Cyclopentane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-18.26 ± 0.19kcal/molCcbMcCullough, Pennington, et al., 1959ALS
Δfgas-18.4kcal/molN/ASpitzer and Huffman, 1947Value computed using ΔfHliquid° value of -105.6±1.8 kj/mol from Spitzer and Huffman, 1947 and ΔvapH° value of 28.7 kj/mol from Prosen, Johnson, et al., 1946.; DRB
Δfgas-18.46 ± 0.18kcal/molCcbProsen, Johnson, et al., 1946ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.98250.Dorofeeva O.V., 1986Recommended values are in good agreement with those calculated by [ Kilpatrick J.E., 1947, McCullough J.P., 1959] at low temperatures. The discrepancies increase at higher temperatures and amount to 1.8 J/mol*K for S(1500 K) and 2.1 J/mol*K for Cp(1500 K) obtained by [ McCullough J.P., 1959]. Calculation [ Sundaram S., 1963] seems to be incorrect because discrepancies with these data reach 23 and 7 J/mol*K for S(T) and Cp(T), respectively.; GT
9.603100.
10.83150.
12.95200.
17.80273.15
19.78 ± 0.48298.15
19.93300.
28.239400.
35.863500.
42.321600.
47.729700.
52.294800.
56.171900.
59.4841000.
62.3231100.
64.7611200.
66.8621300.
68.6761400.
70.2491500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
22.46 ± 0.045329.05McCullough J.P., 1959Please also see Spitzer R., 1946.; GT
24.38 ± 0.20353.
25.85 ± 0.20372.
28.03 ± 0.30395.
27.985 ± 0.055395.05
30.19 ± 0.30424.
33.16 ± 0.30463.
33.334 ± 0.067463.10
36.02 ± 0.40503.
38.26 ± 0.40539.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-25.23 ± 0.42kcal/molCcbSpitzer and Huffman, 1947ALS
Δfliquid-25.31 ± 0.18kcal/molCcbProsen, Johnson, et al., 1946ALS
Quantity Value Units Method Reference Comment
Δcliquid-786.7 ± 0.1kcal/molCcbKaarsemaker and Coops, 1952Corresponding Δfliquid = -25.17 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-786.62 ± 0.30kcal/molCcbSpitzer and Huffman, 1947Corresponding Δfliquid = -25.21 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-786.54 ± 0.17kcal/molCcbProsen, Johnson, et al., 1946Corresponding Δfliquid = -25.29 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid48.791cal/mol*KN/ADouslin and Huffman, 1946DH
liquid48.870cal/mol*KN/AAston, Fink, et al., 1943DH
liquid49.40cal/mol*KN/AJacobs and Parks, 1934Extrapolation below 90 K, 53.09 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
30.292298.15Tanaka, 1985DH
30.155293.15Siddiqi, Svejda, et al., 1983DH
30.3234298.15Fortier, D'Arcy, et al., 1979DH
30.421298.15Jolicoeur, Boileau, et al., 1975DH
30.459300.Szasz, Morrison, et al., 1947T = 14 to 300 K.; DH
30.301298.15Douslin and Huffman, 1946T = 12 to 300 K.; DH
30.791298.15Aston, Fink, et al., 1943T = 15 to 300 K.; DH
30.091293.7Jacobs and Parks, 1934T = 93 to 294 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil322.4 ± 0.3KAVGN/AAverage of 34 out of 39 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus179.2 ± 0.8KAVGN/AAverage of 26 out of 27 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple179.71KN/ADouslin and Huffman, 1946, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; To = 273.16 K; TRC
Ttriple179.71KN/ADouslin and Huffman, 1946, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.007 K; To = 273.16 K; TRC
Ttriple179.69KN/AAston, Finke, et al., 1943Uncertainty assigned by TRC = 0.08 K; TRC
Ttriple179.0KN/AJacobs and Parks, 1934, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc511.7 ± 0.2KN/ADaubert, 1996 
Tc511.6KN/AMajer and Svoboda, 1985 
Tc511.7KN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.2 K; TRC
Tc511.6KN/AAmbrose and Grant, 1957Uncertainty assigned by TRC = 0.15 K; TRC
Tc511.75KN/AKay, 1947Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Pc44.5 ± 0.4atmN/ADaubert, 1996 
Pc44.49atmN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.4000 atm; TRC
Pc43.72atmN/AAmbrose and Grant, 1957Uncertainty assigned by TRC = 0.5000 atm; TRC
Pc44.5500atmN/AKay, 1947Uncertainty assigned by TRC = 0.0499 atm; TRC
Quantity Value Units Method Reference Comment
Vc0.259l/molN/ADaubert, 1996 
Quantity Value Units Method Reference Comment
ρc3.85 ± 0.04mol/lN/ADaubert, 1996 
ρc3.850mol/lN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.06 mol/l; TRC
ρc3.85mol/lN/AKay, 1947Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap6.9 ± 0.1kcal/molAVGN/AAverage of 8 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.52322.4N/AMajer and Svoboda, 1985 
6.9821298.15N/AAston, Fink, et al., 1943P = 41.10 kPa; DH
6.98295.AStephenson and Malanowski, 1987Based on data from 280. to 331. K.; AC
6.69337.AStephenson and Malanowski, 1987Based on data from 322. to 384. K.; AC
6.50396.AStephenson and Malanowski, 1987Based on data from 381. to 455. K.; AC
6.57467.AStephenson and Malanowski, 1987Based on data from 452. to 511. K.; AC
6.67 ± 0.02310.CMcCullough, Pennington, et al., 1959AC
6.52 ± 0.02322.CMcCullough, Pennington, et al., 1959AC
6.55323.N/ASpitzer and Pitzer, 1946AC
6.93304.MMWillingham, Taylor, et al., 1945Based on data from 289. to 323. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
298. to 323.9.9520.2597511.6Majer and Svoboda, 1985 

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
23.42298.15Aston, Fink, et al., 1943P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
288.86 to 323.183.997171119.208-42.412Williamham, Taylor, et al., 1945 
225.90 to 287.394.241431235.305-30.666Aston, Fink, et al., 1943Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
10.2122.BBondi, 1963AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
0.1179.7Domalski and Hearing, 1996AC

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
1.242121.95crystaline, IIIcrystaline, IIRahm and Gmelin, 1992DH
0.0863138.22crystaline, IIcrystaline, IRahm and Gmelin, 1992DH
0.147179.21crystaline, IliquidRahm and Gmelin, 1992DH
1.1674122.36crystaline, IIIcrystaline, IISzasz, Morrison, et al., 1947DH
0.08191138.07crystaline, IIcrystaline, ISzasz, Morrison, et al., 1947Temperature from 43AST/FIN.; DH
0.1443179.69crystaline, IliquidSzasz, Morrison, et al., 1947Temperature from 43AST/FIN.; DH
1.1673122.39crystaline, IIIcrystaline, IIDouslin and Huffman, 1946DH
0.082321138.09crystaline, IIcrystaline, IDouslin and Huffman, 1946DH
0.14554179.71crystaline, IliquidDouslin and Huffman, 1946DH
1.165122.39crystaline, IIIcrystaline, IIAston, Fink, et al., 1943DH
0.08279138.07crystaline, IIcrystaline, IAston, Fink, et al., 1943DH
0.144179.69crystaline, IliquidAston, Fink, et al., 1943DH
1.134121.6crystaline, IIIcrystaline, IIJacobs and Parks, 1934DH
0.08561137.1crystaline, IIcrystaline, IJacobs and Parks, 1934DH
0.1445179.0crystaline, IliquidJacobs and Parks, 1934DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
9.541122.36crystaline, IIIcrystaline, IISzasz, Morrison, et al., 1947DH
0.593138.07crystaline, IIcrystaline, ISzasz, Morrison, et al., 1947Temperature; DH
0.803179.69crystaline, IliquidSzasz, Morrison, et al., 1947Temperature; DH
9.539122.39crystaline, IIIcrystaline, IIDouslin and Huffman, 1946DH
0.595138.09crystaline, IIcrystaline, IDouslin and Huffman, 1946DH
0.808179.71crystaline, IliquidDouslin and Huffman, 1946DH
9.517122.39crystaline, IIIcrystaline, IIAston, Fink, et al., 1943DH
0.600138.07crystaline, IIcrystaline, IAston, Fink, et al., 1943DH
0.801179.69crystaline, IliquidAston, Fink, et al., 1943DH
9.326121.6crystaline, IIIcrystaline, IIJacobs and Parks, 1934DH
0.624137.1crystaline, IIcrystaline, IJacobs and Parks, 1934DH
0.808179.0crystaline, IliquidJacobs and Parks, 1934DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + Cyclopentene = Cyclopentane

By formula: H2 + C5H8 = C5H10

Quantity Value Units Method Reference Comment
Δr-26.94 ± 0.13kcal/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-26.8 ± 0.2kcal/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane; ALS
Δr-26.04 ± 0.44kcal/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid; ALS
Δr-26.2 ± 0.2kcal/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-26.67 ± 0.06kcal/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -26.92 ± 0.06 kcal/mol; At 355 °K; ALS

C5H9- + Hydrogen cation = Cyclopentane

By formula: C5H9- + H+ = C5H10

Quantity Value Units Method Reference Comment
Δr416.1 ± 2.0kcal/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr418.3 ± 2.0kcal/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr407.4 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr409.6 ± 2.1kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

Hydrogen + Bicyclo[2.1.0]pentane = Cyclopentane

By formula: H2 + C5H8 = C5H10

Quantity Value Units Method Reference Comment
Δr-56.1 ± 0.1kcal/molChydRoth, Klarner, et al., 1980liquid phase; solvent: Heptane; ALS
Δr-55.14 ± 0.36kcal/molChydTurner, Goebel, et al., 1968liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,3-Cyclopentadiene = Cyclopentane

By formula: 2H2 + C5H6 = C5H10

Quantity Value Units Method Reference Comment
Δr-50.38 ± 0.20kcal/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -50.87 ± 0.20 kcal/mol; At 355 °K; ALS

2Hydrogen + Bicyclo[2.1.0]pent-2-ene = Cyclopentane

By formula: 2H2 + C5H6 = C5H10

Quantity Value Units Method Reference Comment
Δr-98.0 ± 0.5kcal/molChydRoth, Klarner, et al., 1980liquid phase; solvent: Heptane; ALS

Cyclopentane + Iodine = 2Hydrogen iodide + Cyclopentene

By formula: C5H10 + I2 = 2HI + C5H8

Quantity Value Units Method Reference Comment
Δr24.40kcal/molEqkFuruyama, Golden, et al., 1970gas phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C5H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.33 ± 0.15eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.83 ± 0.05EIHolmes and Lossing, 1991LL
10.35PITraeger, 1986LBLHLM
10.33 ± 0.15EQMautner(Meot-Ner), Sieck, et al., 1981LLK
10.3 ± 0.1PEBieri, Burger, et al., 1977LLK
10.55 ± 0.03PERang, Paldoia, et al., 1974LLK
10.54 ± 0.05EIPuttemans, 1974LLK
10.48PEPuttemans, 1974LLK
10.40PEIkuta, Yoshihara, et al., 1973LLK
10.49EILossing, 1972LLK
10.91 ± 0.07EIGross and Wilkins, 1971LLK
10.50 ± 0.01PEPraet and Delwiche, 1970RDSH
10.49PIDewar and Worley, 1969RDSH
10.53 ± 0.05PEWatanabe, Nakayama, et al., 1962RDSH
11.01PEKimura, Katsumata, et al., 1981Vertical value; LLK
10.7 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK
10.5PEBatich, Heilbronner, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H6+11.22 ± 0.04C2H4PIBrand and Baer, 1984LBLHLM
C3H6+11.45C2H4EIPuttemans, 1974LLK
C3H6+11.74 ± 0.07C2H4EIGross and Wilkins, 1971LLK
C4H7+11.08CH3PITraeger, 1986LBLHLM
C4H7+11.15 ± 0.03CH3PIBrand and Baer, 1984LBLHLM
C4H7+11.14CH3EIBrand and Baer, 1984LBLHLM
C4H7+11.14CH3EILossing, 1972LLK
C4H7+11.36 ± 0.08CH3EIGross and Wilkins, 1971LLK

De-protonation reactions

C5H9- + Hydrogen cation = Cyclopentane

By formula: C5H9- + H+ = C5H10

Quantity Value Units Method Reference Comment
Δr416.1 ± 2.0kcal/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr418.3 ± 2.0kcal/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr407.4 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr409.6 ± 2.1kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Pickett, Muntz, et al., 1951
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 4885
Instrument Hilger fluorite prism spectrograph
Melting point -93.8
Boiling point 49.3

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSE-30160.572.Kurbatova, Finkelstein, et al., 2004Chromaton N-AW; Column length: 1. m
PackedApiezon L160.587.Kurbatova, Finkelstein, et al., 2004Chromaton N-AW; Column length: 1. m; Large deviations from similar measurements
PackedC78, Branched paraffin130.587.7Dallos, Sisak, et al., 2000He; Column length: 3.3 m
CapillaryOV-1010.558.Skrbic, 1997 
CapillaryBPX-530.572.Aflalaye, Sternberg, et al., 199512. m/0.15 mm/0.25 μm, H2
CapillaryBPX-530.573.Aflalaye, Sternberg, et al., 199512. m/0.15 mm/0.25 μm, H2
CapillaryCP Sil 260.574.3Estel, Mohnke, et al., 1995100. m/0.25 mm/0.25 μm
CapillaryOV-101150.582.4Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryOV-101180.591.0Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillarySqualane25.562.Hilal, Carreira, et al., 1994 
CapillaryDB-160.567.8Krupcik, Skacani, et al., 1994H2; Phase thickness: 0.25 μm
CapillaryPONA60.568.0Krupcik, Skacani, et al., 1994H2; Phase thickness: 0.5 μm
CapillaryPONA60.568.0Krupcik, Skacani, et al., 1994H2; Phase thickness: 0.5 μm
CapillaryDB-160.568.3Krupcik, Skacani, et al., 1994H2; Phase thickness: 1. μm
CapillaryOV-10160.568.4Krupcik, Skacani, et al., 1994H2; Phase thickness: 0.2 μm
CapillaryCP Sil 5 CB20.562.6Do and Raulin, 199225. m/0.15 mm/2. μm, H2
PackedC78, Branched paraffin130.587.6Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
PackedApolane130.588.Dutoit, 1991Column length: 3.7 m
CapillaryOV-10140.565.Laub and Purnell, 1988 
CapillaryOV-10160.568.Laub and Purnell, 1988 
CapillaryOV-10180.572.Laub and Purnell, 1988 
CapillarySqualane50.566.2Lunskii and Paizanskaya, 1988He; Column length: 50. m; Column diameter: 0.22 mm
CapillarySqualane70.587.9Lunskii and Paizanskaya, 1988He; Column length: 50. m; Column diameter: 0.22 mm
CapillarySqualane50.566.5Papazova, Milina, et al., 1988Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-10140.565.6Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10150.566.1Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10160.569.4Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10170.569.9Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-1100.574.5Anders, Anders, et al., 198555. m/0.21 mm/0.35 μm, N2
CapillaryOV-10130.563.Chien, Furio, et al., 1983 
CapillaryOV-10140.565.Chien, Furio, et al., 1983 
CapillaryOV-10150.566.Chien, Furio, et al., 1983 
CapillaryOV-10160.568.Chien, Furio, et al., 1983 
CapillaryOV-10170.570.Chien, Furio, et al., 1983 
CapillaryOV-10180.572.Chien, Furio, et al., 1983 
CapillaryDB-160.567.8Lubeck and Sutton, 1983Column length: 60. m; Column diameter: 0.264 mm
CapillaryDB-160.568.3Lubeck and Sutton, 198360. m/0.259 mm/1. μm
PackedSE-30100.577.Winskowski, 1983Gaschrom Q; Column length: 2. m
CapillaryOV-150.566.Anders, Scheller, et al., 1982Column length: 55. m; Column diameter: 0.21 mm
CapillarySE-30130.582.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySE-3080.570.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillaryOV-10150.567.Johansen and Ettre, 1982100. m/0.27 mm/0.20 μm
CapillaryOV-10150.566.Johansen and Ettre, 198255. m/0.27 mm/0.9 μm
CapillarySF-9650.565.Johansen and Ettre, 198291.4 m/0.31 mm/0.20 μm
PackedSqualane100.568.Nabivach and Kirilenko, 1980He, Chromaton N-AW-HMDS; Column length: 1. m
CapillarySqualane86.568.8Nabivach and Kirilenko, 1979N2; Column length: 50. m
CapillarySqualane50.565.55Pacáková and Koslík, 197850. m/0.2 mm/0.5 μm, N2
CapillarySqualane40.563.3Stopp, Engewald, et al., 1978Column length: 70. m; Column diameter: 0.23 mm
PackedApolane70.575.9Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
CapillarySqualane100.573.Dielmann, Schwengers, et al., 1974Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane120.576.Dielmann, Schwengers, et al., 1974Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane60.567.Dielmann, Schwengers, et al., 1974Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane80.570.Dielmann, Schwengers, et al., 1974Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane50.566.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.568.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane100.573.Besson and Gäumann, 1973Column length: 50. m; Column diameter: 0.25 mm
CapillaryApiezon L100.588.Besson and Gäumann, 1973Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-10150.566.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillaryOV-10150.567.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillaryOV-10160.568.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillaryOV-10160.568.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillarySqualane86.572.Agrawal, Tesarík, et al., 1972N2, Celite 545; Column length: 50. m; Column diameter: 0.3 mm
CapillaryVacuum Grease Oil (VM-4)35.568.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)45.570.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)50.571.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)58.573.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)68.574.Sidorov, Petrova, et al., 1972 
CapillarySqualane70.566.3Dimov and Schopov, 1971Column length: 100. m; Column diameter: 0.25 mm
PackedSE-3075.571.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m
PackedVacuum Grease Oil (VM-4)35.568.Sidorov, Ivanova, et al., 1971 
CapillarySqualane70.568.Cramers, Rijks, et al., 1970Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.568.Cramers, Rijks, et al., 1970Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.568.Cramers, Rijks, et al., 1970Column length: 100. m; Column diameter: 0.25 mm
PackedSE-30130.572.Mitra and Saha, 1970N2, Chromosorb W; Column length: 6.1 m
PackedSqualane27.563.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.566.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.569.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.572.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane22.562.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane30.563.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane40.564.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane55.568.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane70.570.Evans, 1966Untreated celite; Column length: 1.8 m
CapillarySqualane120.578.Schomburg, 1966 
CapillarySqualane80.568.Schomburg, 1966 
PackedMethyl Silicone130.562.Antheaume and Guiochon, 1965 
PackedSqualane150.599.Schomburg, 1964 
PackedApiezon L130.587.Wehrli and Kováts, 1959Celite; Column length: 2.25 m
PackedApiezon L70.571.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101557.Hayes and Pitzer, 1982110. m/0.25 mm/0.20 μm, He, 1. K/min; Tstart: 35. C; Tend: 200. C
CapillaryApiezon L576.Louis, 1971N2, 1. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100566.5Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1563.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedPEG-2000150.694.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.700.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.710.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.698.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.700.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.720.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH553.7Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillarySPB-1580.29LECO Corporation, 200330. m/0.25 mm/0.25 μm, 40. C @ 2. min, 10. K/min, 250. C @ 2. min
CapillaryDB-5563.2Xu, van Stee, et al., 200330. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C
CapillaryOV-101556.6Yin, Liu, et al., 2001N2, 1. K/min; Column length: 80. m; Column diameter: 0.22 mm; Tstart: 30. C; Tend: 130. C
CapillaryPetrocol DH554.33Subramaniam, Bochniak, et al., 1994100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH554.33Subramaniam, Bochniak, et al., 1994100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH554.13White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH554.24White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH554.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryOV-101557.Hayes and Pitzer, 1981108. m/0.25 mm/0.2 μm, 1. K/min; Tstart: 35. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1559.Peng, 200015. m/0.53 mm/1. μm, He; Program: 40C(3min) => 8C/min => 200(1min) => 5C/min => 300C(25min)
PackedSE-30564.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)
PackedSE-30564.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-10140.565.Li and Deng, 1998N2; Column length: 51. m; Column diameter: 0.25 mm
CapillarySE-5450.571.Xieyun, Maoqi, et al., 1996N2; Column length: 40. m; Column diameter: 0.25 mm
CapillaryMethyl Silicone50.566.N/AN2; Column length: 74.6 m; Column diameter: 0.28 mm
CapillaryOV-10150.566.Wu and Lu, 1984 
CapillaryOV-10170.569.Wu and Lu, 1984 
PackedSynachrom150.520.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.524.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
CapillarySqualane86.560.Vigdergauz and Martynov, 1971He; Column length: 150. m; Column diameter: 0.35 mm

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB560.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH564.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryBP-1562.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-5MS554.5Shoenmakers, Oomen, et al., 200030. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min; Tend: 250. C
CapillaryOV-101564.Orav, Kailas, et al., 199950. m/0.20 mm/0.50 μm, Helium, 30. C @ 6. min, 1. K/min; Tend: 100. C
CapillarySE-54554.Guan, Li, et al., 199560. C @ 2. min, 4. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tend: 200. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySqualane527.Chen, 2008Program: not specified
CapillarySqualane562.Chen, 2008Program: not specified
CapillaryMethyl Silicone563.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryApiezon L587.Finkelstein, Kurbatova, et al., 2002Program: not specified
CapillaryPONA566.Perkin Elmer Instruments, 2002Column length: 100. m; Phase thickness: 0.50 μm; Program: not specified
CapillaryMethyl Silicone587.N/AProgram: not specified
CapillaryDB-1568.Zhu and Wang, 2001Program: not specified
CapillaryMethyl Silicone570.Zenkevich, 2000Program: not specified
CapillaryMethyl Silicone564.Spieksma, 1999Program: not specified
CapillaryMethyl Silicone570.Zenkevich, 1998Program: not specified
CapillaryMethyl Silicone570.Zenkevich, 1996Program: not specified
CapillaryDB-1560.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified
CapillaryOV-101558.Skrbic and Cvejanov, 1993Program: not specified
CapillarySPB-1533.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySE-52572.van Langenhove and Schamp, 1986Column length: 100. m; Column diameter: 0.50 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.557.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.570.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.577.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
PackedSE-30573.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSqualane564.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)
PackedSE-30573.Robinson and Odell, 1971, 2Chrom W; Column length: 6.1 m; Program: 50C(10min) => 20C/min(2min) => 90C(6min) => 10C/min(6min) => (hold at 150C)
PackedSqualane564.Robinson and Odell, 1971, 2Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min(5min) => 4C/min(15min) => (hold at 95C)

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

McCullough, Pennington, et al., 1959
McCullough, J.P.; Pennington, R.E.; Smith, J.C.; Hossenlopp, I.A.; Waddington, G., Thermodynamics of cyclopentane, methylcyclopentane and 1,cis-3-dimethylcyclopentane: Verification of the concept of pseudorotation, J. Am. Chem. Soc., 1959, 81, 5880-5883. [all data]

Spitzer and Huffman, 1947
Spitzer, R.; Huffman, H.M., The heats of combustion of cyclopentane, cyclohexane, cycloheptane and cyclooctane, J. Am. Chem. Soc., 1947, 69, 211-213. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons, J. Res. NBS, 1946, 37, 51-56. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., Thermodynamic properties of twenty-one monocyclic hydrocarbons, J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]

Kilpatrick J.E., 1947
Kilpatrick J.E., The thermodynamics and molecular structure of cyclopentane, J. Am. Chem. Soc., 1947, 69, 2483-2488. [all data]

McCullough J.P., 1959
McCullough J.P., Thermodynamics of cyclopentane, methylcyclopentane and 1,cis-3-dimethylcyclopentane: verification of the concept of pseudorotation, J. Am. Chem. Soc., 1959, 81, 5880-5883. [all data]

Sundaram S., 1963
Sundaram S., Thermodynamic functions of some propellants, Z. Phys. Chem. (Frankfurt), 1963, 36, 376-377. [all data]

Spitzer R., 1946
Spitzer R., The heat capacity of gaseous cyclopentane, cyclohexane and methylcyclohexane, J. Am. Chem. Soc., 1946, 68, 2537-2538. [all data]

Kaarsemaker and Coops, 1952
Kaarsemaker, S.; Coops, J., Thermal quantities of some cycloparaffins. Part III. Results of measurements, Rec. Trav. Chim. Pays/Bas, 1952, 71, 261. [all data]

Douslin and Huffman, 1946
Douslin, D.R.; Huffman, H.M., The heat capacities, heats of transition, heats of fusion and entropies of cyclopentane, methylcyclopentane and methylcylohexane, J. Am. Chem. Soc., 1946, 68, 173-176. [all data]

Aston, Fink, et al., 1943
Aston, J.G.; Fink, H.L.; Schumann, S.C., The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclopentane. Evidence for a non-planar structure, J. Am. Chem. Soc., 1943, 65, 341-346. [all data]

Jacobs and Parks, 1934
Jacobs, C.J.; Parks, G.S., Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances, J. Am. Chem. Soc., 1934, 56, 1513-1517. [all data]

Tanaka, 1985
Tanaka, R., Excess heat capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15 K, J. Chem. Eng. Data, 1985, 30, 267-269. [all data]

Siddiqi, Svejda, et al., 1983
Siddiqi, M.A.; Svejda, P.; Kohler, F., A generalized van der Waals equation of state II. Excess heat capacities of mixtures containing cycloalkanes (C5,C6), methylcycloalkanes (C5,C6) and n-decane, Ber. Bunsenges. Phys. Chem., 1983, 87, 1176-1181. [all data]

Fortier, D'Arcy, et al., 1979
Fortier, J.-L.; D'Arcy, P.J.; Benson, G.C., Heat capacities of binary cycloalkane mixtures at 298.15 K, Thermochim. Acta, 1979, 28, 37-43. [all data]

Jolicoeur, Boileau, et al., 1975
Jolicoeur, C.; Boileau, J.; Bazinet, S.; Picker, P., Thermodynamic properties of aqueous organic solutes in relation to their structure. Part II. Apparent molal volumes and heat capacities of c-alkylamine hydrobromides in water, Can. J. Chem., 1975, 53, 716-722. [all data]

Szasz, Morrison, et al., 1947
Szasz, G.J.; Morrison, J.A.; Pace, E.L.; Aston, J.G., Thermal properties of cyclopentane and its use as a standard substance in low temperature thermal measurements, J. Chem. Phys., 1947, 15, 562-564. [all data]

Douslin and Huffman, 1946, 2
Douslin, D.R.; Huffman, H.M., The heat capacities, heats of transition, heats of fusion and entropies of cyclopentane, methylcyclopentane and methylcyclohexane., J. Am. Chem. Soc., 1946, 68, 173. [all data]

Aston, Finke, et al., 1943
Aston, J.G.; Finke, H.L.; Schumann, S.C., The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclopentane. Evidence for a non-planar structure, J. Am. Chem. Soc., 1943, 65, 341. [all data]

Jacobs and Parks, 1934, 2
Jacobs, C.J.; Parks, G.S., Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances, J. Am. Chem. Soc., 1934, 56, 1513-17. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Kudchadker, Alani, et al., 1968
Kudchadker, A.P.; Alani, G.H.; Zwolinski, B.J., The Critical Constants of Organic Substances, Chem. Rev., 1968, 68, 659. [all data]

Ambrose and Grant, 1957
Ambrose, D.; Grant, D.G., The Critical Temperatures of Some Hydrocarbons and Pyridine Bases, Trans. Faraday Soc., 1957, 53, 771. [all data]

Kay, 1947
Kay, W.B., Vapor Pressures and Saturated Liquid and Vapor DEensities of Cyclopentane, Methylcyclopentane, Ethylcyclopentane, and Methylcyclohexane, J. Am. Chem. Soc., 1947, 69, 1273-7. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Spitzer and Pitzer, 1946
Spitzer, Ralph; Pitzer, Kenneth S., The Heat Capacity of Gaseous Cyclopentane, Cyclohexane and Methylcyclohexane, J. Am. Chem. Soc., 1946, 68, 12, 2537-2538, https://doi.org/10.1021/ja01216a032 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Rahm and Gmelin, 1992
Rahm, U.; Gmelin, E., Low temperature microcalorimetry by differential scanning, J. Therm. Anal., 1992, 38(3), 335-344. [all data]

Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N., Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements, Tetrahedron, 1982, 38, 1593-1597. [all data]

Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W., Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter, Chem. Ber., 1980, 113, 1806-1817. [all data]

Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J., Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins, J. Am. Chem. Soc., 1973, 95, 790-792. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Roth, Klarner, et al., 1980
Roth, W.R.; Klarner, F.-G.; Lennartz, H.-W., Heats of hydrogenation. II. Heat of hydrogenation of bicyclo[2.1.0]pent-2-ene, an antiaromatic system, Chem. Ber., 1980, 113, 1806-1818. [all data]

Turner, Goebel, et al., 1968
Turner, R.B.; Goebel, P.; Mallon, B.J.; Doering, W.E.; Coburn, J.F., Jr.; Pomerantz, M., Heats of hydrogenation. VIII. Compounds with three- and four-membered rings, J. Am. Chem. Soc., 1968, 90, 4315-4322. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Furuyama, Golden, et al., 1970
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria, J. Chem. Thermodyn., 1970, 2, 161-169. [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Traeger, 1986
Traeger, J.C., Heat of formation for the 1-methylallyl cation by photoionization mass spectrometry, J. Phys. Chem., 1986, 90, 4114. [all data]

Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P., Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects, J. Am. Chem. Soc., 1981, 103, 5342. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Rang, Paldoia, et al., 1974
Rang, S.; Paldoia, P.; Talvari, A., Ionization potentials of unsaturated hydrocarbons. 2. Mono-substituted cyclopentenes and cyclohexenes, Eesti. NSV Tead. Akad. Toim., 1974, 354. [all data]

Puttemans, 1974
Puttemans, J.P., Ionisation de cycloalcanes (C5 a C12) en spectroscopie photoelectronique et par impact electronique, Ing. Chim. (Brussels), 1974, 56, 64. [all data]

Ikuta, Yoshihara, et al., 1973
Ikuta, S.; Yoshihara, K.; Shiokawa, T.; Jinno, M.; Yokoyama, Y.; Ikeda, S., Photoelectron spectroscopy of cyclohexane, cyclopentane, and some related compounds, Chem. Lett., 1973, 1237. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem., 1972, 50, 3973. [all data]

Gross and Wilkins, 1971
Gross, M.L.; Wilkins, C.L., Computer-assisted ion cyclotron resonance appearance potential measurements for C5H10 isomers, Anal. Chem., 1971, 43, 1624. [all data]

Praet and Delwiche, 1970
Praet, M.-T.; Delwiche, J., Ionization energies of some cyclic molecules, Chem. Phys. Lett., 1970, 5, 546. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Batich, Heilbronner, et al., 1974
Batich, C.; Heilbronner, E.; Rommel, E.; Semmelhack, M.F.; Foos, J.S., Equivalence of the energy gaps {DELTA}I(1,2) and {DELTA}E(1,2) between corresponding bands in the photoelectron (I) and electronic absorption (E) spectra of spiro[4.4]nonatetraene. An amusing consequence of spiroconjugation, J. Am. Chem. Soc., 1974, 96, 7662. [all data]

Brand and Baer, 1984
Brand, W.A.; Baer, T., Dissociation dynamics of energy-selected C5H10+ ions, J. Am. Chem. Soc., 1984, 106, 3154. [all data]

Pickett, Muntz, et al., 1951
Pickett, L.W.; Muntz, M.; McPherson, E.M., Vacuum ultraviolet absorption spectra of cyclic compounds. I. Cyclohexane, cyclohexene, cyclopentane, Cyclopentene and benzene, J. Am. Chem. Soc., 1951, 73, 4862-4865. [all data]

Kurbatova, Finkelstein, et al., 2004
Kurbatova, S.V.; Finkelstein, E.E.; Kolosova, E.A.; Kartashev, A.V.; Rashkin, S.V., Structural analogy method in studies of adamantanes, J. Struct. Chem., 2004, 45, 1, 144-150, https://doi.org/10.1023/B:JORY.0000041513.82837.4e . [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Skrbic, 1997
Skrbic, B.D., Unified retention concept -- statistical treatment of Kováts retention index, J. Chromatogr. A, 1997, 764, 2, 257-264, https://doi.org/10.1016/S0021-9673(96)00955-7 . [all data]

Aflalaye, Sternberg, et al., 1995
Aflalaye, A.; Sternberg, R.; Raulin, F.; Vidal-Madjar, C., Gas chromatography of Titan's atmosphere. VI. Analysis of low-molecular-mass hydrocarbons and nitriles with BPX5 capillary columns, J. Chromatogr. A, 1995, 708, 2, 283-291, https://doi.org/10.1016/0021-9673(95)00410-O . [all data]

Estel, Mohnke, et al., 1995
Estel, D.; Mohnke; Biermans; Rotzsche, The analysis of C4-C11 hydrocarbons in naphtha and reformate with a new apolar fused silica column, J. Hi. Res. Chromatogr., 1995, 18, 7, 403-412, https://doi.org/10.1002/jhrc.1240180703 . [all data]

Cha and Lee, 1994
Cha, K.-W.; Lee, D.-J., Prediction of retention indices of various compounds in gas-liquid chromatography, J. Korean Chem. Soc., 1994, 38, 2, 108-120, retrieved from http://journal.kcsnet.or.kr/publi/dh/dh94n2/108.pdf. [all data]

Hilal, Carreira, et al., 1994
Hilal, S.H.; Carreira, L.A.; Karickhoff, S.W.; Melton, C.M., Estimation of Gas-Liquid Chromatographic Retention Times from Molecular Structure, J. Chromatogr. A, 1994, 662, 2, 269-280, https://doi.org/10.1016/0021-9673(94)80515-6 . [all data]

Krupcik, Skacani, et al., 1994
Krupcik, J.; Skacani, I.; Benicka, E.; Sandra, P., Dependence of gas chromatographic retention data of hydrocarbons on the film thickness of the polydimethylsiloxane stationary phase, Collect. Czech. Chem. Commun., 1994, 59, 11, 2390-2396, https://doi.org/10.1135/cccc19942390 . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Laub and Purnell, 1988
Laub, R.J.; Purnell, J.H., Specific retention volumes, retention indices, and family-plot regressions of aliphatic, alicyclic, and aromatic hydrocarbon solutes with OV-101 poly (dimethylsiloxane) stationary phase, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1988, 11, 9, 649-660, https://doi.org/10.1002/jhrc.1240110908 . [all data]

Lunskii and Paizanskaya, 1988
Lunskii, M.Kh.; Paizanskaya, I.L., Identification of hydrocarbons C1-C9 of petrol fractions of oils and condensates in the use of capillary columns with dinonylphthalate, Zh. Anal. Khim., 1988, 43, 127-135. [all data]

Papazova, Milina, et al., 1988
Papazova, D.; Milina, R.; Dimov, N., Comparative evaluation of retention of hydrocarbons present in the C5-petroleum fraction of methylsilicone and squalane phases, Chromatographia, 1988, 25, 3, 177-180, https://doi.org/10.1007/BF02316441 . [all data]

Boneva and Dimov, 1986
Boneva, S.; Dimov, N., Unified retention index of hydrocarbons separated on dimethylsilicone OV-101, Chromatographia, 1986, 21, 12, 697-700, https://doi.org/10.1007/BF02313682 . [all data]

Anders, Anders, et al., 1985
Anders, G.; Anders, K.; Engewald, W., Identification of non-branched alkenylcycloalkanes with a terminal double bond from retention index increments, Chromatographia, 1985, 20, 2, 83-86, https://doi.org/10.1007/BF02280602 . [all data]

Chien, Furio, et al., 1983
Chien, C.-F.; Furio, D.L.; Kopecni, M.M.; Laub, R.J., Specific Retention Volumes and Retention Indices of Selected Hydrocarbon Solutes with OV-101 and SP-2100 Polydimethylsiloxane Solvents, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1983, 6, 10, 577-580, https://doi.org/10.1002/jhrc.1240061013 . [all data]

Lubeck and Sutton, 1983
Lubeck, A.J.; Sutton, DL., Kovats retention indices of selected hydrocarbons through C10 on bonded phase fused silica capillaries, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1983, 6, 6, 328-332, https://doi.org/10.1002/jhrc.1240060612 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Anders, Scheller, et al., 1982
Anders, G.; Scheller, M.; Schuhler, C.; Struppe, H.G., Zur Vorausberechnung von Bruttoretentioszeiten bei temperaturprogramierter Gaschromatographie mit Hilfe isotherm bestimmter Retentionsindices und einer Anpassung an experimentelle Retentionszeiten, Chromatographia, 1982, 15, 1, 43-47, https://doi.org/10.1007/BF02269039 . [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Johansen and Ettre, 1982
Johansen, N.G.; Ettre, L.S., Retention index values of hydrocarbons on open-tubular columns coated with methylsilicone liquid phases, Chromatographia, 1982, 15, 10, 625-630, https://doi.org/10.1007/BF02279488 . [all data]

Nabivach and Kirilenko, 1980
Nabivach, V.M.; Kirilenko, A.V., Relationship between the gas chromatographic behaviour and the molecular structure of hydrocarbon samples and various stationary phases. Part II. Correlation between the retention index, physicochemical properties and molecular structure, Chromatographia, 1980, 13, 2, 93-100, https://doi.org/10.1007/BF02263060 . [all data]

Nabivach and Kirilenko, 1979
Nabivach, V.M.; Kirilenko, A.V., The use of retention indices for identifying the components of crude benzene, Solid Fuel Chem. (Engl. Transl.), 1979, 13, 3, 82-87. [all data]

Pacáková and Koslík, 1978
Pacáková, V.; Koslík, V., Capillary reaction gas chromatography. I. Catalytic decomposition of hydrocarbons, Chromatographia, 1978, 11, 5, 266-273, https://doi.org/10.1007/BF02282952 . [all data]

Stopp, Engewald, et al., 1978
Stopp, I.; Engewald, W.; Kühn, H.; Welsch, Th., Molekülstruktur und retentionsverhalten. VIII. Zum gaschromatographischen retentionsverhalten von dicyclopentadienderivaten, J. Chromatogr., 1978, 147, 21-30, https://doi.org/10.1016/S0021-9673(00)85113-4 . [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Dielmann, Schwengers, et al., 1974
Dielmann, G.; Schwengers, D.; Schomburg, G., Gas-chromatographische Retentionsdaten und Strukture chemischer Verbindungen Gesättigte und ungesättigte alkylsubstituierte Cyclopentane und Methylcyclopentane, Chromatographia, 1974, 7, 5, 215-224, https://doi.org/10.1007/BF02321771 . [all data]

Rijks and Cramers, 1974
Rijks, J.A.; Cramers, C.A., High precision capillary gas chromatography of hydrocarbons, Chromatographia, 1974, 7, 3, 99-106, https://doi.org/10.1007/BF02269819 . [all data]

Besson and Gäumann, 1973
Besson, R.; Gäumann, T., Indices de rétention de cycloalcanes, cycloalcènes, bicycloalkyles, cycloalkyl-cycloalcényles et bicycloalcényles en chromatographie en phase gazeuse, Helv. Chim. Acta, 1973, 56, 3, 1159-1164, https://doi.org/10.1002/hlca.19730560339 . [all data]

Pacáková, Hoch, et al., 1973
Pacáková, V.; Hoch, K.; Smolková, E., The Effect of Instrumentation on the Precision of Retention Indexes, Chromatographia, 1973, 6, 7, 320-324, https://doi.org/10.1007/BF02269334 . [all data]

Agrawal, Tesarík, et al., 1972
Agrawal, B.B.; Tesarík, K.; Janák, J., Gas chromatographic characterization of sulphur compounds in the 93-162° gasoline cut from Romashkino crude oil using Kováts retention indices, J. Chromatogr., 1972, 65, 1, 207-215, https://doi.org/10.1016/S0021-9673(00)86933-2 . [all data]

Sidorov, Petrova, et al., 1972
Sidorov, R.I.; Petrova, V.I.; Ivanova, M.P., Qualitative analysis of wide-boiling fraction C5-C10 with capillary chromatography in Processes in chromatographic columns. Vol.17, 1972, 14-25. [all data]

Dimov and Schopov, 1971
Dimov, N.; Schopov, D., Empirische korrektion der physikalisch-chemischen retentionsindexe von kohlenwasserstoffen auf squalan, J. Chromatogr., 1971, 63, 223-228, https://doi.org/10.1016/S0021-9673(01)85634-X . [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]

Sidorov, Ivanova, et al., 1971
Sidorov, R.I.; Ivanova, M.P.; Petrova, V.I., Temperature dependence of cycloalkane's retention and its using in identification of structure, Gazovaya Khromatografiya, 1971, 15, 18-26. [all data]

Cramers, Rijks, et al., 1970
Cramers, C.A.; Rijks, J.A.; Pacáková, V.; de Andrade, I.R., The application of precision gas chromatography to the identification of types of hydrocarbons, J. Chromatogr., 1970, 51, 13-21, https://doi.org/10.1016/S0021-9673(01)96835-9 . [all data]

Mitra and Saha, 1970
Mitra, G.D.; Saha, N.C., Determination of Retention Indices of Saturated Hydrocarbons by Graphical Methods, J. Chromatogr. Sci., 1970, 8, 2, 95-102, https://doi.org/10.1093/chromsci/8.2.95 . [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Evans, 1966
Evans, M.B., Retention indices of solutes on squalane, dinonyl phthalate, and polyethylene glycol 400, J. Gas Chromatogr., 1966, 4, 1, 1-3, https://doi.org/10.1093/chromsci/4.1.1 . [all data]

Schomburg, 1966
Schomburg, G., Gaschromatographische Retentionsdaten und struktur chemischer verbindungen. III. Alkylverzweigte und ungesättigte cyclische Kohlenwasserstoffe, J. Chromatogr., 1966, 23, 18-41, https://doi.org/10.1016/S0021-9673(01)98653-4 . [all data]

Antheaume and Guiochon, 1965
Antheaume, J.; Guiochon, G., Application de la chromatographie en phase gazeuse à l'étude de la composition des fractions moyennes d'un brut pétrolier, Bull. Soc. Chim. Fr., 1965, 2, 298-307. [all data]

Schomburg, 1964
Schomburg, G., Gas-Chromatographische Retentionsdaten und Struktur Chemischer Verbindungen. I. Verzweigte Aliphatische und Alicyclische Carbonsäure-Methylester, J. Chromatogr., 1964, 14, 157-177, https://doi.org/10.1016/S0021-9673(00)86608-X . [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Hayes and Pitzer, 1982
Hayes, P.C., Jr.; Pitzer, E.W., Characterizing petroleum- and shale-derived jet fuel distillates via temperature-programmed Kováts indices, J. Chromatogr., 1982, 253, 179-198, https://doi.org/10.1016/S0021-9673(01)88376-X . [all data]

Louis, 1971
Louis, R., Kovats-index-tafeln zur gaschromatographischen analyse von kohlenwasserstoffgemischen, Erdoel Kohle Erdgas Petrochem., 1971, 24, 2, 88-94. [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

LECO Corporation, 2003
LECO Corporation, Determination of hydrocarbon components in petroleum naphthas, 2003, retrieved from http://www.leco.org/customersupport/apps/separationscience/-190.pdf. [all data]

Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere, Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003 . [all data]

Yin, Liu, et al., 2001
Yin, C.; Liu, W.; Li, Z.; Pan, Z.; Lin, T.; Zhang, M., Chemometrics to chemical modeling: structural coding in hydrocarbons and retention indices of gas chromatography, J. Sep. Sci., 2001, 24, 3, 213-220, https://doi.org/10.1002/1615-9314(20010301)24:3<213::AID-JSSC213>3.0.CO;2-4 . [all data]

Subramaniam, Bochniak, et al., 1994
Subramaniam, B.; Bochniak, D.; Snavely, K., Fischer-Tropsch synthesis in supercritical reaction media, Lawrence Department of Chemical and Petroleum Engineering (DOE/PC/92532--T7), United States Department of Energy, Pittsburgh, PA, 1994, 8, retrieved from http://www.NTIS.gov. [all data]

White, Douglas, et al., 1992
White, C.M.; Douglas, L.J.; Hackett, J.P.; Anderson, R.R., Characterization of synthetic gasoline from the chloromethane-zeolite reaction, Energy Fuels, 1992, 6, 1, 76-82, https://doi.org/10.1021/ef00031a012 . [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Hayes and Pitzer, 1981
Hayes, P.C., Jr.; Pitzer, E.W., Kovats indices as a tool in characterizing hydrocarbon fuels in temperature programmed glass capillary gas chromatography. Part 1. Qualitative identification, Inhouse rpt. for Air Force Wright Aeronautical Labs., Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio, 1981, 75. [all data]

Peng, 2000
Peng, C.T., Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index, J. Chromatogr. A, 2000, 903, 1-2, 117-143, https://doi.org/10.1016/S0021-9673(00)00901-8 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Li and Deng, 1998
Li, H.; Deng, C., Qualitative analysis of light components of gasoline cracking using Kovats retention indices, J. Instrumental Analysis, 1998, 17, 1, 67-69. [all data]

Xieyun, Maoqi, et al., 1996
Xieyun, H.; Maoqi, C.; Shiyan, Y., Gas Chromatographic analysis during the process of heptaldehyde production using 1-hexene, Chin. J. Chromatogr., 1996, 14, 4, 291-293. [all data]

Wu and Lu, 1984
Wu, J.; Lu, W., Kovats indices of C4-C10 hydrocarbons in apolar quartz capillary OV-101, Chin. J. Chromatogr., 1984, 1, 1, 11-17. [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Vigdergauz and Martynov, 1971
Vigdergauz, M.S.; Martynov, A.A., Some applications of the gas chromatographic linear retention indices, Chromatographia, 1971, 4, 10, 463-467, https://doi.org/10.1007/BF02268816 . [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Shoenmakers, Oomen, et al., 2000
Shoenmakers, P.J.; Oomen, J.L.M.M.; Blomberg, J.; Genuit, W.; van Velzen, G., Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures, J. Chromatogr. A, 2000, 892, 1-2, 29-46, https://doi.org/10.1016/S0021-9673(00)00744-5 . [all data]

Orav, Kailas, et al., 1999
Orav, A.; Kailas, T.; Muurisepp, M.; Kann, J., Composition of the oil from waste tires. 1. Fraction boiling at yp to 160 0C, Proc. Estonian Acad. Sci. Chem., 1999, 48, 1, 30-39. [all data]

Guan, Li, et al., 1995
Guan, Y.; Li, L.; Zhou, L., Live retention database for compound identification in capillary gas chromatography, Chin. J. Chromatogr., 1995, 13, 5, 851-857. [all data]

Chen, 2008
Chen, H.-F., Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression, Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003 . [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Finkelstein, Kurbatova, et al., 2002
Finkelstein, E.E.; Kurbatova, S.V.; Kolosova, E.A., Study of biological activity of structure analogies of adamantane, Proc. Samara State Univ., 2002, 26, 4, 121-128. [all data]

Perkin Elmer Instruments, 2002
Perkin Elmer Instruments, Detailed hydrocarbon analysis (DHAX) Model 4015, 2002, retrieved from http://www.perkinelmer.com/instruments. [all data]

Zhu and Wang, 2001
Zhu, X.; Wang, W., The relationship between partition coefficients of hydrocarbons and their retention indices, Acta Scientific Circumstantiae, 2001, 21, 5, 631-633. [all data]

Zenkevich, 2000
Zenkevich, I.G., Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics, Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]

Spieksma, 1999
Spieksma, W., Determination of vapor liquid equilibrium from the Kovats retention index on dimethylsilicone using the Wilson mixing tool, J. Hi. Res. Chromatogr., 1999, 22, 10, 565-588, https://doi.org/10.1002/(SICI)1521-4168(19991001)22:10<565::AID-JHRC565>3.0.CO;2-2 . [all data]

Zenkevich, 1998
Zenkevich, I.G., Reciprocally Unambiguous Conformity Between GC Retention Indices and Boiling Points within Two- and Multidimensional Taxonomic Groups of Organic Compounds, J. Hi. Res. Chromatogr., 1998, 21, 10, 565-568, https://doi.org/10.1002/(SICI)1521-4168(19981001)21:10<565::AID-JHRC565>3.0.CO;2-6 . [all data]

Zenkevich, 1996
Zenkevich, I.G., Informational Maitenance of Gas Chromatographic Identification of Organic Compounds in Ecoanalytical Investigations, Z. Anal. Chem., 1996, 51, 11, 1140-1148. [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Skrbic and Cvejanov, 1993
Skrbic, B.D.; Cvejanov, J.Dj., Correlation of unified retention indices for OV-101 and squalane, Chromatographia, 1993, 35, 1/2, 109-110, https://doi.org/10.1007/BF02278566 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

van Langenhove and Schamp, 1986
van Langenhove, H.; Schamp, N., Identification of Volatiles in the Head Space of Acid-Treated Phosphate Rock by Gas Chromatography-Mass Spectromety, J. Chromatogr., 1986, 351, 65-75, https://doi.org/10.1016/S0021-9673(01)83473-7 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Robinson and Odell, 1971, 2
Robinson, P.G.; Odell, A.L., Comparison of isothermal and non-linear temperature programmed gas chromatography. The temperature dependence of the retention indices of a number of hydrocarbons on squalane and SE-30, J. Chromatogr., 1971, 57, 11-17, https://doi.org/10.1016/0021-9673(71)80002-X . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References