properties of the Br--C2H2 Anion Complex from Rotationally Resolved Mid-infrared Spectra And ab initio Calculations, J. Chem. Phys., 2000, 113, 3, 1075, https://doi.org/10.1063/1.481919 . [all data]

Finch, Gardner, et al., 1991
Finch, A.; Gardner, P.J.; Head, A.J.; Majdi, H.S., Thermochim. Acta, 1991, 180, 325. [all data]

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k . [all data]

Laursen and Pimentel, 1989
Laursen, S.L.; Pimentel, G.C., Matrix-induced intersystem crossing in the photochemistry of the 1,2-dichloroethenes, J. Phys. Chem., 1989, 93, 2328-2333. [all data]

Lacher, Gottlieb, et al., 1962
Lacher, J.R.; Gottlieb, H.B.; Park, J.D., Reaction heats of organic compounds. Part 2.-Heat of addition of hydrogen chloride to acetylene, Trans. Faraday Soc., 1962, 58, 2348-2351. [all data]

Ono and Ng, 1982
Ono, Y.; Ng, C.Y., A Study of the Unimolecular Decomposition of the (C2H2)2+ Complex, J. Chem. Phys., 1982, 77, 6, 2947, https://doi.org/10.1063/1.444216 . [all data]

Furuyama, Golden, et al., 1968
Furuyama, S.; Golden, D.M.; Benson, S.W., The thermochemistry of the gas-phase equilibria trans-1,2-diiodoethylene = acetylene + I2 and trans-1,2-diiodoethylene = cis-1,2-diiodoethylene, J. Phys. Chem., 1968, 72, 3204-3208. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Plessis and Marmet, 1986
Plessis, P.; Marmet, P., Electroionization study of acetylene and fragment ions, Int. J. Mass Spectrom. Ion Processes, 1986, 70, 23. [all data]

Hayaishi, Iwata, et al., 1982
Hayaishi, T.; Iwata, S.; Sasanuma, M.; Ishiguro, E.; Morioka, Y.; Iida, Y.; Nakamura, M., Photoionisation mass spectrometric study of acetylene in the VUV region, J. Phys. B:, 1982, 15, 79. [all data]

Rosmus, Botschwina, et al., 1981
Rosmus, P.; Botschwina, P.; Maier, J.P., On the ionic states of vinylidene and acetylene, Chem. Phys. Lett., 1981, 84, 71. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri, Schmelzer, et al., 1980
Bieri, G.; Schmelzer, A.; Asbrink, L.; Jonsson, M., Fluorine and the fluoroderivatives of acetylene and diacetylene studied by 30.4 nm He(II) photoelectron spectroscopy, Chem. Phys., 1980, 49, 213. [all data]

Suzuki and Maeda, 1978
Suzuki, I.H.; Maeda, K., Ionization efficiency curves of acetylene by mono-energetic electron impact, Adv. Mass Spectrom., 1978, 7, 182. [all data]

Suzuki and Maeda, 1977
Suzuki, I.H.; Maeda, K., Ionization efficiency curves of acetylene by electron impact, Mass Spectrosc. (Tokyo), 1977, 25, 223. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Van Veen and Plantenga, 1976
Van Veen, E.H.; Plantenga, F.L., Low-energy electron-impact excitation spectra of acetylene, Chem. Phys. Lett., 1976, 38, 493. [all data]

Reeher, Flesch, et al., 1976
Reeher, J.R.; Flesch, G.D.; Svec, H.J., The mass spectra and ionization potentials of the neutral fragments produced during the electron bombardment of aromatic compounds, Org. Mass Spectrom., 1976, 11, 154. [all data]

Carlier, Dubois, et al., 1975
Carlier, P.; Dubois, J.E.; Masclet, P.; Mouvier, G., Spectres de photoelectrons des alcynes, J. Electron Spectrosc. Relat. Phenom., 1975, 7, 55. [all data]

Parr and Taylor, 1973
Parr, G.R.; Taylor, J.W., A photoionization mass spectrometer utilizing a high intensity molecular beam sampling system and synchrotron radiation, Rev. Sci. Instrum., 1973, 44, 1578. [all data]

Dibeler and Walker, 1973
Dibeler, V.H.; Walker, J.A., Photoionization of acetylene near threshold, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 49. [all data]

Brogli, Heilbronner, et al., 1973
Brogli, F.; Heilbronner, E.; Hornung, V.; Kloster-Jensen, E., 230. Die photoelektronen-spektren methyl-substituierter Acetylene, Helv. Chim. Acta, 1973, 56, 2171. [all data]

Lossing, 1970
Lossing, F.P., Threshold ionization of acetylene by monoenergetic electron impact, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 190. [all data]

Omura, Kaneko, et al., 1969
Omura, I.; Kaneko, T.; Yamada, Y.; Tanaka, K., Mass spectrometric studies of photoionization. IV. Acetylene and propyne, J. Phys. Soc. Japan, 1969, 27, 178. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Collins, Winters, et al., 1968
Collins, J.H.; Winters, R.E.; Engerholm, G.G., Fine structure in energy-distribution-difference ionizationefficiency curves, J. Chem. Phys., 1968, 49, 2469. [all data]

Baker and Turner, 1968
Baker, C.; Turner, D.W., High resolution molecular photoelectron spectroscopy. III.Acetylenes and azaacetylenes, Proc. Roy. Soc. (London), 1968, A308, 19. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Melton and Hamill, 1964
Melton, C.E.; Hamill, W.H., Appearance potentials by the retarding potential-difference method for secondary ions produced by excited-neutral, excited ion-neutral, and ion-neutral reactions, J. Chem. Phys., 1964, 41, 1469. [all data]

Dibeler and Reese, 1964
Dibeler, V.H.; Reese, R.M., Mass spectrometric study of photoionization. I. Apparatus and initial observations on acetylene, acetylene-d2, benzene, and benzene-d6, J. Res. NBS, 1964, 68A, 409. [all data]

Watanabe and Namioka, 1956
Watanabe, K.; Namioka, T., Ionization potential of propyne, J. Chem. Phys., 1956, 24, 915. [all data]

Kusch, Hustrulid, et al., 1937
Kusch, P.; Hustrulid, A.; Tate, J.T., The dissociation of HCN, C2H2, C2N2 and C2H4 by electron impact, Phys. Rev., 1937, 52, 843. [all data]

Price, 1935
Price, W.C., The absorption spectra of acetylene, ethylene, and ethane in the far ultraviolet, Phys. Rev., 1935, 47, 444. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Cavell and Allison, 1978
Cavell, R.G.; Allison, D.A., Photoelectron spectra of acetylene with He(I), He(II) , Zr M175»{zeta}, MgK»α radiation sources, J. Chem. Phys., 1978, 69, 159. [all data]

Locht and Davister, 1995
Locht, R.; Davister, M., The dissociative ionization of C2H2. The C+, C2+, and CH2+ dissociation channels. The vinylidene ion as a transient?, Chem. Phys., 1995, 195, 443. [all data]

Cooper, Ibuki, et al., 1988
Cooper, G.; Ibuki, T.; Iida, Y.; Brion, C.E., Absolute dipole oscillator strengths for photoabsorption and the molecular and dissociative photoionization of acetylene, Chem. Phys., 1988, 125, 307. [all data]

Bloch, 1963
Bloch, A., Mass spectra of acetylene under high pressure in the ion source, Advan. Mass Spectrom., 1963, 2, 48. [all data]

Davister and Locht, 1995
Davister, M.; Locht, R., The dissociative ionization of C2H2 and C2D2. The [CH(CD)]+ dissociation channel. The H(D)C≡C(D)H binding energy, Chem. Phys., 1995, 191, 333. [all data]

Kloster-Jensen, Pascual, et al., 1970
Kloster-Jensen, E.; Pascual, C.; Vogt, J., Mass spectrometric studies of mono- and di-haloacetylenes,, Helv. Chim. Acta, 1970, 53, 2109. [all data]

Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L., Correlation of excess energies of electron-impact dissociations with the translational energies of the products, J.Chem. Phys., 1968, 48, 4093. [all data]

Franklin and Munson, 1965
Franklin, J.L.; Munson, M.S.B., Ion-molecule reactions in methane-oxygen and acetylene-oxygen systems, Symp. Combust., 10th, Univ. Cambridge, Cambridge, Engl.,, 1965, 1964, 561. [all data]

Reid, Ballantine, et al., 1995
Reid, C.J.; Ballantine, J.A.; Andrews, S.R.; Harris, F.M., Charge inversion of ground-state and metastable-state C2+ cations formed from electroionised C2H2 and C2N2, and a re-evaluation of the carbon dimer's ionisation energy, Chem. Phys., 1995, 190, 113. [all data]

Momigny and Derouane, 1968
Momigny, J.; Derouane, E., Fine structure in the first derivative of ionization curves obtained under electron impact, Advan. Mass Spectrom., 1968, 4, 607. [all data]

Field, Franklin, et al., 1957
Field, F.H.; Franklin, J.L.; Lampe, F.W., Reactions of gaseous ions. II. Acetylene, J. Am. Chem. Soc., 1957, 79, 2665. [all data]

Coats and Anderson, 1957
Coats, F.H.; Anderson, R.C., Thermodynamic data from electron-impact measurements on acetylene and substituted acetylenes, J. Am. Chem. Soc., 1957, 79, 1340. [all data]

Servais and Locht, 1995
Servais, C.; Locht, R., The appearance energy of C2H+ from C2H2 revisited. A photoion-photoelectron coincidence spectroscopic determination, Chem. Phys. Lett., 1995, 236, 96. [all data]

Weitzel, Mahnert, et al., 1994
Weitzel, K.-M.; Mahnert, J.; Penno, M., ZEKE-PEPICO investigations of dissociation energies in ionic reactions, Chem. Phys. Lett., 1994, 224, 371. [all data]

Davister and Locht, 1994
Davister, M.; Locht, R., The dissociative electroionization of C2H2, C2D2 and C2HD. Investigation of the [C2H(D)]+ and [H(D)]+ dissociation channels. The (D)H-C2H(D) binding energy, Chem. Phys., 1994, 189, 805. [all data]

Norwood and Ng, 1989
Norwood, K.; Ng, C.Y., A state-selected study of the unimolecular decompoisition of C2H2+(A,B) using the photoion photoelectron coincidence method, J. Chem. Phys., 1989, 91, 2898. [all data]

Ono and Ng, 1981
Ono, Y.; Ng, C.Y., The heat of formation of C2H+, J. Chem. Phys., 1981, 74, 6985. [all data]

Eland, 1979
Eland, J.H.D., Dissociations of state-selected C2H2+, H2S+ and D2S+ ions studied by photoelectron-photoion coincidence spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1979, 31, 161. [all data]

Dibeler, Walker, et al., 1973
Dibeler, V.H.; Walker, J.A.; McCulloh, K.E., Observations on hot bands in the molecular and dissociative photoionization of acetylene and the heat of formation of the ethynyl ion, J. Chem. Phys., 1973, 59, 2264. [all data]

Botter, Dibeler, et al., 1966
Botter, R.; Dibeler, V.H.; Walker, J.A.; Rosenstock, H.M., Experimental and theoretical studies of photoionization-efficiency curves for C2H2 and C2D2, J. Chem. Phys., 1966, 44, 1271. [all data]

Shiromaru, Achiba, et al., 1987
Shiromaru, H.; Achiba, Y.; Kimura, K.; Lee, Y.T., Determination of the C-H bond dissociation energies of ethylene and acetylene by observation of the threshold energies of H+ formation by synchrotron radiation, J. Phys. Chem., 1987, 91, 17. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Zenkevich and Rodin, 2004
Zenkevich, I.G.; Rodin, A.A., Gas chromatographic identification of some volatile toxic fluorine containing compounds by precalculated retention indices, J. Ecol. Chem. (Rus.), 2004, 13, 1, 22-28. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References